

Appendix 4.1.1(a) Kings Forest Description of Proposed Drinking	Water Infrastructure
---	----------------------

Drinking Water Infrastructure	Description	
Bulk Water Supply	The bulk water supply for the Kings Forest development drinking water will be sourced from Tweed Shire Council (TSC) under a bulk drinking water supply agreement.	
Connection Point	A bulk drinking water connection point will be provided by TSC Located in the Tweed Coast Road. The connection to the existing 375mm main will be by Project 28 (P28).	
	The new 300mm rising main will run along the Tweed Coast road and terminate with a valve meter assembly at the Kings Forest Parkway and the Tweed Coast Road roundabout. On completion of the works and sign off by TSC the works will be gifted to TSC to own and operate. Refer to Appendix 4.1.3(a) for a plan showing from the connection point to the meter assembly outlet.	
	Communication protocols will be put in place with the TSC to ensure any water quality issues are communicated to NWS in a timely manner.	
Drinking Water Transfer Rising Main	The drinking water transfer rising main (DWTRM) will be connected to the valve outlet of the meter assembly located at the Tweed Coast road and the Kings Forest Parkway roundabout and installed in easements that run along Kings forest Parkway to the Waste Water Treatment Plant (WWTP) boundary by P28. Upon completion and hand over of the works, the works will be gifted to NWS to own and operate. Refer to the Water Balance Report in Appendix 4.1.6(a), Appendix 4.1.3(a) for detailed drawing of the Drinking Water Plan Source to Storage.	
	The DWTRM will transfer the 1.389MLD of drinking water to the WWTP site at a flow rate of 16.I/s over a 24 hour period.	
Onsite Drinking Water Storage	The Total Drinking water storage will be 6ML. The tank storage will be as the development is built out.	
Tanks	Stage-A 2ML	
	Stage-C 2ML	
	Stage-D 2ML	
	The 6ML tank will provide approximately 3- days storage at peak day potable water demands and includes 0.5ML dedicate emergency fire storage.	
	The tanks will be a steel panel tank with internal polymer lining suitable for contact with drinking water.	
	Each 2ML storage tank will have its 300mm psychical air gap for back flow protection. Each tank inlet will have its own motorized valve for isolation and maintenance purposes along with its own individual level sensor.	
	Each tank will have its own overflow and drain valves which will be connected to the WWTP storm water network.	
Chlorine	The drinking water storage tanks will include a recirculation loop with continuous online	
Monitoring and	Monitoring the system for maintenance of the chlorine residual levels in the storages.	

Dosing System	The chlorine monitoring and dosing system will be controlled through the SCADA
	CMS system. Alarms will be activated for high and low free chlorine concentrations. The Chlorine dosing pumps will inject chlorine into the downstream side of the Variable speed pump sets and up stream of the inline water mixer when the residual chlorine level falls below the required set point.
The Drinking Water Supply Variable Speed Pump Stations	The drinking water pressure and flow in the Kings Forest scheme networks will be controlled by the variable speed pump stations installed in stages A & C. Each pump station will have a jacking pump to maintain the pressure and flow at off peak times especially during the night and early mornings.
	The pump sets will use a series of multiple pumps controlled by variable speed drives to maintain the pressure and flow set point in the downstream reticulation system across a wide range of flows.
	Pressure set point of the drinking water pumps will be maintained a minimum of 50 KPA higher than in the recycled water supply network to help avoid any cross contamination.
	The drinking water pump stations are connected to the emergency generator back up power supply in the event of a power failure or a shut down by the energy provider for maintenance purposes. The generator is controlled by an auto change over switch located in the Main Switch Board (MSB) located in Stage A MBR room of the WWTP building. The emergency generator will provide power to all essential services during such an event including drinking water and recycled water infrastructure systems.
The Drinking Water Reticulation	The drinking water reticulation network will be designed and constructed in accordance with Water Services Association Australia (WSAA) standards, AS 3500 and the Plumbing Code of NSW.
Network	The reticulation system will be constructed in line with staging of the residential development. Pressure and flow sustaining valves will be used throughout the networks to maintain flow and pressure at the most furthest points in the networks. The networks will all isolating valves, air vents, flushing points and fire hydrants installed to maintain an efficient drinking water system.
	The drinking water reticulation mains will use a different color piping material to that used in the recycled water network to reduce the potential for cross connection. The drinking water mains will use blue PVC pipe and blue striped HDPE pipe.
Customer	A metered connection point will be provided to each allotment/customer.
Connection Points	Each connection point will be provided with a dual check valve for backflow prevention, isolation stop valve and smart water meter.
	Each customer must apply for a drinking water connection by filling out an online application form from the NWS Cobaki Web site. When NWS receives the correctly filled out application form, fees that apply and a copy of the cross flow connection test report required by the Office of Fair Trading (NWS will work with Council to make sure these certificates are received and recorded), NWS will arrange to have the drinking water meter installed for the customers registered plumber to connect to.

