Sydney Desalination Plant Pty Ltd

Energy Adjustment and Efficiency Carryover Mechanisms
Contents

1 **Introduction** 1
 1.1 Our Methodology Paper 1
 1.2 Our review process 2
 1.3 Structure of this Methodology Paper 4
 1.4 Our final decisions 5

2 **Energy Adjustment Mechanism Methodology** 6
 2.1 Terms of Reference 6
 2.2 Purpose of the EAM 6
 2.3 Scope of the EAM 7
 2.4 EAM timeframes 9
 2.5 EAM calculation of gains and losses 9
 2.6 How the EAM shares gains and losses between SDP and its customers 14
 2.7 We will review the prudence of SDP’s energy trading policy and activity 16
 2.8 We will calculate EAM allowances that include financing costs 16
 2.9 EAM process 17
 2.10 Information requirements 18

3 **Worked examples of the Energy Adjustment Mechanism** 19
 3.1 Example 1 – gains and losses within the core band 19
 3.2 Example 2 – gains and losses outside the core band 20
 3.3 Example 3 – banking of RECs between years 21

4 **Efficiency Carryover Mechanism Methodology** 22
 4.1 Terms of Reference 22
 4.2 Purpose of the ECM 22
 4.3 What costs are included in the ECM 23
 4.4 ECM timeframes 23
 4.5 Identifying and carrying over efficiency savings 24
 4.6 ECM allowances 26
 4.7 ECM process 26
 4.8 Information requirements 27

5 **Worked examples of the Efficiency Carryover Mechanism** 28
 5.1 Example 1 – General efficiency saving 28
 5.2 Example 2 – Mode-specific efficiency saving 28
 5.3 Example 3 – Efficiency savings retained for a maximum of five years 29
 5.4 Example 4 – Temporary underspends and overspends 30

Appendices 31
 A Terms of Reference 32
 B Review of 2012 Energy Adjustment Mechanism 36
 C Review of 2012 Efficiency Carryover Mechanism 46

Glossary 57
1 Introduction

We determine Sydney Desalination Plant Pty Ltd’s (SDP’s) prices in accordance with a standing Ministerial reference under section 52 of the Water Industry Competition Act 2006 (WIC Act). Under the Terms of Reference (see Appendix A), we are required to apply the following two revenue adjustment mechanisms at each SDP price review:

- **Energy Adjustment Mechanism (EAM)** - a mechanism to transfer a portion of gains and losses, outside a core band, that result from the sale of SDP’s surplus energy (electricity and Renewable Energy Certificates (RECs)) when SDP is in shutdown or restart mode.

- **Efficiency Carryover Mechanism (ECM)** – a mechanism to allow SDP to carryover demonstrated efficiency savings, net of efficiency losses, in operating expenditure for a period of four years following the year in which the efficiency saving was achieved.

In 2012, we published a Methodology Paper setting out our approach to implementing the EAM and ECM. The Terms of Reference allows us to update the Methodology Paper from time to time.

We reviewed and updated the Methodology Paper concurrent to our review of SDP’s maximum prices to apply from 1 July 2017. The updated EAM and ECM methodologies are set out in the 2017 Methodology Paper. These updated methodologies will be applied at the 2022 price review and factored into prices over the 2022 determination period. We note the updated methodologies will influence SDP’s incentives to manage its surplus energy and deliver efficiency savings over the 2017 determination period. This is why we reviewed the Methodology Paper at the same time as our review of SDP’s maximum prices from 1 July 2017.

1.1 Our Methodology Paper

Our Issues Paper identified key issues relating to how the existing energy adjustment and efficiency carryover mechanisms operate and asked what changes, if any, should be made to these mechanisms. Key issues identified for stakeholder consultation included:

- the scope and design of the mechanisms
- the calculation methods used, and
- the external data sources to be used.

The purpose of this review was to update, improve, and clarify how these mechanisms operate and how we intend to apply them at the next price review.

1 We received the initial Terms of Reference on 4 May 2011. The initial reference was replaced by the current reference on 16 February 2012.

The **EAM** re-allocates some of the risk relating to SDP’s surplus energy from SDP to customers. Re-allocating risk from SDP to customers changes SDP’s incentive to manage these risks prudently and efficiently. Given that SDP (rather than customers) is best placed to manage the market price risk of its surplus energy, we consider it important that SDP retain sufficient incentive to manage this risk prudently and efficiently. We are supporting this objective by:

- increasing SDP’s share of gains or losses outside the core band
- setting the core band relative to the contract value of surplus energy sold in the year, and
- signalling that we will undertake a prudence review of SDP’s trading policy and trading activity at the next price review and may decide to exclude trades from the EAM if there is evidence of imprudence in the management of SDP’s surplus energy.

We have also refined and clarified how we intend to calculate gains and losses on the sale of surplus energy.

The purpose of the **ECM** is to allow SDP to retain permanent efficiency savings for a period of time before these savings are passed on to customers through lower prices. We have refined the ECM to:

- clarify the purpose of the ECM, which is to focus on identifying, delivering, and passing through permanent efficiency savings to SDP’s customers
- clarify the scope of costs that are subject to the mechanism, and
- ensure efficiency savings are retained by SDP for a maximum of five years.

We are maintaining our approach in relation to mode-specific efficiency savings which are to be retained for up to five years, while SDP is in that specific mode, over a five consecutive year period, beginning when the efficiency saving is first achieved.

In March 2017 we released a draft 2017 Methodology Paper, which set out our draft decisions on the EAM and ECM. The draft 2017 Methodology Paper also presented stakeholder views, analysis and findings to support our draft decisions. Stakeholder feedback was generally positive and accepting of our draft decisions. SDP questioned some aspects of the draft decisions and requested further clarification on some issues. We have responded to these questions and requests for clarification in this final 2017 Methodology Paper.

1.2 Our review process

In developing our 2017 Methodology Paper, we have carefully considered and taken into account all feedback received from stakeholders through the review. We have also complied with our Terms of Reference (see Appendix A).

As part of our review process, we have undertaken extensive investigation, public consultation, and analysis including:

- releasing an Issues Paper in August 2016 to assist stakeholders to identify and understand the key issues for review
inviting SDP to make a pricing proposal in October 2016 detailing its proposed services, costs, and prices for the period 1 July 2017 to 30 June 2022 (which reflected SDP’s view of the revenue required to operate and maintain the plant and respond to regulatory demands throughout the 2017 determination period)

inviting stakeholders to make submissions on the Issues Paper and SDP’s pricing proposal by 11 November 2016

holding a Public Hearing in December 2016 to discuss a wide range of issues raised by SDP and other stakeholders

engaging an independent consultant (Marsden Jacob Associates) to review SDP’s proposed allowances for energy costs and the energy adjustment mechanism, and

releasing a draft 2017 Methodology Paper in March 2017 that invited stakeholders to make submissions in response to the draft by April 2017.

Our reports, stakeholder submissions, the transcript from the public hearing, and consultants’ reports are available on our website (www.ipart.nsw.gov.au).

SDP submitted its pricing proposal to IPART on 27 October 2016. SDP redacted certain information from the public version of its pricing proposal on the grounds of commercial confidentiality.

At the Public Hearing, SDP disclosed some of the information that had been redacted from the public version of its pricing proposal. Accordingly, SDP resubmitted its pricing proposal to include some information that was originally redacted. No other changes were made to SDP’s revised pricing proposal.

We have referred to SDP’s revised pricing proposal throughout this 2017 Methodology Paper. SDP’s revised pricing proposal is available on our website. To avoid potential confusion, we have marked SDP’s original pricing proposal on our website as ‘superseded’.

The 2017 Metropolitan Water Plan was released on 19 March 2017. Under the new Plan, the ‘on’ and ‘off’ triggers for the desalination plant have been lowered to run the water supply system more cost effectively, taking account of changes in demand over the medium term.

SDP is to operate in drought response when the total dam storage level is below 60% (previously 70%) and continue to do so until the total dam storage level reaches 70% (previously 80%).

4 A total of six written submissions were received from interested stakeholders.
5 Marsden Jacob Associates’ final report was received in February 2017 and published on our website in March 2017.
6 The Hon. Don Harwin MLC, Minister for Resources, Minister for Energy and Utilities, Minister for the Arts, New Water Plan to save Greater Sydney, Media release Sunday 19 March 2017.
8 The Metropolitan Water Plan does not define ‘drought’ according to the desalination plant’s trigger levels. However, the desalination plant, along with other water sources, is accessed as the water levels in dams reduce. Therefore, the plant is a drought response measure, aimed at securing supply of water. We refer to SDP’s operating rules to distinguish between when the plant is operating in its drought response role and when it is not.
1.3 Structure of this Methodology Paper

We have separated the 2017 EAM and ECM methodologies (covered in chapters 2 to 5) from our review of the 2012 Methodology Paper (covered in appendices B and C).

The remainder of this Methodology Paper is structured as follows:

- Chapter 2 sets out our methodology for the EAM.
- Chapter 3 provides worked examples of the EAM.
- Chapter 4 sets out our methodology for the ECM.
- Chapter 5 provides worked examples of the ECM.
- Appendices:
 - Appendix A contains the Terms of Reference.
 - Appendix B provides analysis and discussion on the issues we considered in our review of the 2012 Energy Adjustment Mechanism methodology.
 - Appendix C provides analysis and discussion on the issues we considered in our review of the 2012 Efficiency Adjustment Mechanism methodology.
- Glossary of terms used in this Methodology Paper.
1.4 Our final decisions

Our final decisions are outlined in the chapters of this Methodology Paper. For convenience, they are also listed below.

Energy Adjustment Mechanism (EAM)

We made the following decisions:

1. Increase SDP’s share of gains and losses that occur outside the core band from 10% to 20%. This change takes effect from 2017-18. SDP’s current share of gains and losses that occur outside the core band (ie, 10%) still applies for 2016-17.
2. Modify our prudence test of SDP’s energy trading policy and activity from a test of “no manifest imprudence” to a test of “the prudence of SDP’s energy trading policy and activity”.
3. Allow SDP’s request for additional funding of $0.52 million over the 2017 determination period to allow SDP to meet the strengthened prudency test.
4. Amend how gains and losses on RECs are calculated so that gains/losses are recognised in the year the RECs are sold (not accrued).
5. Clarify the method used to apply financing costs to EAM allowances.
6. Not extend the EAM to partial production. This is consistent with the Terms of Reference.

Efficiency Carryover Mechanism (ECM)

We made the following decisions:

7. Maintain the current approach of including efficiency savings, net of efficiency losses, for four years following the year they are achieved (ie, five years total).
8. Maintain the current treatment of mode specific efficiency savings (ie, held for up to five years, within a five consecutive year period, while SDP is in that specific mode).
9. Adopt aspects of the ECM we applied to other IPART regulated water businesses, including:
 - Removing the requirement that in order to be carried over, efficiency savings must be the result of a ‘management initiative’.
 - Shifting the ECM application period to use the five most recent years of actual data.
 - Adding a clawback to ensure savings are held by SDP for a maximum of five years.
2 Energy Adjustment Mechanism Methodology

2.1 Terms of Reference

The Terms of Reference state:\(^{10}\)

A mechanism(s) is required to allocate the costs or benefits to SDP customers (in Sydney Water’s area of operation) of actual gains or losses beyond a core band that result from the difference between SDP’s costs of electricity and RECs under its contracts with Infigen and revenues from the sale of surplus electricity and RECs. The mechanism would only operate at times when:

- The desalination plant is in Shutdown or in a Restart Period; and
- SDP complied with its requirements to maintain and operate the desalination plant under clause A2 of its network operator licence.

The Minister further advised that:\(^{11}\)

For clarity, the intention of the proposed energy adjustment mechanism is that:

1. It would only apply to electricity and RECs that are not required by SDP when the desalination plant is not in full operation mode when complying with the plant’s operating rules, as established by the Metropolitan Water Plan and subsequently included in SDP’s Network Operator’s Licence under the Water Industry Competition Act.

2. It would ensure that SDP customers for water (in Sydney Water’s Area of Operations) receive the benefit of significant gains and bear significant losses incurred as a result of the difference between the cost of electricity and RECs under SDP’s contracts with Infigen and the market price for electricity and RECs arising from the sale of SDP’s surplus electricity and RECs (in the circumstances described in point 1).

3. For electricity, the mechanism would mirror the ‘Calculation of Shortfall Adjustment’ in SDP’s Electricity Supply Agreement with Infigen, with the ‘market price’ defined as the half-hourly spot price and/or the price of a contracted ‘available block’.

4. For RECs, the ‘market price’ would be the price shown in the Nextgen Greenroom Report, or another equivalent report.

2.2 Purpose of the EAM

SDP manages a large scale reverse osmosis desalination plant located on the coast of Kurnell, 25 kilometres from Sydney's CBD. The plant can produce on average 250 ML of drinking water per day, which is equivalent to about 15% of Sydney’s total drinking water supplies.\(^{12}\) SDP produces drinking water by forcing sea water through membranes at high pressure to remove the salt. This process requires a considerable amount of energy.

\(^{10}\) SDP Terms of Reference, February 2012, page 2.

\(^{11}\) Letter to IPART, 16 February 2012.

SDP has entered into long-term contracts to acquire fixed minimum volumes of electricity and RECs at fixed prices. However, when the plant is not operating, the minimum quantity of electricity under the contract applies and SDP is exposed to the risk of reselling electricity that is not needed at an uncertain price. Notably, when the market price is below its contract price, SDP incurs a loss on the resale of surplus energy in shutdown or restart modes. On the other hand, in the event that the market price exceeds the contract price, SDP makes a gain on the resale of surplus energy.