Drinking Water Uses	The drinking water system will supply all drinking water to meet the demands within the Kings Forest Development.
	Approved drinking water uses include:
	 Drinking; All bathroom taps including the shower, bath tub, basins and vanity units; All kitchen taps including the kitchen sink and dishwasher; The hot water service supplied to all areas of the house; The laundry sink; Pool and spa top- up; Food preparation; Cooking purposes; Fire hydrants and All other drinking water uses not specifically mentioned above.
Online Monitoring, Control and Alarm System	Continuous online monitoring, control and alarms for the drinking water infrastructure is centrally managed using the SCADA CMS system. The control system allows the infrastructure to operate unattended and automatically and reports all issues requiring operator attention.
	Online monitoring probes for pressure, flow, PH and chlorine residual correction are manually calibrated and checked by operations staff on a routine basis to ensure all probes are recording accurate readings. All critical alarm systems have a battery backup to ensure faults are reported even during power outages. The control system is designed to automatically recover to where it was following a power outage.

Council Reference: Kings Forest Development Your Reference:

20 March 2017

Customer Service | 1300 292 872 | (02) 6670 2400

tsc@tweed.nsw.gov.au www.tweed.nsw.gov.au

Fax (02) 6670 2429 PO Box 816 Murwillumbah NSW 2484

Please address all communications to the General Manager

ABN: 90 178 732 496

Wayne Williamson Northern Water Solutions PO Box 977 NOOSA QLD 4567

Sent via email: <u>wayne@northernwatersolution.com</u>

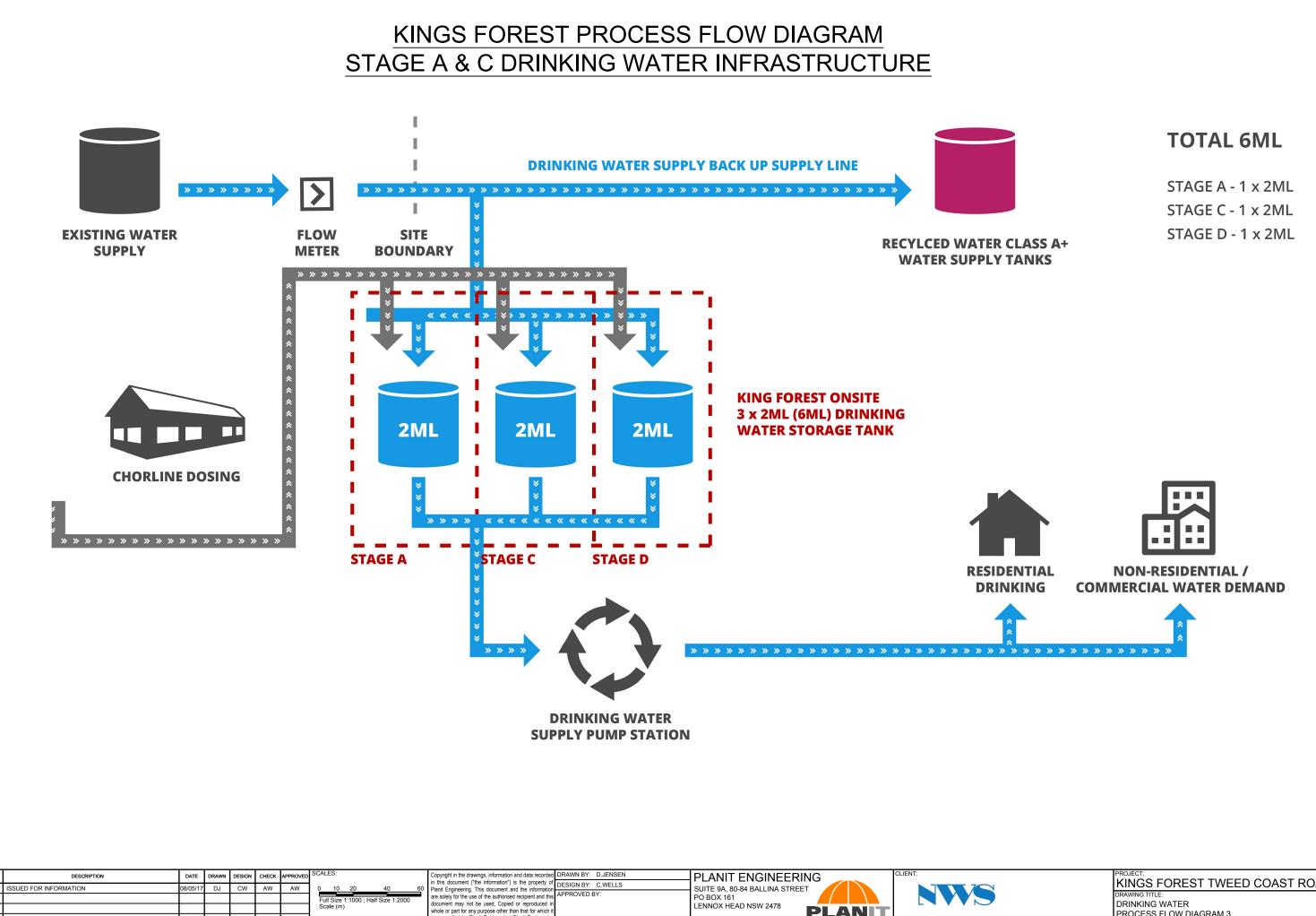
Dear Wayne

Provision of Water and Sewerage Services to Kings Forest

Northern Water Solutions (NWS) has requested a letter from Council indicating that it was feasible for Council to provide bulk water and receive treated wastewater from an operator, licensed under the Water Industry Competition Act 2006, of water and sewerage infrastructure at the Kings Forest development.

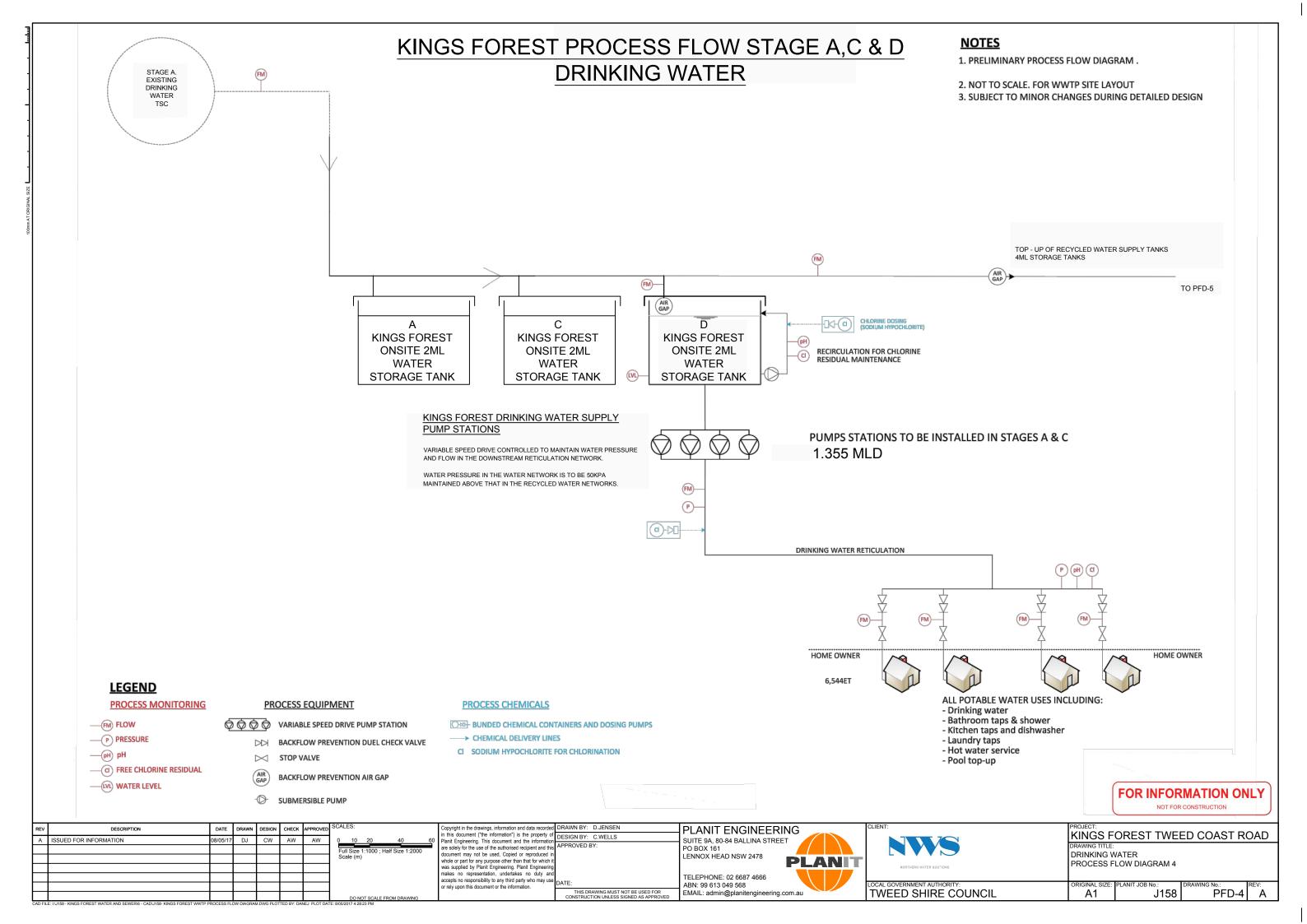
On 16 March 2017 Council resolved to issue a letter to NWS advising NWS that it is technically feasible for Council to provide bulk water and receive treated wastewater from NWS for the Kings Forest development subject to:

- 1. Determining the impact on Council's infrastructure
- 2. Developing an agreement which ensures Council is not disadvantaged, and
- 3. A further resolution of Council approving the negotiated agreement

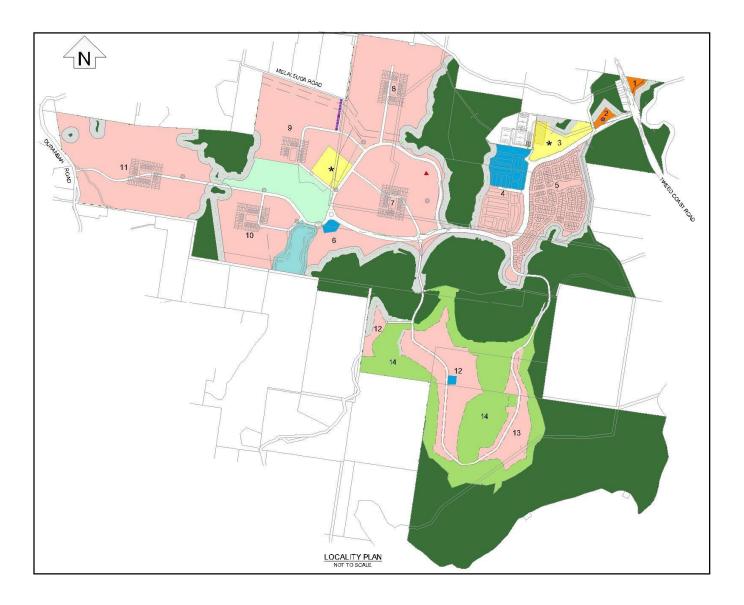

It should be noted that to enable this to occur there is a need for additional Council infrastructure to supply the bulk water and accept the treated wastewater from the development.

The intent of this letter, as requested by Northern Water Solutions, is to inform the Independent Pricing and Regulatory Tribunal that it is technically feasible for Council to provide bulk water to and receive bulk wastewater from a licenced operator at the Kings Forest development. The letter is not a commitment to do so as any such commitment would require a resolution of Council after consideration of a proposed agreement between Northern Water Solutions and Tweed Shire Council.