SDP incurs these gains and losses, not as the result of our price structures, but because of the avenues available to SDP to deal with surplus electricity and RECs within the constraints of its Infigen (energy) contract arrangements (outlined below). The Government decided that not all of SDP’s gains and losses on surplus energy should remain with SDP. In February 2012, the Government amended the Terms of Reference and required IPART to develop a methodology for calculating gains and losses on the resale of SDP’s surplus energy outside a core band and passing them through to customers through water prices.

2.3 Scope of the EAM

The EAM passes through gains or losses, outside a core band, from the sale of surplus electricity and RECs when the plant is in shutdown or restart mode to SDP’s customers.

The EAM applies to gains and losses on the sale of SDP’s surplus energy contracts when SDP is in shutdown or restart mode and when SDP is in compliance with the relevant provisions of its network operator licence. The EAM only applies to SDP’s current energy (electricity and RECs) contracts with Infigen.

2.3.1 SDP’s current energy contracts with Infigen

Electricity for the desalination plant is provided under a contract between SDP and Infigen Energy Markets Pty Ltd, which is a subsidiary of Infigen Energy Limited. In its submission to the 2012 price review, SDP described the conditions of the Electricity Supply Agreement:

- a 20-year term
- fixed real prices
- no pass-through of any future tax, levy, impost or charge relating to greenhouse gas or carbon emissions
- no pass-through of any cost arising from the introduction or operation of any emissions trading scheme
- a contracted annual volume sufficient to support full operations at the desalination plant, and
- the ability to sell load back to the market if electricity demand is lower than forecast.

14 SDP is required to maintain and operate the desalination plant under clause A2 of its network operator licence granted under the WIC Act on 9 August 2010 and varied on 10 May 2013.
15 SDP (Sydney Water) submission to IPART’s review of prices, 8 July 2011, p 3.
SDP also has agreements with Renewable Power Ventures Pty Ltd, another subsidiary of Infigen Energy Limited, for the supply of RECs to offset the power used by the desalination plant.16

SDP reports that the RECs are sold to SDP under a 20-year Renewable Energy Certificate Agreement, which provides for the supply of RECs at fixed real prices.17 The agreement includes a minimum annual number of RECs that SDP must purchase. SDP may sell any surplus RECs in the market.

2.3.2 Changes to SDP’s energy contracts

The EAM is premised on the continued operation of SDP’s Electricity Supply Agreement with Infigen Energy Limited dated 28 July 2008 (as amended and restated on 31 March 2010) and its RECs Supply Agreement with Renewable Power Ventures Pty Limited dated 28 July 2008 (as amended and restated on 31 March 2010). These are collectively known as the Infigen Contracts.

We will exclude from the EAM any amendments to the contracts that increase the duration, risk, or cost of these contracts. We will include in the EAM any amendments to the contracts that decrease the duration, risk, or cost of these contracts. This approach is consistent with the standard regulatory principle that customers should be able to share in efficient gains while not being exposed to inefficient losses incurred by the regulated business.

The EAM will cease to apply from the date of the termination, assignment or novation (as the case may be) in the event that:

- the term of the contract expires
- either party terminates the Infigen Contracts, or
- SDP assigns or novates the Infigen Contracts to a third party (other than to a person who purchases SDP’s entire interest in the Desalination Plant).

Notwithstanding the above, any loss or gain accruing to SDP as a result of assignment, termination or novation will be subject to the EAM.

Any net loss or gain accruing to SDP as a result of the assignment or termination of one of the Infigen Contracts — including any payment received or made by SDP — will be subject to the EAM. We will allow for financing costs on any such amount subject to the EAM at the financing interest rate specified in this 2017 Methodology Paper.

In the event that SDP makes or receives a payment as a result of the assignment or termination of a contract, IPART may, at its discretion and having regard to the materiality of the payment, apportion the loss or gain over the remaining term of the current contract for purposes of the EAM.

16 SDP (Sydney Water) submission to IPART’s review of prices, 8 July 2011, p 3.

17 SDP (Sydney Water) submission to IPART’s review of prices, 8 July 2011, p 3.
2.3.3 Changes to renewable energy schemes

If there is a Change in Scheme and SDP is required to purchase another type of Environmental Credit, the EAM will apply to the other type of Environmental Credit in the same way it had previously applied to RECs.

‘Change in Scheme’ and ‘Environmental Credit’ have the meaning given to each of those terms in the RECs Supply Agreement with Renewable Power Ventures Pty Limited dated 28 July 2008 (in place as of 1 July 2012).

2.4 EAM timeframes

The EAM is structured around the following three periods:

- **Application period**: the five years immediately preceding the review year. The EAM will apply to actual realised gains and losses over the application period.
- **Review year**: the year the EAM is applied.
- **Adjustment period**: the determination period immediately following the review year. EAM allowances will apply.

Table 2.1 illustrates these time periods for the next EAM application in 2021-22.

<table>
<thead>
<tr>
<th>Application period</th>
<th>Review year</th>
<th>Adjustment period</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 determination period</td>
<td>2022 determination period</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: This example assumes a five-year 2022 determination period.

Source: IPART analysis.

2.5 EAM calculation of gains and losses

2.5.1 Gains and losses are evaluated within a financial year

We will calculate gains and losses on a financial year basis. If SDP is not in shutdown or restart mode or is deemed to not be in compliance with the relevant terms of its Network Operator’s Licence for part of a financial year during the application period, any energy relating to that period will be excluded from the EAM.

The EAM will apply to gains and losses that are realised in each financial year.

- For electricity, the EAM gain or loss calculation applies to surplus electricity contracted and sold in that particular financial year. If electricity for next year is forward sold this year, any gain or loss on that electricity will be included in next year’s EAM gain or loss calculation. In this case, although the price is locked in this year, the electricity is traded next year and the gain or loss is not realised until next year.
For RECs, the EAM gain or loss calculation applies to surplus RECs sold in that particular financial year. If RECs accrued this year are banked and sold next year, any gain or loss on those RECs will be included in next year’s EAM gain or loss calculation. In this case, although the RECs are accrued this year, they are not sold until next year and the gain or loss is not realised until next year.

2.5.2 Calculating gains and losses on surplus electricity contracts

For transparency and to inform our prudency review, we will calculate both an actual gain or loss (based on actual sale price which may be the spot market or a forward market price) and a hypothetical gain or loss (based on the spot market price).

The actual gain or loss calculation will be used to calculate EAM allowances (subject to the prudency review). The difference between hypothetical and actual gain or loss illustrates the value gained or lost if SDP decides to forward sell some portion of its surplus electricity.

The most meaningful comparison of actual and hypothetical gains and losses will be over the longer term (eg, over a determination period). While we do not intend to use this information (ie, the comparison between hypothetical and actual gains or losses over a determination period) to explicitly adjust EAM allowances, we do intend to use this information to inform our understanding of SDP’s surplus energy management and our prudency review. For example, if actual gains are consistently lower than hypothetical gains over a determination period, we would investigate this to understand why this occurred and how SDP had responded to this over the determination period.

The two measures will be calculated as follows:

\[
\text{Actual gain or loss} = (\text{volume of surplus electricity}) \times (\text{actual sale price less contract price})
\]

\[
\text{Hypothetical gain or loss} = (\text{volume of surplus electricity}) \times (\text{spot market price less contract price})
\]

In the event SDP sells all surplus electricity into the spot market, the actual gain or loss would equal the hypothetical gain or loss.

The process of calculating gains and losses on electricity

The following outlines how each of the formulas above would be calculated.

1. Calculate the contract value of surplus electricity:
 - Determine the volume of surplus electricity within scope of the EAM for each month of the application period. This volume will depend on how many days there are in each month.
 - Calculate the value of surplus electricity on a monthly basis (ie, volume of surplus electricity in a month multiplied by the contract price relevant to that month).
 - Sum the monthly values to generate totals for each financial year over the application period.
2. Calculate the actual gain or loss:
 - Calculate the actual revenue for each month (ie, volume of surplus electricity in each month multiplied by the volume weighted average sale price for that month provided by SDP).\(^{18}\)
 - Sum the monthly revenues to generate totals for each financial year over the application period.
 - Calculate the actual gain or loss (ie, total actual revenues less contract value for surplus electricity in each financial year over the application period).

3. Calculate the hypothetical gain or loss:
 - Calculate the hypothetical revenue for each month (ie, volume of surplus electricity in month multiplied by monthly average spot price published on the AEMO website).
 - Sum the hypothetical monthly revenues to generate totals for each financial year over the application period.
 - Calculate the hypothetical gain or loss (ie, total hypothetical revenues less contract value for surplus electricity in each financial year over the application period).

2.5.3 Calculating gains and losses on surplus REC contracts

For transparency and to inform our prudency review, we will calculate both an actual gain or loss (based on the actual sale price when surplus RECs are sold) and a hypothetical gain or loss (based on the average spot market price in the quarter the surplus RECs are accrued).

The actual gain or loss calculation will be used to calculate EAM allowances (subject to our prudency review). The difference between hypothetical and actual gain or loss illustrates the value gained or lost as the RECs are received at the end of the quarter in which they are accrued and then banked to be sold in subsequent quarter/s.

The most meaningful comparison of actual and hypothetical gains and losses will be over the longer term (eg, over a determination period). While we do not intend to use this information (ie, the comparison between hypothetical and actual gains or losses over a determination period) to explicitly adjust EAM allowances, we do intend to use this information to inform our understanding of SDP’s surplus energy management and our prudency review. For example, if actual gains are consistently lower than hypothetical gains over a determination period, we would investigate this to understand why this occurred and how SDP had responded to this over the determination period.

The two measures will be calculated as follows:

\[
\text{Actual gain or loss} = (\text{volume of surplus RECs sold in quarter}) \times (\text{actual sale price less contract price})
\]

\[
\text{Hypothetical gain or loss} = (\text{volume of surplus RECs sold in quarter}) \times (\text{spot market price relevant to the quarter in which RECs are accrued less contract price})
\]

\(^{18}\) Consistent with the calculation of shortfall adjustment in SDP’s Electricity Supply Agreement with Infigen.
The process of calculating gains and losses on RECs

The following outlines how each of the formulas above would be calculated.

1. **Calculate the contract value of surplus RECs sold:**
 - Identify the transactions of surplus RECs sold in each quarter over the application period.
 - Identify the contract cost of surplus RECs sold in each quarter over the application period.
 - Calculate the sum of the cost of REC contracts sold in each financial year of the application period.

2. **Calculate the actual gain or loss:**
 - Calculate the actual revenue for each quarter. For each surplus REC sold in a quarter, identify the actual revenue generated from these sales.
 - Calculate the actual gain or loss for each quarter. This is actual revenue minus contract value for each quarter.
 - Calculate the actual gain or loss for each financial year. This is the sum of the quarterly actual gains or losses over each financial year of the application period.

3. **Calculate the hypothetical gain or loss:**
 - Calculate the hypothetical revenue for each quarter. For each surplus REC sold in a quarter, identify the quarter in which that REC was accrued. Assume each REC was sold for the average spot price for the quarter in which it was accrued. The quarterly spot market price is the simple average of daily REC spot market prices over each quarter based on data provided through subscription with TFS Green Australia (or an alternative data source if this is not available).
 - Calculate the hypothetical gain or loss for each quarter. This is hypothetical revenue minus contract value for each quarter.
 - Calculate the hypothetical gain or loss for each financial year. This is the sum of the quarterly hypothetical gains or losses over each financial year of the application period.

An example of how gains and losses are calculated for RECs is presented in Box 2.1.
Box 2.1 Clarifying the calculation of actual gains and losses on RECs

For this example, assume a REC is accrued in the second quarter of 2017-18 and is received following that quarter on 1 January 2018. The REC is banked and sold by SDP one year later on 1 January 2019.

Under this 2017 EAM methodology, the actual gain or loss would be recorded as occurring in 2018-19 and would be based on the difference between SDP’s contract price and the actual sale price on 1 January 2019.

This is different to the approach we took when applying the 2012 EAM methodology. Under that approach, the actual gain or loss would be recorded as occurring in 2017-18 and would be based on the difference between SDP’s contract price and the actual sale price on 1 January 2019.

The only difference in approaches is that we are now recognising and recording gains and losses in the year they are actually realised (which can be, but is not necessarily, the year in which the REC is accrued).

The new approach means customers will not pay (receive) holding costs for unrealised losses (gains) and we remove the potential complication of what to do when RECs are banked across application periods. That is, if a REC is accrued in year 5 of an application period and is not sold early enough during the review year, we would be unable to attribute the realised gain or loss to year 5 of the application period and we would need to add an adjustment factor to the next application of the EAM.

2.5.4 Combining gains and losses on electricity and RECs

For each financial year over the application period, we will sum the actual gains and losses on electricity and RECs to a single combined actual gain or loss on energy before we apply the core band (discussed below). By combining electricity and RECs into a single energy gain or loss, gains in one component will be able to offset losses in the other component. This means that customers will be exposed to gains and losses outside a core band on the resale of SDP’s surplus energy (rather than being exposed to separate risks for electricity and RECs depending on where each component is trading relative to separate core bands).

2.5.5 Relationship to Shortfall Adjustment in SDP’s electricity contract

In calculating the gain or loss on surplus electricity, we will follow the definitions and procedures specified in the ‘Calculation of Shortfall Adjustment’ in SDP’s Electricity Supply Agreement with Infigen Energy Limited to the extent consistent with the methodology specified in this paper.

However, the combined actual gain or loss on energy may differ from the Shortfall Adjustment on the SDP contract as a result of any/all of the following factors:

- the inclusion of RECs
- the restriction of the EAM’s coverage to shutdown and restart modes of operation as specified by the Terms of Reference
- the allowance for financing costs (see below), and
any timing differences (financial year vs. calendar year and the treatment of the final year of each determination period).

2.6 How the EAM shares gains and losses between SDP and its customers

As required by the Terms of Reference, actual gains or losses beyond a core band are shared between SDP and its customers.

2.6.1 Defining the core band

We have defined a core band of plus or minus 5% of the contract value of SDP’s surplus energy sold (ie, electricity and RECs combined) for which gains and losses are realised in that financial year.