If you have any enquiries in respect to this matter please contact Rob Siebert at Tweed Shire Council at rsiebert@tweed.nsw.gov.au


Yours faithfully

David Oxenham DIRECTOR ENGINEERING


Copyright in the drawings, information and data recorded in this document ("the information") is the property of Plant Engineering. This document and the information are solely for the use of the authorised recipient and this document may not be used. Copied or reproduced in whole or part for any purpose other than that for which it was supplied by Plant Engineering. Plant Engineering makes on representation, undertaken o duty and accepts on responsibility to any third party who may use or rely upon this document or the information. PLANIT TELEPHONE: 02 6687 4666 ABN: 99 613 049 568 THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROV EMAIL: admin@planitengineering.com.au TWEED SHIRE COUNCI

	KINGS FOREST TWEED COAST ROAD			
	DRAWING TITLE: DRINKING WATER PROCESS FLOW DIAGRAM 3			
CIL	ORIGINAL SIZE:	PLANIT JOB No.: J158	DRAWING No.: PFD-3	REV: A

Kings Forest Estate - Drinking Water Boundary Conditions Report

For: Northern Water Solutions Pty Ltd Developer: Project 28 Pty Ltd

Planit Engineering Date: 20th April 2017 Document No.: J158 – RPT004 – Rev03

Document Status

Version	Document type	Reviewed by	Checked by	Date Issued
Rev 01	Report	S Robinson	A.Wells	19 December 16
Rev 02	Draft	WW	A Wells	1st January 17
Rev 03	Draft	WW	A Wells	20 th April 2017

Project Details

Project Name:	Kings Forest Estate – Drinking Water Boundary Conditions Report
Client	Northern Water Solutions Pty Ltd
Client CEO/Project Manager	Wayne Williamson
Authors	Andrew Wells
WGM Reference:	J158