Therefore, instead of total volume of energy contracted in the year, the core band is now based on the same volume of energy that is used in the calculation of gains and losses (ie, the volume of energy sold within the year). This means that the core band is no longer necessarily a fixed value in each year of the application period, but will vary to reflect the volume of energy sold that year. Basing the core band on surplus energy sold in the financial year accommodates the potential ‘banking’ of RECs and ensures that gains and losses are treated symmetrically in the event that RECs are accrued and sold in different years.

An example of how the core band threshold is calculated is provided in Box 2.2.
Box 2.2 Clarifying the calculation of the core band threshold

We have changed the definition of the core band as a result of our change to how the gains and losses on RECs are calculated. That is, because we are recognising and recording gains or losses on the sale of RECs in the year the gains or losses are realised (rather than in the year the RECs are accrued), it is important the core band for a particular year also reflects the RECs sold in that year (rather than accrued in that year).

The following table illustrates the difference between how the core band is defined in this 2017 Methodology Paper compared to how it is defined in the 2012 Methodology Paper.

\[\text{2012 core band} \rightarrow \text{contract value} \]

\[
\begin{array}{cccccc}
\text{Year of application period} & 1 & 2 & 3 & 4 & 5 \\
\text{2012 core band} & - & - & - & - & - \\
\text{- Total contracted electricity ($)} & 100 & 100 & 100 & 100 & 100 \\
\text{- Total contracted RECs ($)} & 100 & 100 & 100 & 100 & 100 \\
\text{- Total contracted energy ($)} & 200 & 200 & 200 & 200 & 200 \\
\text{- Core band (5% of total contract) ($) } & 10.00 & 10.00 & 10.00 & 10.00 & 10.00 \\
\end{array}
\]

\[\text{2017 core band} \rightarrow \text{contract value} \]

\[
\begin{array}{cccccc}
\text{Year of application period} & 1 & 2 & 3 & 4 & 5 \\
\text{2017 core band} & 99 & 99 & 99 & 99 & 99 \\
\text{- Surplus contracted electricity ($) } & 99 & 99 & 99 & 99 & 99 \\
\text{- Surplus contracted RECs ($) } & 99 & 99 & 99 & 99 & 99 \\
\text{- Surplus sold electricity ($) } & 90 & 95 & 99 & 102 & 109 \\
\text{- Surplus sold RECs ($) } & 189 & 194 & 198 & 201 & 208 \\
\text{- Core band (5% of surplus sold) ($) } & 9.45 & 9.70 & 9.90 & 10.05 & 10.40 \\
\end{array}
\]

Note: Figures used in this example are for illustration only.
Source: IPART analysis.

2.6.2 Defining the sharing ratio’s outside the core band

Consistent with the Terms of Reference, SDP retains 100% of gains and losses within the plus or minus 5% core band. Relative to this core band:

\[\text{SDP retains 20% of incremental gains and losses outside the plus or minus 5% core band.} \]

\[\text{The remaining 80% of incremental gains and losses outside the plus or minus 5% core band are passed through to customers.} \]

We note the exception to these sharing rules is that in 2016-17, SDP will retain 10% of any incremental gain or loss outside the plus or minus 5% core band and the EAM will pass
through the remaining 90% of any incremental gain or loss outside the plus or minus 5% core band to customers. This is because we have released the final 2017 Methodology Paper at the close of 2016-17 and we are of the view that this change to SDP’s incentives should apply prospectively (ie, from 2017-18) and not retrospectively (ie, it should not apply to 2016-17). All other aspects of the 2017 Methodology Paper will apply to 2016-17.

Figure 2.1 illustrates the key design elements of the EAM.

Figure 2.1 EAM sharing of gains and losses on resale of surplus energy

<table>
<thead>
<tr>
<th>Gain or loss on sale of surplus energy</th>
<th>Gain</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5%</td>
<td>SDP retains 100% of gains and losses within the ± 5% core band.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>SDP retains 100% of gains and losses within the ± 5% core band.</td>
<td></td>
</tr>
<tr>
<td>-5%</td>
<td>SDP retains 20% of losses outside the - 5% core band. Customers receive 80% of losses outside the - 5% core band.</td>
<td></td>
</tr>
</tbody>
</table>

Source: IPART analysis.

2.7 We will review the prudence of SDP’s energy trading policy and activity

At each review year when we apply the EAM, we intend to review the prudence of SDP’s energy trading policy and its energy trading activity over the application period. Any evidence of imprudence may result in us excluding part of a trade, a trade, or multiple trades from the EAM.

2.8 We will calculate EAM allowances that include financing costs

The EAM includes financing costs to compensate SDP for the delay in passing on losses and/or to compensate customers for the delay in receiving gains through the EAM.

EAM allowances are generated by calculating a five-year annual annuity over the adjustment period, with a present value equal to the present value of the gains and losses over the application period to be passed on to customers under the EAM. There are three steps to this process:

1. The gains and losses for each year of the application period (assumed to be mid-year values) are escalated to a present value in the review year (assumed to be an end of year value for the review year). For example, a gain or loss in 2016-17 (mid-year) will be escalated forward five and a half years to 2021-22 (end of year).
2. An annuity is calculated over the application period (five years). The cash flows of this annuity (calculated as end of year values) are set such that the present value of the annuity as of 2021-22 (end of year) is equal to the present value of gains and losses as of 2021-22 (end of year).

3. The cash flows of the annuity (end of year values) are each discounted back six months to arrive at EAM allowances (mid-year values).

We intend to use the 3-year BBB Corporate Bond Rate series currently published by the RBA. If this series is discontinued in the future, we will use a suitable alternative series. The RBA series is a monthly nominal series. If the RBA series is available, the EAM will use:

- For the application period: simple averages of 12 monthly observations for the relevant years of the application period. For partial years, the simple average of six monthly observations will be converted to a six month interest rate.

- For the review year: the simple average of the available months for the review year.

- For the adjustment period: the simple average of the available months for the review year, converted to real using the RBA’s latest inflation forecast and the Fisher equation.

- To discount the annuity values from end of year to mid-year values: the simple average of the available months of the review year, converted to real values using the RBA’s latest inflation forecast and the Fisher equation, converted to a six month interest rate.

Table 2.2 illustrates how EAM allowances are calculated.

<table>
<thead>
<tr>
<th>Application period ($nominal)</th>
<th>Review year</th>
<th>Adjustment period ($2021-22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CS</td>
<td>$CS</td>
<td>$CS</td>
</tr>
<tr>
<td>-</td>
<td>%n</td>
<td>%n</td>
</tr>
</tbody>
</table>

Note: $CS is the customers’ share. $EAM is the annual annuity for the Energy Adjustment Mechanism (EAM). %n is the nominal interest rate. %real is the real interest rate. Assumes a five-year 2022 determination period.

Source: IPART analysis.

2.9 EAM process

The following points step through how we intend to apply the EAM at future price reviews:

- Calculate hypothetical and actual gains and losses for electricity and RECs in each financial year of the application period.

21 We note that this process assumes all the qualifications set out in this paper have been met and therefore that gains and losses over the application period are subject to the EAM.
Sum the actual gains and losses for electricity and RECs into combined energy gains and losses for each year of the application period. This gives the total energy gain or loss in each year of the application period to potentially be shared between SDP and customers.

Undertake a prudence review to ensure that any losses are not the result of imprudence in terms of SDP’s energy management policy and/or its energy management activity.

Calculate the core band for each year of the application period as plus or minus 5% of the combined contract value of surplus electricity and RECs sold in each year of the application period (using the same volumes used to calculate the gains and losses above).

Apply the plus or minus 5% core bands and sharing ratios to combined energy gains and losses for each year of the application period. This gives the allocation of gains and losses between SDP and customers for each year of the application period.

Use the RBA corporate bond series (or a substitute series if the RBA series is discontinued) and the latest available RBA 1-year inflation forecast to generate:

a) a nominal financing rate series using monthly observations over the relevant years of the application period
b) a nominal interest rate using available months of data for the review year
c) a real interest rate based on the nominal rate used for the review year, the RBA’s most recent 1-year inflation forecast, and the Fisher equation, to be used to calculate an annuity over the adjustment period, and
d) a real interest rate based on the nominal rate used for the review year, the RBA’s most recent 1-year inflation forecast, and the Fisher equation, converted to a six month interest rate to discount the annuity values (end of year values) to EAM allowances (mid-year values).

Combine these nominal and real annual rates into a series, calculate an annual annuity over the adjustment period (ie, five equal annual payments in constant real dollars) with a present value equal to the present value of customers’ share of gains and losses on an annual basis over the application period.

Use the six month interest rate to discount the annuity values (end of year values) to EAM allowances (mid-year values).

2.10 Information requirements

We will collect information to implement the EAM at future price reviews. IPART will develop an appropriate framework to collect this information and include it in our written advice to SDP prior to future reviews.

We already have an annual reporting framework in place with SDP. Under the Water Industry Competition Act 2006 (NSW), licence holders are required to provide information requested by IPART.
3 Worked examples of the Energy Adjustment Mechanism

The following examples illustrate how we intend to implement the Energy Adjustment Mechanism (EAM) at future price reviews.

3.1 Example 1 – gains and losses within the core band

Table 3.1 shows how the EAM allocates gains and losses when they are within the core band. Because the gains and losses are within the core band in each of the financial years, SDP retains 100% of the gains and losses. The EAM passes 0% of the gains and losses on to customers.

Table 3.1 Gains and losses within the core band

<table>
<thead>
<tr>
<th>Financial year</th>
<th>2017 determination period</th>
<th>2022 determination period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of period</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cost - surplus energy sold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Electricity</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>- RECs</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>- Total</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Revenue - surplus energy sold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Electricity</td>
<td>104</td>
<td>102</td>
</tr>
<tr>
<td>- RECs</td>
<td>104</td>
<td>102</td>
</tr>
<tr>
<td>- Total</td>
<td>208</td>
<td>204</td>
</tr>
<tr>
<td>Gain or loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total gain (loss)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>- EAM core band</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>EAM shares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SDP within band</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>- SDP outside band</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Customer share</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- PV customer share</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The figures used in this example are for illustration only.
Source: IPART analysis.
3.2 Example 2 – gains and losses outside the core band

Table 3.2 shows how the EAM allocates gains and losses when they are outside the core band.

SDP retains 100% of the gain or loss up to the core band and 20% of the gain or loss outside the core band. The EAM adds financing costs to the Customer share (i.e., 80% of gains and losses outside the core band) and passes this through to customers over the adjustment period.

In this example, the present value of the Customer share of gains and losses over the application period is ($10.4). This is equal to the present value of an annual annuity of ($2.2) over the adjustment period.

Table 3.2 Gains and losses outside the core band

<table>
<thead>
<tr>
<th>Year of period</th>
<th>2017 determination period</th>
<th>2022 determination period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16-17</td>
<td>17-18</td>
</tr>
<tr>
<td>Cost - surplus energy sold</td>
<td>Review year</td>
<td>Adjustment period ($2021-22)</td>
</tr>
<tr>
<td>- Electricity</td>
<td>100 100 100 100 100</td>
<td>80 90 100 110 120</td>
</tr>
<tr>
<td>- RECs</td>
<td>100 100 100 100 100</td>
<td>80 90 100 110 120</td>
</tr>
<tr>
<td>- Total</td>
<td>200 200 200 200 200</td>
<td>160 180 200 220 240</td>
</tr>
<tr>
<td>Revenue - surplus energy sold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Electricity</td>
<td>80 90 100 110 120</td>
<td>100 100 100 100 100</td>
</tr>
<tr>
<td>- RECs</td>
<td>80 90 100 110 120</td>
<td>100 100 100 100 100</td>
</tr>
<tr>
<td>- Total</td>
<td>160 180 200 220 240</td>
<td>200 200 200 200 200</td>
</tr>
<tr>
<td>Gain or loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total gain (loss)</td>
<td>(40) (20) 20 40</td>
<td>(10) (10) 10 10 10</td>
</tr>
<tr>
<td>- EAM core band</td>
<td>(10) (10) 10 10 10</td>
<td>(27) a (8) 8</td>
</tr>
<tr>
<td>EAM shares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SDP within band</td>
<td>(10) (10) - 10 10</td>
<td>(2) - 2 6</td>
</tr>
<tr>
<td>- SDP outside band</td>
<td>(3) a (2) - 2 6</td>
<td></td>
</tr>
<tr>
<td>- Customer share</td>
<td>(27) a (8) - 8 24</td>
<td></td>
</tr>
<tr>
<td>- PV customer share</td>
<td>(10.4)</td>
<td></td>
</tr>
<tr>
<td>EAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- EAM annuity (end of year)</td>
<td>(2.2) (2.2) (2.2) (2.2) (2.2)</td>
<td></td>
</tr>
<tr>
<td>- PV of EAM annuity</td>
<td>(10.4)</td>
<td></td>
</tr>
<tr>
<td>- EAM allowances (mid-year)</td>
<td>(2.2) (2.2) (2.2) (2.2) (2.2)</td>
<td></td>
</tr>
</tbody>
</table>

a Sharing outside the core band in 2016-17 is based on the 2012 EAM methodology of 10% SDP and 90% customers. Sharing outside the core band in all other years is based on the 2017 EAM methodology of 20% SDP and 80% customers.

Note: the figures used in this example are for illustration only and may not add due to rounding. This analysis assumes a nominal financing rate of 5% and an inflation forecast of 2.5%. The nominal interest rate of 5% is used over the application period and the forecast real interest rate (i.e., (1.05 / 1.025) – 1) is used over the adjustment period.

Source: IPART analysis.
3.3 Example 3 – banking of RECs between years

This example illustrates how the core band adjusts when RECs are banked between years. For example, in year 1, SDP sells $190 of surplus energy (5% core band = $9.50) and in year 5 SDP sells $210 of surplus energy (5% core band = $10.50).