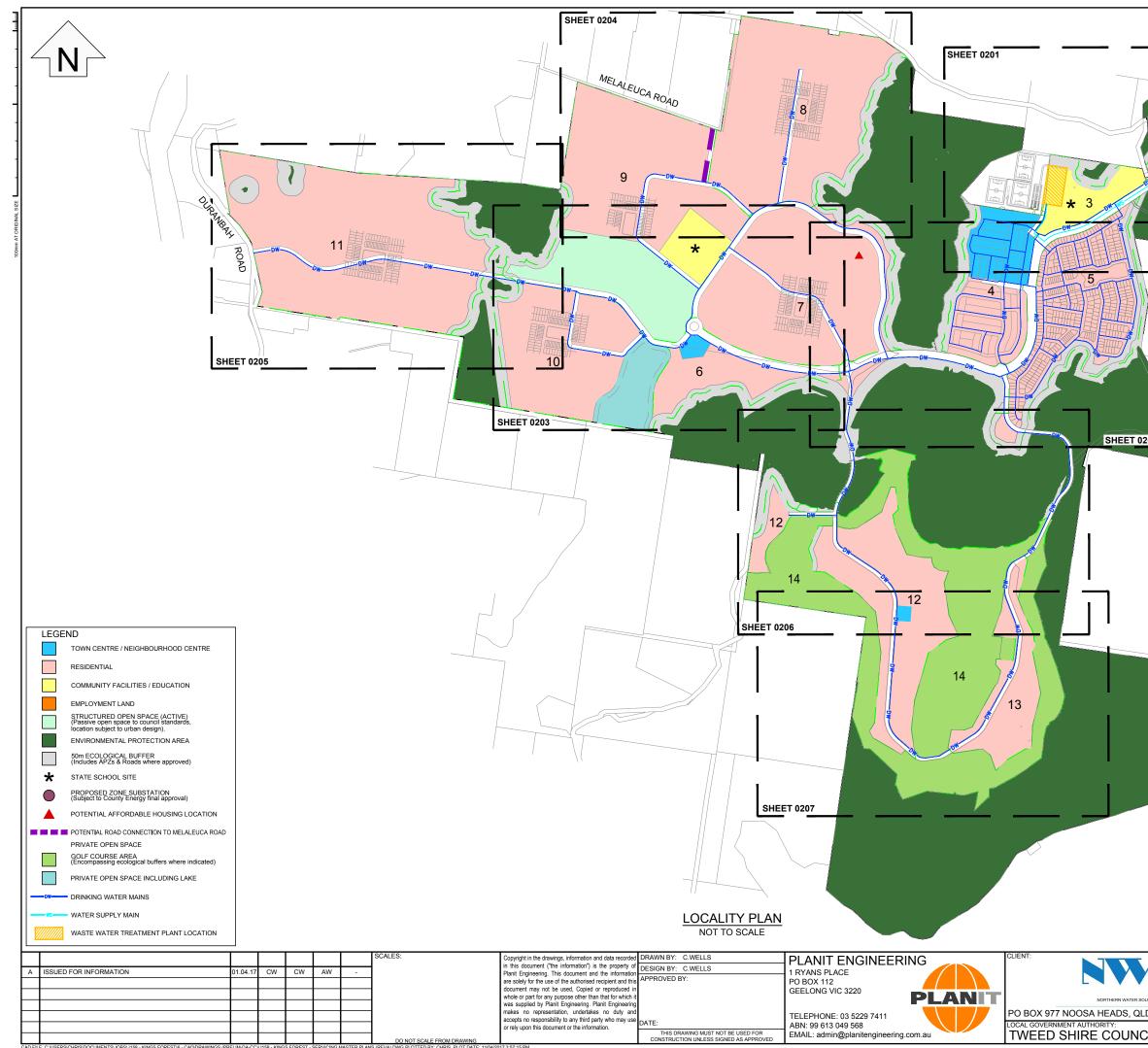
Copyright

Planit has produced this document in accordance with instructions from Northern Water Solutions Pty Ltd for its use only. The concepts and information contained in this document are copyright of Planit.

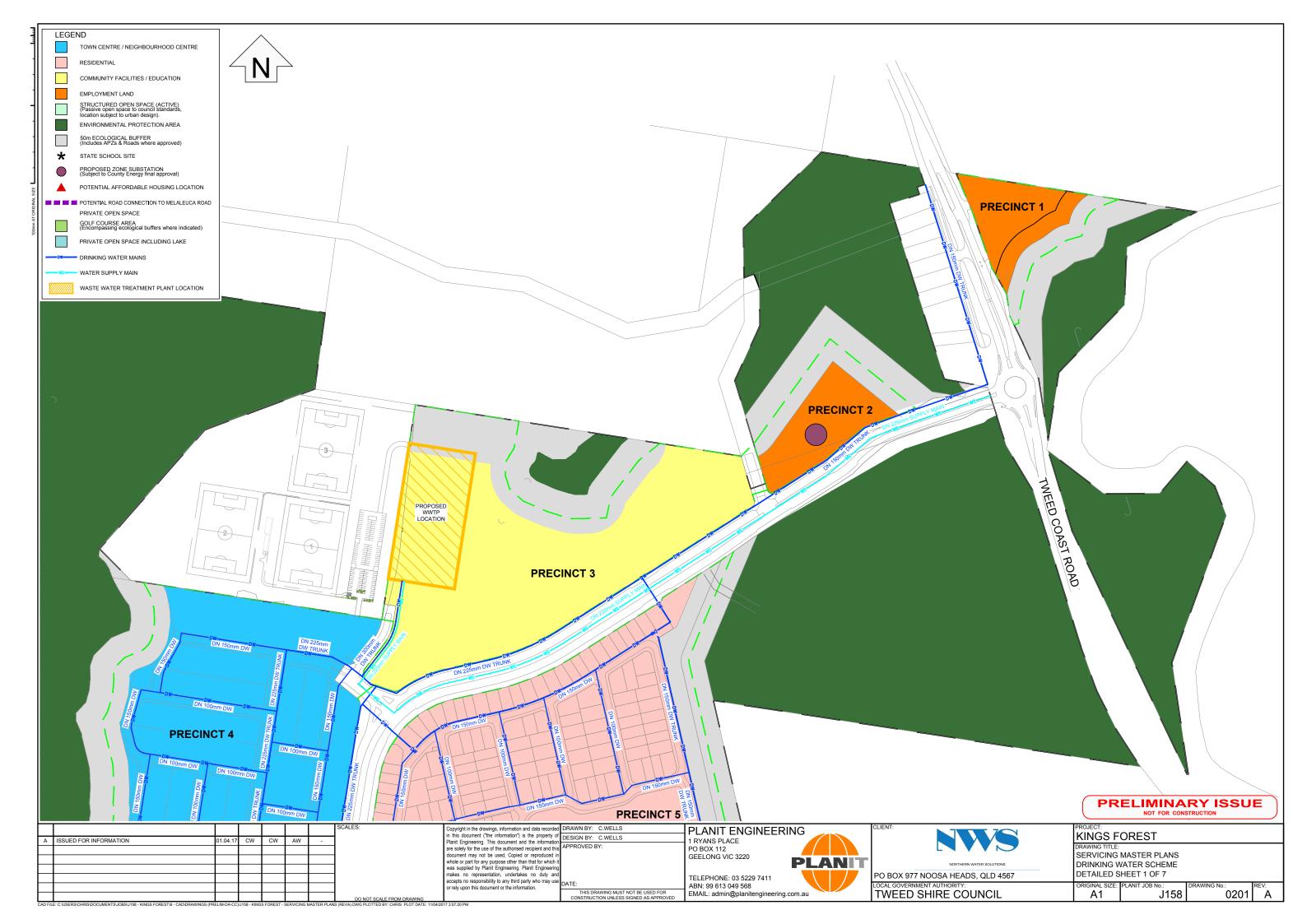
Use or copying of this document in whole or in part without written permission of Planit constitutes an infringement of copyright.