Table 3.3 Banking of RECs between years

<table>
<thead>
<tr>
<th>Financial year</th>
<th>2017 determination period</th>
<th>2022 determination period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application period ($nominal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment period ($2021-22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost - surplus energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Electricity</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>- RECs</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>- Total</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Cost - surplus energy sold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Electricity</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>- RECs</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>- Total</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td>Revenue - surplus energy sold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Electricity</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>- RECs</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>- Total</td>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>Gain or loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total gain (loss)</td>
<td>(40)</td>
<td>(25)</td>
</tr>
<tr>
<td>- EAM core band</td>
<td>(9.5)</td>
<td>(9.8)</td>
</tr>
<tr>
<td>EAM shares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SDP within band</td>
<td>(9.5)</td>
<td>(9.8)</td>
</tr>
<tr>
<td>- SDP outside band</td>
<td>(3.1)</td>
<td>(3.0)</td>
</tr>
<tr>
<td>- Customer share</td>
<td>(27.4)</td>
<td>(12.2)</td>
</tr>
<tr>
<td>- PV customer share</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- EAM annuity (end of year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- PV of EAM annuity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- EAM allowances (mid-year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Sharing outside the core band in 2016-17 is based on the 2012 EAM methodology of 10% SDP and 90% customers. Sharing outside the core band in all other years is based on the 2017 EAM methodology of 20% SDP and 80% customers.

Note: The figures used in this example are for illustration only and may not add due to rounding. This analysis assumes a nominal financing rate of 5% and an inflation forecast of 2.5%. The nominal interest rate of 5% is used over the application period and the forecast real interest rate (i.e., \((1.05 / 1.025) - 1\)) is used over the adjustment period.

Source: IPART analysis.
4 Efficiency Carryover Mechanism Methodology

4.1 Terms of Reference

The Terms of Reference state:\[23\]
SDP should be allowed to carry over demonstrated efficiency savings, net of efficiency losses, in operating expenditure in providing the water supply services specified at (a) and (b) above for a period of 4 years following the year in which the efficiency saving was achieved.

4.2 Purpose of the Efficiency Carryover Mechanism

Our approach to regulating prices for monopoly services, which is referred to as our ‘form of regulation’, provides:

- incentives for the businesses we regulate to manage their costs prudently and efficiently,
- and

- incentives for the businesses we regulate to search for and deliver permanent cost savings that can benefit customers through lower prices.

Without an efficiency carryover mechanism (ECM), if the business makes a permanent efficiency saving in the first year of a five-year determination period, it is able to retain the saving for five years. However, if it makes a permanent efficiency saving in the fourth year of a five-year determination period, it is able to retain the saving for just two years. Therefore, businesses can have an incentive to delay permanent efficiency savings from the end of one determination period to the beginning of the next determination period. Although the saving is still made, its benefit to customers is delayed.

Our form of regulation includes an efficiency sharing mechanism to explicitly allow businesses to retain efficiency savings for a specified period in order to provide an incentive to achieve savings, on the condition that customers will benefit through lower prices in subsequent determination periods.

The ECM removes the incentive to delay efficiency savings, by allowing the business to retain a permanent savings for the same number of years regardless of when the saving is achieved within a determination period, while maintaining all other aspects of the form of regulation. One way to think of the ECM is that it takes the incentives for permanent efficiency savings that apply in the first year of the determination period, and applies these incentives consistently across the remaining years of the determination period. With an ECM in place:

- The business has an incentive to achieve efficiency savings as soon as they are identified.
- The business retains the efficiency saving for a fixed number of years, regardless of when during the determination period the efficiency saving is made.

\[23\] SDP Terms of Reference, February 2012, page 2.
In the case of savings that might otherwise be delayed until the next determination period, customers will benefit through lower prices sooner if the business responds to the incentive to achieve efficiency savings as soon as they are identified.

4.3 What costs are included in the ECM

The scope of the ECM is limited to operating costs (ie, capital expenditure is excluded, as it is beyond the scope of the Terms of Reference).

The ECM applies to operating costs across all modes of operation. Unlike other water utilities, SDP’s costs, and thus its prices, vary depending on what mode of operation it is in. As a result, we need to calculate its annual notional revenue requirement for each mode of operation.

There are some elements of SDP’s operating costs, however, that are not relevant when it comes to setting regulated prices and are therefore excluded from the ECM. Specifically:

- SDP’s actual energy prices are excluded from the ECM because we set prices based on benchmark energy prices that may be different to SDP’s actual energy prices.
 - If SDP were to negotiate lower actual energy prices, this would not affect SDP’s regulated prices because we would continue to set energy prices relative to a benchmark energy price (not SDP’s actual price). Therefore, SDP’s actual energy prices are excluded from the ECM.
 - Energy volumes are included in the ECM. If SDP is able to achieve efficiency savings that reduce its demand for energy, we will take this into account when setting prices and customers will benefit through lower prices in the future. Therefore, energy volumes are included in the ECM.

- Any operating costs that are outside the scope of SDP’s regulated prices are excluded from the ECM. For example:
 - If SDP engaged in any unregulated activities, any costs associated with these activities would be excluded from the ECM.
 - In the absence of the EAM, any gains or losses from the sale of SDP’s surplus energy contracts would be fully retained by SDP and would be outside the scope of SDP’s regulated prices. Therefore, gains and losses on the sale of SDP’s surplus energy are excluded from the ECM.

4.4 ECM timeframes

The ECM is structured around the following three periods:

- **Application period:** the five years immediately preceding the review year. The ECM will apply to permanent net efficiency savings over the application period.
- **Review year:** the year the ECM is applied.

24 Because we do not have actual data for final year of the determination period when we apply the ECM, this year is included in the application period at the next application of the ECM. That is, the application period is lagged one year behind the determination period.
Carryover period: the first three years of the determination period immediately following the review year.\(^{25}\) If an efficiency saving is made in year five of the application period, the ECM will allow the saving to carry over for the first three years of the next determination period (ie, allowing the saving to be retained for five years).

Table 4.1 illustrates these time periods for the next EAM application in 2022.

<table>
<thead>
<tr>
<th>16-17</th>
<th>17-18</th>
<th>18-19</th>
<th>19-20</th>
<th>20-21</th>
<th>21-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application period</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Review year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carryover period</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This example assumes a five-year 2022 determination period.
Source: IPART analysis.

The ECM applies to efficiency savings made in any of the five years immediately preceding the final year of the determination period (this five year period is called the application period). At the 2021-22 review year, the ECM application period will be the five consecutive year period 2016-17 to 2020-21 immediately preceding the review year (2021-22). This means that:

- The ECM will make use of actual expenditure data in every year (ie, there is no need to rely on forecasts for the review year).
- We can ensure savings are held by SDP for a maximum of five years, consistent with the Terms of Reference.
- The ECM application period is consistent with the EAM application period.

4.5 Identifying and carrying over efficiency savings

4.5.1 Definition of efficiency savings

The ECM applies to permanent net reductions in operating costs. If the identified cost reduction is the result of cost shifting or if the saving has been re-absorbed into the business with the effect of there being no surplus to share with customers, the identified cost reduction would not qualify as an efficiency saving for the ECM.

The ECM does not depend on what caused the net reduction in operating cost. What is important is that SDP identifies and commits to maintain the permanent reduction in operating costs. The purpose of the ECM is to allow SDP to retain permanent savings for a period of time before they are passed on to customers through lower prices. The ultimate test is whether an identified efficiency saving will lead to a permanent reduction in prices for customers.

\(^{25}\) The terms of reference requires us to apply a 5-year carryover period that includes the year in which the efficiency saving was achieved. Given the review year is the final year of a determination period, the last year that SDP can reveal an efficiency saving is in the penultimate year of a determination period. Therefore, the 5-year carryover period consists of the final two years of the current determination period plus the first three years of the next determination period.
4.5.2 Carrying over general and mode-specific efficiency savings

The Terms of Reference state that SDP should be allowed to carry over efficiency savings for four years following the year they are achieved (i.e., five years total).

General efficiency savings occur every year regardless of what mode SDP is in. Therefore, the ECM allows these general efficiency savings to carry over for five years. Following this five consecutive year period, customers benefit each year into perpetuity from lower prices as a result of the permanent efficiency saving.

Mode-specific efficiency savings, on the other hand, occur only when SDP is in that specific mode. If SDP is in a specific mode for, on average, two years out of every five, it follows that an efficiency saving achieved in this mode will only generate benefits two years out of every five. Therefore, by definition, a $1 mode-specific saving is less valuable than a $1 general saving. To ensure mode-specific savings are not over-incentivised relative to general savings, the ECM allows mode-specific savings to be held for up to five years, while SDP is in that specific mode, over a five consecutive year period beginning in the year the saving was first achieved.

4.5.3 Ensuring savings are held for a maximum of five years

We set prices for the next determination period during the last year of the current determination period before actual costs are known for this year.

Therefore, it is possible for SDP to make a permanent efficiency saving in the last year of a determination period and for us to not know about the saving when we set prices for the next determination period. The result is that SDP is able to retain this saving for a total of six years before we are able to pass it on to customers through lower prices.

The ECM needs to address this situation for two reasons:

- To be consistent with the Terms of Reference which stipulate SDP should be able to retain savings for four years following the year they are made.
- To remove the incentive for SDP to delay savings until the last year of a determination period. Removing the incentive for SDP to delay savings is the sole purpose of the ECM.

If a permanent efficiency saving is made in the first year of the ECM application period (i.e., the last year of the previous determination period), SDP will retain the saving for six years. To correct for this, the ECM applies a negative carryover amount in the first year of the next determination period (ECM adjustment). The ECM adjustment is equal to the efficiency saving retained in the sixth year plus one year of financing costs. This effectively returns the sixth year of benefit retained by SDP in the last year of the current determination period to customers in the first year of the next determination period. Including financing costs is necessary to fully remove any incentive SDP might still have to delay savings until the last year of the determination period.

The financing cost assumption used by the ECM to return the sixth year of the efficiency saving from SDP to customers will be consistent with the financing cost assumption used by the EAM.
The ECM adjustment applies to both general and mode-specific efficiency savings. Because the ECM adjustment is about returning the sixth year of benefit retained by SDP to customers in the first year of the next determination period, the ECM adjustment will be applied to the base service charge, which applies regardless of the mode of operation.

4.6 ECM allowances

Table 4.2 summarises how ECM allowances will be applied to SDP’s charges in future price reviews.

General efficiencies relate to operating costs recovered through SDP’s base service charge. Mode-specific efficiency savings relate to costs recovered through transition, incremental service, and water usage charges (ie, charges that only apply in those specific modes). However, note the ECM adjustment is made to the base service charge to ensure that savings held for more than five years can be returned to customers immediately, regardless of the mode of operation.

Table 4.2 How ECM carryovers apply to SDP charges

<table>
<thead>
<tr>
<th></th>
<th>Shutdown mode</th>
<th>Restart mode</th>
<th>Operation Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>General efficiency carryovers</td>
<td>Applies to Base Service Charge (WSC)</td>
<td>Applies to Base Service Charge (WSC)</td>
<td>Applies to Base Service Charge (WSC)</td>
</tr>
<tr>
<td>Mode-specific efficiency carryovers</td>
<td>Not applicable</td>
<td>Applies to Transition Charge (TC)</td>
<td>Applies to Incremental Service Charge (ISC) and Water Usage Charge (WUC)</td>
</tr>
<tr>
<td>ECM adjustment</td>
<td>Applies to Base Service Charge (WSC)</td>
<td>Applies to Base Service Charge (WSC)</td>
<td>Applies to Base Service Charge (WSC)</td>
</tr>
</tbody>
</table>

Source: IPART analysis.

SDP’s pricing proposal should clearly state whether an identified efficiency saving has been inflated from the dollars of the year the saving was achieved to dollars of the review year. IPART’s CPI index should be used for any such inflation indexation.

4.7 ECM process

The following points step through the ECM calculation process:

- Identify whether SDP permanently reduced total in-scope operating costs below the regulatory allowance used by IPART in setting maximum prices. If so, quantify the size of the incremental efficiency saving (X).

- Identify the financial year of the application period in which the saving was achieved (n).

- Ensure SDP retains the efficiency saving for five years and its expenditure allowance in subsequent determination periods is reduced by the amount of the incremental efficiency saving (X).

26 Note that since we have capitalised membranes to be recovered through a separate membrane service charge, these costs are outside the scope of the ECM (which relates to operating costs only).
If an efficiency saving is achieved in year 2 of the application period (i.e., the first year of the determination period), SDP will retain the saving for up to five years and, as intended, the ECM will have no effect.

If an efficiency saving is achieved in years 3 to 5 of the application period, apply a positive ECM allowance of $X per year for the first n-2 years of the next determination period. Ensure general ECM allowances are applied to the Water Security Charge and mode-specific ECM allowances are applied to the mode-specific charge they correspond to.

If the saving was achieved in year 1 of the application period and it is clear that without adjustment SDP will retain the savings in the sixth year after it was first achieved, apply a negative ECM adjustment of $X+$F (where $F represents one year of financing costs) for the first year of the next determination period. ECM adjustments are applied to the base service charge.

4.8 Information requirements

We will need to collect additional information to implement the ECM at future price reviews. IPART will develop an appropriate framework to collect this information and include it in our written advice to SDP prior to future price reviews.

We already have an annual reporting framework in place with SDP. We will work with SDP over the 2017 determination period to ensure this reporting framework continues to meet our requirements.
5 Worked examples of the Efficiency Carryover Mechanism

The following examples illustrate how we intend to implement the ECM at future price reviews. For simplicity, we have not included the effects of inflation indexation in these examples. In each example, the ECM application period, which spans from year 5 of determination period 1 to year 4 of determination period 2, is shaded grey.

5.1 Example 1 – General efficiency saving

The ECM allows permanent net efficiency savings to be retained for five years. The following example shows how the ECM allows a general efficiency saving achieved in the third year of determination period 2 to carryover for the first two years of determination period 3. This ensures general efficiency savings are retained by SDP for five years before being passed on to customers through lower prices.

Table 5.1 General efficiency saving

<table>
<thead>
<tr>
<th></th>
<th>Determination period 1</th>
<th>Determination period 2</th>
<th>Determination period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>ECM Application Period</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100 100</td>
<td>90 90 90 90 90</td>
</tr>
<tr>
<td>Allowance</td>
<td>100 100 100 100 100</td>
<td>100 100 90 90 90</td>
<td>90 90 90 90 90</td>
</tr>
<tr>
<td>Actual</td>
<td>- - - - - -</td>
<td>- - 10 - - - -</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>Efficiency</td>
<td>- - - - - -</td>
<td>- - - - - - - - -</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>ECM allowance</td>
<td>- - - - - -</td>
<td>- - - - - - - - -</td>
<td>10 10 - - - - - - -</td>
</tr>
<tr>
<td>Net allowance</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td>100 100 90 90 90</td>
</tr>
<tr>
<td>SDP gain</td>
<td>- - - - - -</td>
<td>- - 10 10 10 - - - -</td>
<td>10 10 - - - - - - -</td>
</tr>
</tbody>
</table>

Note: The figures used in this example are for illustration only.
Source: IPART analysis.

5.2 Example 2 – Mode-specific efficiency saving

The ECM allows mode-specific efficiency savings to be retained for up to five years, while SDP is in that specific mode, over a five consecutive year period, beginning when the efficiency saving is first achieved. The following example shows how the ECM allows a mode-specific saving to be held for up to five years, while SDP is in that specific mode, over a five consecutive year period, beginning when the efficiency saving is first achieved. In year 3 of determination period 2, SDP moves from mode 1 into mode 2 and makes an efficiency saving that is specific to mode 2. SDP remains in mode 2 for a total of four years before moving back to mode 1 in year 2 of determination period 3. In this example, SDP

27 The figures used in these examples are for illustration only.
remains in mode 2 for four years out of the five consecutive year period following
achievement of the mode-specific efficiency saving and retains this saving for four years.

Table 5.2 Mode-specific efficiency saving

<table>
<thead>
<tr>
<th>ECM Application Period</th>
<th>Determination period 1</th>
<th>Determination period 2</th>
<th>Determination period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>M1 allowance</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
</tr>
<tr>
<td>M2 allowance</td>
<td>200 200 200 200 200</td>
<td>200 200 200 200 200</td>
<td>190 190 190 190 190</td>
</tr>
<tr>
<td>Actual</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td>190 100 100 100 100</td>
</tr>
<tr>
<td>Efficiency</td>
<td>- - - 10 - -</td>
<td>- - - 10 - -</td>
<td>- - - 10 - -</td>
</tr>
<tr>
<td>M1 ECM</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>M2 ECM</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>10 10 - - - -</td>
</tr>
<tr>
<td>Net allowance</td>
<td>100 100 100 100 100</td>
<td>100 100 200 200 200</td>
<td>200 100 100 100 100</td>
</tr>
<tr>
<td>SDP gain</td>
<td>- - - - - -</td>
<td>- - - 10 10 10</td>
<td>10 - - - - - -</td>
</tr>
</tbody>
</table>

Note: M1 = mode 1; M2 = mode 2. The figures used in this example are for illustration only.
Source: IPART analysis.

5.3 Example 3 – Efficiency savings retained for a maximum of five years

The ECM now ensures that efficiency savings are held for a maximum of five year consistent
with the Terms of Reference. If a permanent efficiency saving is achieved in the first year of
the application period (ie, year 5 of determination period 1) and we are not aware of it when
we set prices, SDP will retain this saving for six years. The ECM inflates the sixth year of the
retained saving (ie, the $10 retained by SDP in year 5 of determination period 2) by financing
costs (in this case assumed to be 5%) and passes this back to customers in year 1 of
determination period 3.

Table 5.3 Ensuring savings are held for a maximum of five years

<table>
<thead>
<tr>
<th>Financing cost of 5%</th>
<th>Determination period 1</th>
<th>Determination period 2</th>
<th>Determination period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>ECM Application Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowance</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td>90 90 90 90 90</td>
</tr>
<tr>
<td>Actual</td>
<td>100 100 100 100 90</td>
<td>90 90 90 90 90</td>
<td>90 90 90 90 90</td>
</tr>
<tr>
<td>Efficiency</td>
<td>- - - - 10</td>
<td>- - - - -</td>
<td>- - - - -</td>
</tr>
<tr>
<td>ECM allowance</td>
<td>- - - - -</td>
<td>- - - - -</td>
<td>(10.5) - - - - -</td>
</tr>
<tr>
<td>Net allowance</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td>79.5 90 90 90 90</td>
</tr>
<tr>
<td>SDP gain</td>
<td>- - - - 10</td>
<td>10 10 10 10 10</td>
<td>(10.5) - - - - -</td>
</tr>
</tbody>
</table>

Note: The figures used in this example are for illustration only.
Source: IPART analysis.
5.4 Example 4 – Temporary underspends and overspends

The regulatory framework allows the flexibility of temporary underspends in one year to be offset by temporary overspends in another year. The following example shows how the ECM does not affect temporary underspends and overspends, which are both retained by SDP. In this example, SDP underspends $10 in year 1 of determination period 2 and overspends $10 in year 2 of determination period 2. These amounts offset each other. Because the underspend in year 1 of determination period 2 is temporary, it is outside the scope of the ECM.

<table>
<thead>
<tr>
<th>Table 5.4</th>
<th>Temporary underspends and overspends are outside the scope of the ECM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Determination period 1</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Allowance</td>
<td>100 100 100 100 100</td>
</tr>
<tr>
<td>Actual</td>
<td>100 100 100 100 100</td>
</tr>
<tr>
<td>Efficiency</td>
<td>- - - - -</td>
</tr>
<tr>
<td>ECM allowance</td>
<td>- - - - -</td>
</tr>
<tr>
<td>Net allowance</td>
<td>100 100 100 100 100</td>
</tr>
<tr>
<td>SDP gain</td>
<td>- - - - -</td>
</tr>
</tbody>
</table>

Note: The figures used in this example are for illustration only.
Source: IPART analysis.
Appendices
A Terms of Reference

Dr Peter J Boxall AO
Chairman
Independent Pricing and Regulatory Tribunal
PO Box Q290
QVB Post Office NSW 1230

Dear Dr Boxall,

I write regarding the Terms of Reference for Referral of Sydney Desalination Plant Pty Ltd (SDP) to IPART under Section 52 of the Water Industry Competition Act 2006.

I note your previous request that the Terms of Reference be amended to provide for IPART to establish an efficiency gains and losses carryover mechanism for SDP. I understand that implementation of this mechanism would involve the preparation of a methodology paper, which would be subject to public consultation prior to finalisation and publication.

I am pleased to support this proposal subject to the methodology paper also including a mechanism to adjust SDP’s revenue to accommodate significant gains and losses associated with the sale of surplus electricity and Renewable Energy Certificates (RECs).

Amended Terms of Reference, which refer to this mechanism as well as IPART’s proposed efficiency carryover mechanism, are attached to this letter. For clarity, the intention of the proposed energy adjustment mechanism is that:

1. It would only apply to electricity and RECs that are not required by SDP when the desalination plant is not in full operation mode when complying with the plant’s operating rules, as established by the Metropolitan Water Plan and subsequently included in SDP’s Network Operator Licence under the Water Industry Competition Act.

2. It would ensure that SDP customers for water (in Sydney Water’s Area of Operations) receive the benefit of significant gains and bear significant losses incurred as a result of the difference between the cost of electricity and RECs under SDP’s contracts with InfiGen and the market price for electricity and RECs arising from the sale of SDP’s surplus electricity and RECs (in the circumstances described in point 1).
3. For electricity, the mechanism would mirror the 'Calculation of Shortfall Adjustment' in SDP’s Electricity Supply Agreement with Infigen, with the 'market price' defined as the half-hourly spot price and/or the price of a contracted 'available block'.

4. For RECs, the 'market price' would be the price shown in the Nextgen Greenroom Report, or another equivalent report.

I understand that IPART’s intention is to publish its draft methodology paper in the near future, with the final paper due to be published by May 2012.

Yours sincerely

Greg Pearce MLC
Minister for Finance and Services
Minister for the Illawarra

16 February 2017
Terms of Reference for Referral of Sydney Desalination Plant Pty Limited to IPART under Section 52 of the Water Industry Competition Act

Background

On 29 June 2010 Sydney Desalination Plant Pty Limited (SDP) was granted a network operator licence in relation to the desalination plant. The Minister for Finance and Services has, under section 51 of the Water Industry Competition Act 2006, declared that SDP is a monopoly supplier in relation to the water supply services it provides under its network operator licence.

SDP is the only supplier of non-rainfall dependant drinking water in New South Wales. Currently, the primary purchaser of drinking water supplied from the desalination plant is Sydney Water Corporation. Sydney Water Corporation purchases bulk water from two main sources, the Sydney Catchment Authority and, since its commissioning, the desalination plant.

The desalination plant is a key element in Sydney’s water security plan. Under its network operator licence, the desalination plant is required to maximise water production when dam storage levels in Sydney are below a prescribed threshold. Prices set by the Independent Pricing and Regulatory Tribunal (IPART) should therefore reflect the water supply services provided by SDP set out below:

(a) the supply of non-rainfall dependant drinking water to purchasers; and
(b) the making available of the desalination plant to supply non-rainfall dependant drinking water.

Matters for consideration - pricing principles

Unless indicated otherwise each price determination is to be consistent with the following pricing principles:

1. Maximum prices should be set so that expected revenue generated will recover the efficient costs of providing the services described at (a) and (b) above over the life of the assets. Costs include operating costs, a return on the assets and return of assets (depreciation).

2. In calculating the return on invested assets:
 i. The rate of return (or Weighted Average Cost of Capital) should reflect the commercial risks faced by the asset owner in providing the services.
 ii. IPART should determine an appropriate opening asset value.

3. Return of assets (depreciation) is to reflect the economic lives of the assets.

4. The structure of prices should encourage SDP to be financially indifferent as to whether or not it supplies water. As such the structure of prices should comprise separate charges for the different water supply services described at (a) and (b) above.

5. The amount of any adjustments under the mechanisms in principle 8 should each be separately quantified and published by IPART.
6. The charges for water supply services in (b) above should be a periodic payment and should reflect fixed costs including, return on assets, return of assets, and the fixed component of operating costs. SDP is to be entitled to charge for providing the water supply services in (b) above irrespective of levels of water in dam storages servicing Sydney or availability of water from other sources.

7. The charges for water supply services in (a) above should reflect all efficient costs that vary with output, including variable energy, labour costs, and maintenance costs.

8. For each price determination other than the first price determination:

 i. SDP should be allowed to carryover demonstrated efficiency savings, net of efficiency losses, in operating expenditure in providing the water supply services specified at (a) and (b) above for a period of 4 years following the year in which the efficiency saving was achieved.

 ii. In calculating the notional revenue requirement, IPART should determine the demonstrated efficiency savings and treatment of energy gains or losses in accordance with the Methodology Paper; and

 iii. A mechanism(s) is required to allocate the costs or benefits to SDP customers (in Sydney Waters area of operation) of actual gains or losses beyond a core band that result from the difference between SDP’s costs of electricity and REC’s under its contracts with Infogen and revenues from the sale of surplus electricity and RECs. The mechanism would only operate at times when:

 - the desalination is in Shutdown or in a Restart Period; and

 - SDP complied with its requirements to maintain and operate the desalination plant under clause A2 of its network operator licence.

9. Any other matters that IPART may consider relevant

Methodology Paper

IPART must publish on its website a methodology paper setting out its approach to implementing pricing principle 8 above (Methodology Paper) IPART may update the Methodology Paper from time to time.

Timing

The determination period is to cover the period to 30 June 2017.

For each successive price determination period, IPART is to make the price determination before the expiry of the current determination period.
B Review of 2012 Energy Adjustment Mechanism

This appendix outlines the how we have updated, improved, and clarified the design of the Energy Adjustment Mechanism (EAM). It discusses the issues we considered in making these changes and responds to stakeholder views on these issues.

B.1 Incentive to prudently manage surplus energy contracts

We have made a decision to:

1. Increase SDP’s share of gains and losses that occur outside the core band from 10% to 20%. This change takes effect from 2017-18. SDP’s current share of gains and losses that occur outside the core band (i.e., 10%) still applies for 2016-17.

B.1.1 The 2012 EAM aims to provide an incentive for prudent management of surplus energy

When SDP is not in full operation mode, it has surplus energy (electricity and RECs) contracts that it sells into the market. Depending on market prices at the time of each trade, SDP can incur gains and losses on the sale of these surplus energy contracts.

Without an EAM in place, these gains and losses would be retained by SDP in full. With an EAM in place, these gains and losses incurred during shutdown and restart are shared with customers. Because the gains and losses are shared with customers, it is important that SDP retains sufficient incentive to prudently and efficiently manage its surplus energy contracts.

The EAM set out in the 2012 Methodology Paper shares gains or losses on the sale of SDP’s surplus energy on the following basis:28

- A materiality threshold is set based on 5% of the value of SDP’s minimum energy contract cost (note this includes both energy used as well as surplus energy). This materiality threshold is used to create a core band of gains or losses of plus or minus 5% of the value of SDP’s minimum energy contract cost.
- SDP retains 100% of gains or losses within the plus or minus 5% core band.
- SDP retains 10% of gains or losses outside the plus or minus 5% core band.
- The remaining 90% of gains and losses outside the plus or minus 5% core band are passed on to SDP’s customers (in Sydney Water’s area of operations) by the EAM.

The 2012 Methodology Paper also states that in the case of any manifest imprudence that may arise on the part of SDP, IPART may exclude the affected transactions (in whole or in part) from the EAM.29

B.1.2 Stakeholders disagree on whether SDP should forward sell surplus electricity

In its pricing proposal, SDP said that it considers the 2012 specification of the EAM, as it applies during shutdown and restart modes, remains broadly appropriate. SDP’s proposal was to retain the EAM as it applies to shutdown and restart modes as set out in the 2012 Methodology Paper. SDP engaged Seed Advisory to undertake a review of SDP’s Large Scale Generation Certificates (LGCs) and electricity trading. Seed Advisory found that SDP’s LGC and electricity trading activities:

- were broadly consistent with SDP’s policy requirements
- were prudent and reasonable for a company not actively engaged in the energy market, and
- within this context, have achieved value for money.

In response to our Issues Paper, Sydney Water made the following observations in relation to SDP’s management of its surplus energy:

- Sydney Water questioned SDP’s view that the risks and costs of actively managing resales of its excess electricity would outweigh the potential benefits.
- If SDP actively manages the resale of its electricity, it is clear that the benefits to customers significantly outweigh any risks or additional cost incurred by SDP.
- IPART’s ‘manifest imprudence’ measure is a particularly high test and it would be imprudent of SDP to not actively manage the resale of surplus electricity.
- The EAM should incentivise active trading by calculating the pass through amount on the difference between the contract price and the average peak price for electricity contracts traded on the ASX each quarter. The implication of this being:
 - that customers would receive the gains and losses associated with an active management style
 - if SDP remained passive it would retain the difference between a passive and active style, and
 - if SDP matched the active style it would not retain any of the gains or losses.

At the Public Hearing, there was further discussion around SDP’s management of its surplus energy contracts. SDP responded to Sydney Water’s proposal for SDP to actively manage the resale of its surplus electricity by arguing that it is not a merchant energy business and not equipped, nor financed, to take on these risky functions. SDP also noted that one of the biggest barriers to trading electricity forward, even just one quarter ahead, is the risk that it might get called into action at relatively short notice, for example in response to a health issue, and if they had sold that quarter ahead, they would be “left high and dry for energy”.

30 SDP, Pricing proposal to IPART, October 2016, p 47.
33 Sydney Water submission to IPART Issues Paper, November 2016, p 44.
34 Sydney Water submission to IPART Issues Paper, November 2016, p 46.
35 Sydney Water submission to IPART Issues Paper, November 2016, p 46.
36 IPART, SDP public hearing transcript, 8 December 2016, p 13.
37 IPART, SDP public hearing transcript, 8 December 2016, pp 59-60.
Sydney Water maintained its view that its customers would likely be better off if SDP undertook a more active approach to the resale of its surplus energy under the EAM and that although it accepted there would be more risk and cost associated with active management, it said the relevant question was whether the benefits are likely to outweigh the associated costs.

B.1.3 Our energy consultant sees a role for some level of forward selling

As part of our determination of SDP’s prices and review of the Methodology Paper, we engaged Marsden Jacob Associates (Marsden Jacob) to review SDP’s energy costs. The public version of Marsden Jacob’s report is available on our website.

Marsden Jacob made the following observations in relation to SDP’s energy trading policy:

- SDP’s management of surplus RECs is sensible and prudent. However, SDP could improve its surplus electricity position by forward selling some portion of its contracted surplus one quarter ahead.

- A ‘less passive’ strategy of forward selling electricity could be accomplished under the existing contractual arrangements with little, if any, increase in the risk of being short against contracted maximum capacity. This is because high dam levels indicate a very low risk of drought in the next quarter. If drought breaks, SDP requires time to restart and it is unlikely it will reach full load within the next quarter. Last, the probability of being called on to respond to an emergency is extremely remote.

The potential benefits of what Marsden Jacob term ‘less passive position management’ is estimated to be approximately $0.5 million to $1 million per annum on average when in shutdown, depending what proportion of SDP’s surplus energy is forward sold.

Asymmetry of EAM outcomes

Marsden Jacob formed a view that the 2012 EAM is likely to result in a disproportionate sharing of gains and losses between SDP and customers – with SDP retaining the majority of gains on the sale of SDP’s surplus energy and customers receiving the majority of losses on the sale of SDP’s surplus energy. This is because Marsden Jacob considers there is limited scope for market prices to exceed SDP’s energy contract price while there is larger scope for market prices to be less than SDP’s energy contract price.

Marsden Jacob noted the reason for this is that SDP’s surplus contracts, along with electricity and LGCs, also include other services (eg, retail margin and ancillary services) that SDP is not able to sell. Because a portion of the value of SDP’s surplus energy contracts cannot be sold in a secondary market, this will tend to limit the size of gains and amplify the size of losses on the sale of SDP’s surplus energy contracts. Marsden Jacob also noted SDP’s energy

38 IPART, SDP public hearing transcript, 8 December 2016, pp 58-59.
contract prices are near new entry levels, which indicates the potential for losses on the sale of SDP’s surplus energy is likely to exceed the potential for gains.46

SDP’s incentives under the EAM

Marsden Jacob considered the 2012 EAM design shields SDP from the vast majority of the potential gains and also the vast majority of prudent losses. Marsden Jacob commented that the limited upside available would potentially act as a deterrent to any rational business to invest in less passive management of the surplus electricity (especially) and LGC sales.47

Recommended changes to the EAM sharing ratios to improve incentives

Marsden Jacob identified and analysed a number of alternative sharing arrangements to provide increased incentives for a less passive management of SDP’s surplus energy. Some of the potential modifications that Marsden Jacob reviewed include:

- Modifying the core band to share some of the gains and losses within the threshold with customers.
- Increasing SDP’s share of gains and losses outside the threshold.
- Introducing a different sharing profile for gains as opposed to losses.

The options identified by Marsden Jacob were as follows:

- **Option 1:** SDP retain 50% of the first $2 million gain or loss per year. SDP retain 15% of the incremental gain or loss in excess of $2 million.
- **Option 2:** SDP retain 50% of the first $3 million gain or loss per year. SDP retain 20% of the incremental gain or loss in excess of $3 million.
- **Option 3:** SDP retains 25% of the total gain or loss regardless of its size.

Marsden Jacob also expressed the view that if there are material changes made to the EAM, they should take effect from 1 July 2017, given that we are now half way through the 2016-17 financial year (ie, the 2012 EAM should apply to financial year 2016-17).48

B.1.4 The EAM should provide an effective incentive for SDP to prudently manage its surplus energy

We agree with Marsden Jacob’s view that the EAM should be amended to provide SDP a stronger incentive to prudently manage its surplus energy contracts (particularly its surplus electricity contracts). We have decided to:

- Maintain our approach of summing gains and losses on surplus electricity and RECs into a single gain or loss on surplus energy so that only net gains or losses on energy are shared with customers.
- Maintain a core band of plus or minus 5%. We have slightly modified this to be based off the value of surplus energy sold in a financial year (not the total value of contracted energy in a financial year). This will have two effects:

– the core band will narrow slightly because the value of surplus energy is slightly less than the value of total energy when SDP is in shutdown, and
– the core band will better match the contract value of surplus energy sold in each year. This will remove any potential incentive for SDP to time the sale of RECs in such a way as to retain a larger share of gains and smaller share of losses.49

▼ Maintain that SDP retain 100% of gains and losses within the core band. Our reasons for this are:
– it is consistent with the Terms of Reference, and
– it provides SDP the appropriate and efficient incentive to prudently manage surplus energy contracts when those contracts are trading in the market within 5% of their contract value.

▼ Increase SDP’s share of gains and losses outside the core band from 10% to 20%. Our reasons for this are:
– Marsden Jacob advised that a conservative approach to forward selling some of SDP’s surplus electricity could be expected to generate gains of approximately $0.5 million per year on average. Marsden Jacob also advised this activity is likely to involve additional administrative costs of up to $75,000 a year.50
– Under the 2012 EAM where SDP retains 10% of gains and losses outside the core band, SDP would retain $50,000 of the estimated gains of forward selling surplus energy (assuming its contracts are trading outside the core band). This is less than the estimated cost of $75,000 per year and explains why, under the 10% sharing arrangement, SDP may not have sufficient financial incentive to forward sell surplus electricity.
– Under the 2017 EAM where SDP retains 20% of gains and losses outside the core band, assuming its contracts are trading outside the core band, SDP would retain $100,000 of the estimated gains of forward selling its surplus energy. This is more than the estimated cost of $75,000 per year. By increasing SDP’s share of gains or losses outside the core band from 10% to 20%, we are removing the potential disincentive to forward sell surplus energy.

We note that this change is symmetric in design in that SDP will bear a slightly larger share of both gains and losses outside the plus or minus 5% core band.

We agree with Marsden Jacob that this change in the share of gains and losses outside the threshold should take effect from 1 July 2017 (ie, the 10% SDP and 90% customer sharing ratio should apply in 2016-17). The reason for this is that by the time the Methodology Paper is finalised, 2016-17 will be almost over. In this case there is little value in applying the stronger incentive retrospectively.

49 For example, under the previous fixed core band, if two years’ worth of deeply in the money RECs are sold in one financial year, SDP will be able to retain a larger share of the resulting gains than if these RECs were sold over two financial years (assuming the sale price is the same in both years).
B.2 We will review the prudence of SDP’s energy trading policy and activity

We have made a decision to:

2 Modify our prudence test of SDP’s energy trading policy and activity from a test of “no manifest imprudence” to a test of “the prudence of SDP’s energy trading policy and activity”.

We agree with Sydney Water’s submission that the 2012 Methodology Paper test of “no manifest imprudence” sets a standard that does not provide adequate incentives.51

In our draft 2017 Methodology Paper, we said the approach we would take in assessing the prudence of SDP’s energy would be similar to that in assessing the prudence of capital expenditure. In this case, we would engage consultants to review:

- the prudence of SDP’s energy policy, and
- the prudence of how this policy was executed (ie, the sale of surplus energy), given information available at the time.

In response to our draft 2017 Methodology Paper, SDP expressed support for our position that we would assess prudence based on the information available at the time decisions were made.52 SDP further stated that it accepted many of the proposed principles behind the strengthening of the prudency test.53

However, SDP requested further guidance on:

- how IPART will assess the efficiency and prudency of SDP’s energy trading, given the inherent differences between assessing the prudence of capital expenditure and the prudence of energy decision-making
- how IPART intended to use the calculation of ‘hypothetical gains and losses’ in determining the EAM pass-through amounts, and
- what information IPART will require from SDP as part of the reporting framework.

When assessing the prudence of SDP’s management of its surplus energy contracts at the next review, with the assistance of an expert energy consultant, we intend to review SDP’s policies, procedures, trading records, and other related documentation to understand how SDP has managed its surplus energy contracts over the review period. The over-arching question we will seek to answer is whether SDP’s management of surplus energy is in line with what would be reasonably expected as prudent management of surplus energy if there was no EAM in place (ie, if SDP was fully exposed to the risk of its surplus energy contracts).

The purpose of calculating a ‘hypothetical gain or loss’ is to quantify the difference between a passive strategy (ie, the hypothetical gain or loss) and SDP’s actual strategy (ie, the actual gain or loss) if this differs from the passive strategy. Over time, this would provide an indication of how successful SDP’s actual strategy has been. However, as clearly stated in the Methodology Paper, the actual gain or loss calculation will be used for the EAM. We do

53 SDP submission to IPART Draft Report, April 2017, p 23.
not intend to use the ‘hypothetical gain or loss’ information to retrospectively assess whether individual trading decisions in isolation were or were not prudent.

We intend to work with SDP to incorporate new information relating to SDP’s energy trading function into the existing information reporting framework.

B.3 We are providing additional funding to allow SDP to meet the strengthened prudency test

We have made a decision to:

3 Allow SDP’s request for additional funding of $0.52 million over the 2017 determination period to allow SDP to meet the strengthened prudency test.

We have strengthened the prudency test of SDP’s management of its surplus energy. Therefore, we have decided to allow an amount equivalent to SDP’s proposed costs of $0.52 million over the 2017 determination period to allow SDP to meet the strengthened prudency test. We note that we are not prescribing how SDP should manage its surplus energy nor are we endorsing the strategies outlined in the Seed Advisory report and SDP’s submission to our Draft Report. We will assess prudency at the next review and as part of our prudency test we will request that SDP demonstrate how it has prudently managed its surplus energy contracts.

SDP submitted a consultant report from Seed Advisory, which detailed and costed a range of energy trading strategies from ‘low risk’ to ‘higher risk’. SDP indicates that it intends to pursue the upper end of a ‘low-risk’ approach (and will consider adopting one aspect of the moderate risk approach) to trading a portion of its surplus energy contracts. According to SDP, this balanced strategy will be underpinned by principles that seek to “provide SDP (and customers) with access to gains from forward selling excess energy, while limiting SDP’s risk exposure from purchasing energy at volatile and highly asymmetric spot prices”. SDP stated that it intends to further investigate and consider several aspects of its energy trading strategy and noted that any energy trading strategy should be dynamic in response to changes in market conditions and drivers.

SDP proposed that we allow it to recover the costs of its energy trading function through regulated prices “consistent with the ‘base, step, trend’ approach to forecasting operating expenditure.” SDP’s proposed trading costs are based on Seed Advisory estimates and include one-off set-up costs as well as ongoing operating costs. We note that SDP’s proposed ongoing operating costs are similar to those estimated by our energy consultant Marsden Jacob which estimated ongoing operating costs of $75,000 per year. We also note that while Marsden Jacob did not estimate one-off set up costs, we consider SDP’s proposal is reasonable given the set-up requirements identified in the Seed Advisory report.

55 Seed Advisory, Costs and Risks of Energy Trading, April 2017, Chapter 4.
56 SDP submission to IPART Draft Report, April 2017, p 25.
57 SDP submission to IPART Draft Report, April 2017, p 25.
58 SDP submission to IPART Draft Report, April 2017, p 25.
60 Seed Advisory, Costs and Risks of Energy Trading, April 2017, pp 15-17, 21.
B.4 We are amending the calculation of gains and losses for RECs

We have made a decision to:

4 Amend how gains and losses on RECs are calculated so that gains/losses are recognised in the year the RECs are sold (not accrued).

Our Issues Paper discussed how the ability to ‘bank’ RECs complicates the calculation of gains or losses because there is a delay between when RECs are accrued and when they are subsequently sold.61

Through the 2017 SDP price review it became apparent that the 2012 Methodology Paper was not clear about when to record realised gains and losses on RECs. That is, if a REC is accrued in one financial year and is then sold in the next financial year, should the EAM recognise the realised gain or loss in the first financial year (ie, the year it was accrued) or the second financial year (ie, the year it was sold)?

In our application of the 2012 Methodology Paper, we decided to recognise gains and losses in the year the REC was accrued (ie, not necessarily the year the gains or losses were realised). Our reasons for this include:

- This approach is consistent with the way the core band is calculated in the 2012 Methodology Paper (ie, 5% of the value of total contracted electricity and RECs).
- None of the RECs accrued over the application period were unsold by the time we applied the 2012 EAM as part of the 2017 SDP price review.

For the 2017 Methodology Paper, we have decided to recognise gains and losses on the sale of RECs in the year they are realised (ie, not necessarily the year they were accrued). Our reasons for this are:

- Under the 2012 approach, there is a risk that some RECs accrued during the application period will be unsold and remain in SDP’s bank in the review year when we apply the EAM. This would create a complicated situation to adjust for at the next price review (ie, we would have to effectively re-open the previous application period, recalculate allowances, and make corresponding adjustments to future EAM allowances to take account of these RECs).
- Recognising gains and losses before they are actually realised means that customers will be paying financing costs for eventual losses (and receiving financing costs for eventual gains) before these losses (and gains) have materialised. We consider it more appropriate that gains and losses are recognised in the year they are realised and that financing costs apply from this point in time.

In its response to our draft 2017 Methodology Paper, SDP accepted this amendment to the calculation of gains and losses for RECs.62

B.5 We are clarifying our approach to financing costs

We have made a decision to:

5 Clarify the method used to apply financing costs to EAM allowances.

The 2012 Methodology Paper states that we will allow for the time value of money by applying an interest rate to increase the amounts eligible for pass-through at the end of each year. The interest rate we referred to was the average of the corporate bond yield (with one to five years to maturity; BBB bond credit rating) at the end of each quarter of the year as published by the Reserve Bank of Australia.\(^{63}\)

In our Issues Paper, we noted that the RBA had discontinued this data series. As a substitute for the discontinued series, and to account for financing costs, we proposed to use either the RBA’s:

- “non-financial corporate BBB-rated bonds – yield – 3 year target tenor”, or
- “non-financial corporate BBB-rated bonds – yield – 5 year target tenor”.\(^{64}\)

We considered the 3-year series appeared to provide a better match for the original (discontinued) series, and provided an indicative average of the timeframe over which holding costs need to be calculated.\(^{65}\)

SDP stated that, conceptually, what is required is an interest rate that matches the time between the incurrence of the cost and the end of the determination period.\(^{66}\) Thus, a different rate would be applied, depending on when the cost was incurred. Nonetheless, SDP expressed support for our proposal that the 3-year series should be adopted as the financing rate for calculating cost pass-through amounts under the EAM, given the:

- relatively small time periods involved over a determination lend itself practically to using a single rate for all costs (and benefits), and
- 3-year rate would best match the average time period – assuming that the relevant costs are incurred uniformly throughout the determination period.

We have decided to maintain the application of financing costs. However, financing costs will now apply from the year a gain or loss is realised (not necessarily the year in which RECs are accrued).

We have also decided to refer to the RBA’s series “non-financial corporate BBB-rated bonds – yield – 3 year target tenor” as the reference rate. This aligns with SDP’s view and our preference in the Issues Paper. If this series is discontinued before a future application of the EAM, we will identify a similar substitute series as the reference rate.

66 SDP pricing proposal to IPART, October 2016, p 48.
67 SDP pricing proposal to IPART, October 2016, p 48.
In its response to our draft 2017 Methodology Paper, SDP accepted this approach to the application of financing costs. We note that we have provided further clarification of the application of financing costs in this final 2017 Methodology Paper.

B.6 We have decided not to extend the EAM to partial production

We have made a decision to:

6 Not extend the EAM to partial production. This is consistent with the Terms of Reference.

In our Issues Paper, we noted that there may be a need to consider how the EAM interacts with SDP’s incentives to operate given the 2012 EAM applies only in shutdown and restart modes. In particular, we noted that if the EAM does not apply when the plant is producing desalinated water outside the Metropolitan Water Plan drought rule, SDP may at times have an incentive to remain in shutdown mode.

SDP noted that this is the most significant issue with the EAM and proposed that we extend the EAM to partial modes of production so that it does not face the potential perverse incentive of remaining in shutdown (i.e., to continue to enjoy the benefits of the EAM), rather than entering partial production (i.e., giving up the benefits of the EAM when it moves into production mode).

Under the Terms of Reference, the scope of EAM does not extend to a plant production mode. Therefore, our decision not to extend the EAM to partial production is by reference to the Terms of Reference.

In its response to our draft 2017 Methodology Paper, SDP stated that while it accepts our decision to not extend the EAM to partial production during the 2017 determination period, it intends to revisit this issue at the next price review.

70 SDP pricing proposal to IPART, October 2016, pp 48-49.
C Review of 2012 Efficiency Carryover Mechanism

This appendix outlines how we have updated, improved, and clarified the design of the Efficiency Carryover Mechanism (ECM). It discusses the issues we considered in making these changes (and are still open to considering) and responds to stakeholder views on these issues.

C.1 The ECM should continue to focus on permanent efficiency savings

We have made a decision to:

7 Maintain the current approach of including efficiency savings, net of efficiency losses, for four years following the year they are achieved (i.e., five years total).

In its pricing proposal, SDP proposed that we allow both over and underspends (both temporary and permanent) to carryover and be shared with customers.72

We do not support SDP’s proposal for the following reasons:

▼ We consider the proposal is inconsistent with our understanding of the Terms of Reference, which requires efficiency savings, net of efficiency losses, to be carried over by SDP for a period of time before being passed on to customers. We do not accept that this includes negative efficiency savings (i.e., efficiency losses).

▼ There is a risk under a symmetric carryover mechanism that the role of the expenditure review is weakened and that inefficient costs are shared with customers. This risk was highlighted in Sydney Water’s response to our Issues Paper where it said “Sydney Water agrees that efficiency losses should never be passed through to customers”.73

In response to our draft 2017 Methodology Paper, SDP repeated a view it expressed in its pricing proposal that the continuing distinction between temporary and permanent savings adds considerable complexity (particularly in the context of SDP’s already more complex mode-based operating regime), given the practical difficulty in distinguishing between ‘temporary’ and ‘permanent’ savings, for little apparent benefit.74

While operating costs are typically recurrent in nature, there can be a range of reasons why costs are delayed or brought forward between years. When costs are delayed or brought forward between years, this can result in temporary over and underspends relative to the regulatory allowance. Our regulatory framework allows flexibility for costs to be shifted between years within the regulatory period. This means SDP is able to offset overspends in one year with underspends in another year. If the ECM did not distinguish between temporary and permanent savings (that is, if SDP shared both temporary and permanent savings with customers), there is a risk that temporary underspends would be shared with

72 SDP pricing proposal to IPART, October 2016, p 33.
74 SDP submission to IPART Draft Report, April 2017, p 18. SDP pricing proposal to IPART, October 2016, p 33.
customers while temporary overspends would be fully retained by SDP. This would effectively penalise SDP whenever costs are either delayed or brought forward between years within the regulatory period. We consider this would work against the flexibility of our regulatory framework.

If the issue is that it may be difficult to distinguish permanent efficiency savings from temporary savings in practice, it is important to note that a condition of allowing efficiency savings to carryover between regulatory periods is that there must be a corresponding permanent reduction in the regulatory allowance following the carryover period. If a permanent efficiency saving has not been made, there would be no case to permanently reduce the regulatory allowance and there would be no case to provide an efficiency carryover benefit. We note that any proposal to carryover efficiency savings under the ECM will be considered as part of our expenditure review. This will include establishing whether the identified saving is permanent and therefore justifies a permanent reduction in the regulatory allowance.

We do not share SDP’s view that the ECM adds considerable complexity. The potential role of the ECM is limited to the following three scenarios:

1. If a permanent saving is made in year 1 of a determination period, the saving is retained by SDP for five years and the ECM has no effect.
2. If a permanent saving is made in years 2, 3, or 4 of a determination period, SDP can propose to carry over the saving for the first 1, 2, or 3 years of the next determination period.
3. If a permanent saving is made in year 5 of a determination period, we will identify it at the next price review and ensure the saving is only retained by SDP for five years consistent with the Terms of Reference.

C.2 Treatment of mode-specific savings

We have made a decision to:

8 Maintain the current treatment of mode specific efficiency savings (ie, held for up to five years, within a five consecutive year period, while SDP is in that specific mode).

C.2.1 SDP should retain mode-specific savings for up to five years, while in that mode, within a five consecutive year period

We have decided to retain the 2012 Methodology Paper approach of allowing mode specific savings to be retained by SDP for up to five years, while SDP is in that mode, during a five consecutive year period. Our reasons for this are:

▼ It is consistent with the Terms of Reference.
▼ It means that savings are not carried over for an indefinite period until SDP re-enters a specific mode.
▼ It means the relative incentive strength for general and mode-specific savings are proportional to the relative value of general and mode-specific savings.
It therefore provides appropriate strength incentives for both mode-specific and general savings.

This is important given that in the long term, there appears to be greater scope for general efficiency savings than for mode-specific savings.

Our approach should encourage SDP to efficiently allocate resources between the search for both general and mode-specific efficiency savings.

The following sections outline SDP and Sydney Water’s proposed amendments to the treatment of mode-specific savings under the EAM and steps through the analysis supporting our decision.

C.2.2 Proposed amendments to the treatment of mode-specific savings

In its pricing proposal, SDP proposed that we amend the efficiency mechanism to allow mode specific savings to be held for five years, while SDP is in that specific mode, whether or not these five years are consecutive. SDP considers that its proposal:

- would acknowledge that it does not know *ex ante* (i.e., before the fact), and cannot control, the duration of a mode
- would help to narrow the range of sharing ratios which apply in practice, which would strengthen the incentive properties of the mechanism, and
- would be more consistent with the intent of the Terms of Reference.

At the Public Hearing, SDP said that it supports the continuation of the ECM as it represents something very close to best practice regulation. SDP said that the ECM is complicated by its mode-dependent pricing structure and, as a result, the incentives under the 2012 ECM are weaker than perhaps IPART had initially intended. SDP also reiterated the argument presented in its proposal that it be allowed to hold over mode-specific savings until it re-enters that specific mode so that it can retain the saving for the full five years.

In response to our Issues Paper and SDP’s proposal, Sydney Water noted that SDP’s proposed approach is not unreasonable in theory, however in practice it could result in holding periods spanning over decades which could reduce SDP’s incentive to look for efficiency savings and would potentially bind future Tribunals. To overcome these issues, Sydney Water proposed a more generous amendment to the ECM that would allow mode specific savings to be retained for five consecutive years even if SDP is not in that specific mode.

75 SDP pricing proposal to IPART, October 2016, p 33.
76 That is, unlike the 2012 approach where SDP is able to retain mode-specific savings for somewhere between one and five years depending on how long it remains in that specific mode, under SDP’s proposal, it would be guaranteed to retain the mode-specific saving for five years whether or not they are consecutive.
77 IPART, SDP public hearing transcript, 8 December 2016, p 66.
78 IPART, SDP public hearing transcript, 8 December 2016, pp 66-67.
79 Sydney Water submission to IPART Issues Paper, November 2016, p 32.
80 Sydney Water submission to IPART Issues Paper, November 2016, p 32.
C.2.3 SDP’s proposal could result in savings being carried forward for an indefinite period until SDP re-enters the relevant mode

As an extreme example, consider the case of mode specific efficiency savings related to transition to plant operation mode. If these efficiency savings were retained for five non-consecutive years (ie, five separate transitions to restart), it could be a very long time before customers experience any benefit from these savings.

In response to our draft 2017 Methodology Paper, SDP recognises that with the reduction in drought triggers in the 2017 Metropolitan Water Plan, SDP is likely to experience extended periods of time in shutdown, which weakens the case to carryover savings from one period of operation to the next. On this basis, SDP accepted our decision to not carryover efficiency savings for an indefinite period.81

C.2.4 There is greater scope for general savings than mode-specific savings

In response to our draft 2017 Methodology Paper, SDP maintains there is greater scope for efficiency savings in operation (ie, mode specific savings) than in shutdown (ie, general savings). This is because there are more activities involved in operation than in shutdown. As such, SDP maintains there should be a stronger incentive in place for mode-specific savings than is currently provided by the ECM.82

81 SDP submission to IPART Draft Report, April 2017, p 18.

We accept there are more activities in operation than in shutdown and thus greater scope for efficiency savings when the plant is in operation than when it is in shutdown. However, when general and mode-specific operating costs are scaled by the proportion of time that SDP is likely to be in shutdown and operation respectively, it becomes clear that there is greater scope for general efficiency savings than there is for mode specific efficiency savings.

The relative scope for general and mode-specific savings is illustrated in Figure C.1.

The key findings in Figure C.1 are:

- the scope for general efficiency savings covers about 11% (general operating costs excluding energy) of SDP’s total costs over the long run, and
- the scope for mode-specific efficiency savings covers about 3.5% (mode-specific operating costs excluding energy) of SDP’s total costs over the long run.

We excluded energy costs from this analysis because energy prices (but not energy volumes) are excluded from the scope of the ECM. These findings demonstrate why it is important that we do not over-incentivise mode-specific savings relative to general savings.
Note: This analysis excludes capital costs relating to pipeline, membranes, additional pump, and skid test unit.

Data source: IPART analysis using IPART charges for 2017-18 (in $2016-17). Dam level analysis is based on Figure 2.4 from SDP pricing proposal to IPART, October 2016, p 9.

- Applying the 2017 Metropolitan Water Plan 60/70 rule to the last 56 years of dam level data (ie, from 1960 to 2016) shows there were six droughts over this period. SDP would have been in shutdown for approximately 44 years (79% of the time), transitioned to restart/shutdown six times each, and been in operation for approximately 12 years (21% of the time).

- Over the long term, capital and other non-operating costs make up about 76% of SDP’s total costs. General operating costs (excluding energy) make up about 11% of SDP’s total costs while mode-specific operating costs (excluding energy) make up about 3.5% of SDP’s total costs.
C.2.5 General savings are more valuable than mode-specific savings

General savings (which occur all the time) are more valuable than mode-specific savings (which occur only some of the time).

Mode-specific savings only occur when SDP is in that specific mode. Most of the mode-specific costs are associated with operation mode. Operation mode is only expected to occur about 21% of the time (based on the 60/70 rule and historical dam level data).83

Therefore, as a general rule of thumb, a $1 mode-specific saving achieved in operation mode (which occurs around 21% of the time) is only worth about 21% of the value of a $1 general saving (which occurs 100% of the time).

C.2.6 The 2012 ECM provides an incentive strength that is proportionate to the value of the efficiency saving

For general savings, assuming a 5% discount rate, the 2012 ECM allows SDP to retain 22% of the general saving (years one to five) and customers receive the remaining 78% of the general saving through lower prices (from year six into perpetuity).

For mode-specific savings, assuming SDP is in that specific mode for the first year of every five year determination period (ie, 20% of the time)84 and using a 5% discount rate, the 2012 ECM allows SDP to retain 22% of the mode specific saving (retained by SDP in year one) and customers receive the remaining 78% of the general saving through lower prices (prices are lower when SDP is in that specific mode in years six, 11, 16, and so on into perpetuity). If SDP remains in the specific-mode for more than one year after it achieves a mode-specific saving, it will receive more than 22% of the mode specific saving. At the extreme case, if SDP retains a mode-specific saving for five consecutive years and customers receive the benefit for one out of every five years thereafter, SDP will have retained 56% of the mode-specific saving and customers under the 2012 ECM.

While there is uncertainty about how long SDP will remain in a specific mode after it has achieved a mode-specific efficiency saving, SDP can expect to retain a share of mode-specific savings that is at least as large as its share of general efficiency savings (ie, 22%).

C.2.7 SDP’s proposed approach would over incentivise mode-specific savings relative to general savings

SDP’s proposal would guarantee it retains mode-specific savings for five years whether or not these years are consecutive. For example, assuming SDP is in operation for the first year of every five year determination period (ie, 20% of the time) and assuming a 5% discount rate, under SDP’s proposal:

▼ SDP would retain 22% of general savings and 70% of mode-specific savings.

83 SDP pricing proposal to IPART, October 2016, p 9 (based on Figure 2.4).
84 This assumption is based on the finding that SDP would have been in operation approximately 21% of the time based on historical dam level data presented in Figure C.1.
Customers would not begin to benefit from mode-specific efficiency saving until 25 years after the mode-specific saving is achieved.

Assuming the same hypothetical situation outlined above, Sydney Water’s proposal would guarantee SDP retain mode-specific savings for five years whether or not it remains in that specific mode. Under Sydney Water’s proposal and our hypothetical example of SDP being in operation for the first year of every five year determination period (ie, 20% of the time), SDP would retain 22% of general savings and 98% of mode-specific savings.

Table C.1 shows how general and mode-specific efficiency savings are shared between SDP and customers under the 2012 ECM and how they would be shared under SDP’s and Sydney Water’s ECM proposals.
Table C.1 How efficiency savings are shared under the 2012 ECM, SDP’s ECM proposal, and Sydney Water’s ECM proposal

Determination	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2012 ECM																															
General efficiency savings																															
SDP (22%)	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Customers (78%)	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Mode-specific efficiency savings																															
SDP (22%)	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Customers (78%)	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
SDP’s ECM proposal																															
General efficiency savings																															
SDP (22%)	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Customers (78%)	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Mode-specific efficiency savings																															
SDP (70%)	1	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Customers (30%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Sydney Water’s ECM proposal																															
General efficiency savings																															
SDP (22%)	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Customers (78%)	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Mode-specific efficiency savings																															
SDP (98%)	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Customers (2%)	(1)	(1)	(1)	(1)	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				

Note: Analysis based on 5% discount rate. For mode-specific savings, SDP is assumed to be in the specific mode in the first year of each determination period and customers are assumed to continue to benefit from the mode specific saving in years 36, 41, 46, and so on into perpetuity.

Source: IPART analysis.
C.2.8 It is important that we do not over-incentivise mode-specific efficiency saving at the expense of general efficiency savings

If mode-specific savings are over-incentivised relative to general savings (as is the case under SDP and Sydney Water’s proposals), and if there is a budget constraint (whether this is a funding constraint, management time constraint, consulting budget constraint, etc), so that not every potential efficiency saving can be pursued, SDP could have an incentive to over-invest in mode specific savings relative to general savings. Ultimately, over-incentivising mode-specific savings relative to general savings could result in welfare losses for SDP’s customers.

C.2.9 Uncertainty about how long mode-specific savings can be retained

In response to our draft 2017 Methodology Paper, SDP contends that the ECM has not addressed the underlying uncertainty in relation to how long SDP is able to retain mode-specific savings. That is, SDP’s retention of mode-specific savings is more likely to be determined by the length of the drought than it is to be determined by the length of the regulatory period or ECM carryover period.85

We accept that the duration of droughts is uncertain and this creates uncertainty over how long SDP is able to retain mode-specific savings. While the ECM addresses uncertainty relating to the treatment of savings between regulatory periods, we agree the ECM does not address the underlying uncertainty relating to the length of a drought. This uncertainty is inherent to the purpose of the plant and it is not clear that it should be addressed through a regulatory instrument.

To illustrate this point, consider a situation where SDP operated in a competitive market for its drought response services. In this example, SDP is able to achieve a mode-specific saving during a drought period. Before the saving makes its way into lower prices as a result of competitive pressures, the drought breaks and there is no longer demand for SDP’s drought response services. In this case, SDP would no longer be able to sell its drought response services and it would no longer retain this saving. In addition to this, we note there is an additional source of uncertainty in a competitive market that the ECM does not reflect. That is the additional source of uncertainty regarding SDP being pressured to pass through savings to customers within a short period of time following a saving being achieved because of competitive market pressure.

85 SDP submission to IPART Draft Report, April 2017, p 17.
C.3 Adopting aspects of the ECM we applied to other IPART regulated water businesses

We have made a decision to:

9 Adopt aspects of the ECM we applied to other IPART regulated water businesses, including:
 – Removing the requirement that in order to be carried over, efficiency savings must be the result of a ‘management initiative’.
 – Shifting the ECM application period to use the five most recent years of actual data.
 – Adding a clawback to ensure savings are held by SDP for a maximum of five years.

In our Issues Paper, we asked whether we should move to adopt the ECM that we developed during our 2015-16 water pricing reviews (ie, Sydney Water, Hunter Water and WaterNSW)\(^86\). Our Final Report for the 2016 Sydney Water Price Review provides a detailed overview and analysis of the ECM we developed during our 2015-16 water pricing reviews.\(^87\)

C.3.1 We have modified the definition of ‘efficiency saving’

The 2012 Methodology Paper includes a requirement that efficiency savings must be the result of ‘management initiative’. This requirement is subjective and unlikely to have much benefit in practice.

Consistent with the ECMs put in place for the other water utilities we regulate, SDP’s ECM should include any permanent cost reductions that SDP commits to. We consider the real benefit of the ECM is to challenge the business to identify cost savings (regardless of their source) and commit to making these savings permanent for the long term benefit of customers. That is, under our 2017 methodology, the business would apply for a carryover if it is confident that the efficiency saving is in fact permanent. The business would not need to demonstrate whether the efficiency savings it is as a result of management initiative.

C.3.2 We have lagged the application period by one year

Currently, the 2012 ECM applies to each five-year determination period. However, when the methodology is applied at a price review, we do not have actual data for the last year of the determination period. Under the 2012 ECM methodology, estimates for the final year of the determination period are therefore required.\(^88\)

Again, to be consistent with the ECMs put in place for the other water utilities we regulate, we have decided to lag the 2017 ECM application period by one year. In SDP’s case it would apply to the last five years of actual data (ie, the last year of the previous determination period and the first four years of the current determination period).

This means at the next price review, the ECM would apply to the last year of the 2012 determination (2016-17). In principle, new incentives should not be applied retrospectively. However, in this instance we consider there is a strong case to include 2016-17 in the ECM to ensure SDP retains efficiency savings for a maximum of five years consistent with the Terms of Reference (discussed in the next section).

For clarity, we are lagging the application period by one year. We are not proposing to change the number of years that savings can be retained by SDP as specified by the Terms of Reference (this is still five years).

C.3.3 We have added a clawback feature to ensure savings are retained by SDP for a maximum of five years

The 2012 ECM methodology effectively allows for efficiency savings to be held for up to six years. That is, if SDP makes an efficiency saving in the last year of the current determination period (2016-17) and we set prices for the 2017 determination period without this information, SDP could retain the saving for six years (ie, 2016-17 plus the full five years of the 2017 determination period). This outcome would not be consistent with the Terms of Reference which state that SDP should be able to retain efficiency savings for four years following the year the saving is achieved (ie, five years).

We are correcting for this by adding a clawback feature to the 2017 ECM. In the example above, the sixth year of benefit retained by SDP in the last year of the 2017 determination period would be inflated by the time value of money (consistent with our application of financing costs under the EAM) and returned to customers (through the base service charge) in the first year of the 2022 determination period.

This feature is consistent with the clawback feature we included in the ECM established for the other water utilities we regulate.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012 determination period</td>
<td>The period 1 July 2012 to 30 June 2017</td>
</tr>
<tr>
<td>2012 ECM</td>
<td>The Efficiency Adjustment Mechanism outlined in the 2012 Methodology Paper</td>
</tr>
<tr>
<td>2012 EAM</td>
<td>The Energy Adjustment Mechanism outlined in the 2012 Methodology Paper</td>
</tr>
<tr>
<td>2012 Methodology Paper</td>
<td>The Methodology Paper published by IPART in April 2012</td>
</tr>
<tr>
<td>2017 Determination</td>
<td>Determination of SDP’s maximum prices from 1 July 2017, made in this review.</td>
</tr>
<tr>
<td>2017 determination period</td>
<td>The period 1 July 2017 to 30 June 2022</td>
</tr>
<tr>
<td>2017 ECM</td>
<td>The Efficiency Carryover Mechanism outlined in the 2017 Methodology Paper</td>
</tr>
<tr>
<td>2017 EAM</td>
<td>The Energy Adjustment Mechanism outlined in the 2017 Methodology Paper</td>
</tr>
<tr>
<td>2017 Methodology Paper</td>
<td>The Methodology Paper published by IPART in June 2017</td>
</tr>
<tr>
<td>Adjustment period</td>
<td>The determination period immediately following the review year</td>
</tr>
<tr>
<td>AEMO</td>
<td>Australian Energy Market Operator</td>
</tr>
<tr>
<td>Application period</td>
<td>The five year period immediately preceding the review year</td>
</tr>
<tr>
<td>Carryover period</td>
<td>The first three years of a determination period immediately following the review year</td>
</tr>
<tr>
<td>Determination period</td>
<td>The period over which IPART sets maximum prices</td>
</tr>
<tr>
<td>General saving</td>
<td>Efficiency savings that apply in all modes of operation</td>
</tr>
<tr>
<td>Hunter Water</td>
<td>Hunter Water Corporation</td>
</tr>
<tr>
<td>Infigen</td>
<td>Infigen Energy Limited</td>
</tr>
<tr>
<td>LGC</td>
<td>Large scale generation certificates</td>
</tr>
<tr>
<td>LRMC</td>
<td>Long run marginal cost</td>
</tr>
<tr>
<td>Glossary Term</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Metropolitan Water Plan 60/70 rule</td>
<td>Under the 2017 Metropolitan Water Plan, when total dam storage levels fall below 60% ('on' trigger) SDP must operate to maximise its supply of drinking water to Sydney Water’s area of operation. Outside the ‘minimum run time’, these arrangements will continue to apply until total dam storages reach 70% ('off' trigger).</td>
</tr>
<tr>
<td>Mode-specific saving</td>
<td>Efficiency savings that only apply in a specific mode of operation</td>
</tr>
<tr>
<td>Review year</td>
<td>The year in which IPART reviews and sets prices for the next determination period</td>
</tr>
<tr>
<td>RBA</td>
<td>The Reserve Bank of Australia</td>
</tr>
<tr>
<td>REC</td>
<td>Renewable energy certificate</td>
</tr>
<tr>
<td>SDP</td>
<td>Sydney Desalination Plant Pty Ltd</td>
</tr>
<tr>
<td>Sydney Water</td>
<td>Sydney Water Corporation</td>
</tr>
<tr>
<td>WIC Act</td>
<td>Water Industry Competition Act 2006 (NSW)</td>
</tr>
</tbody>
</table>