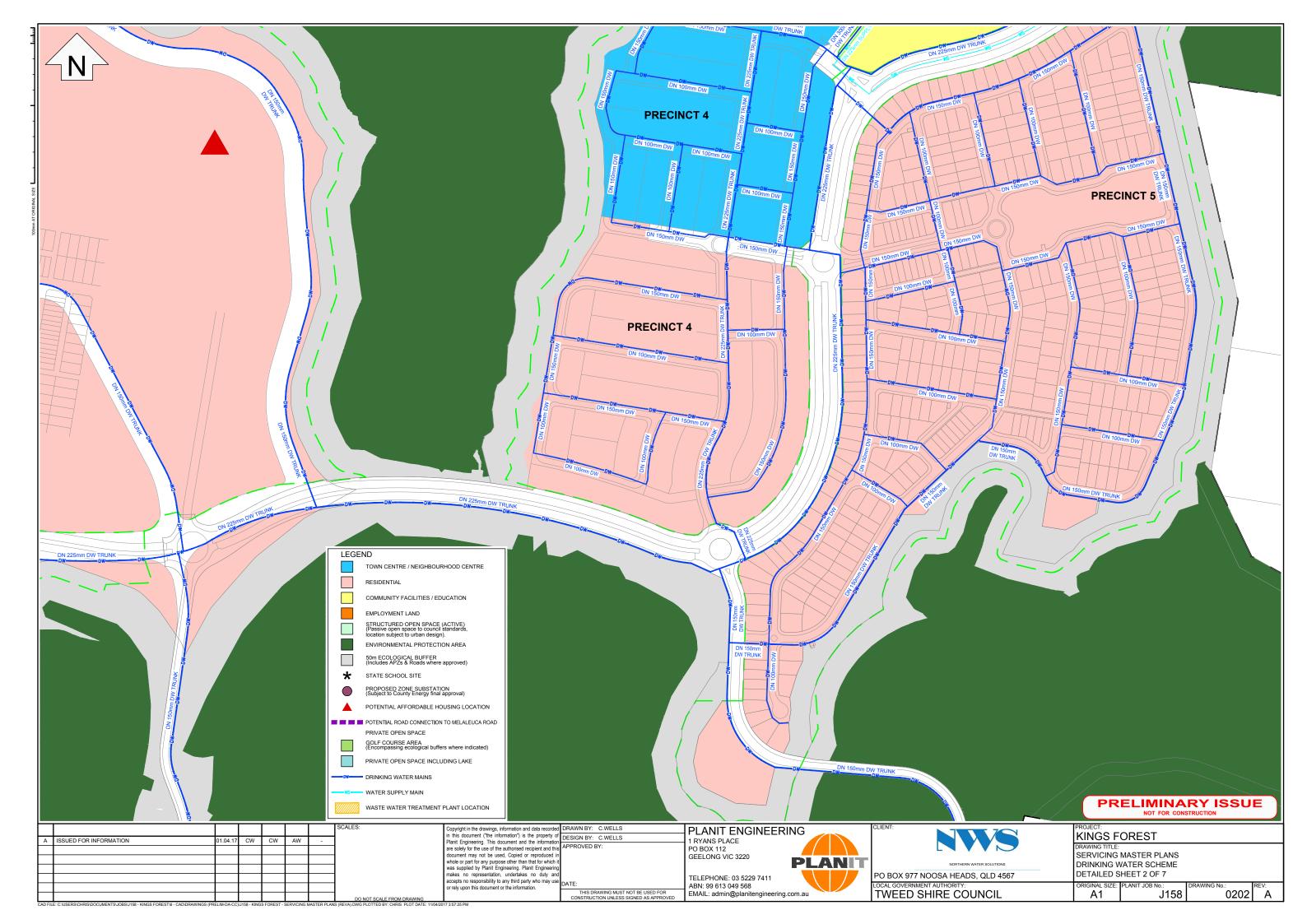
Planit does not warrant this document is definitive and free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

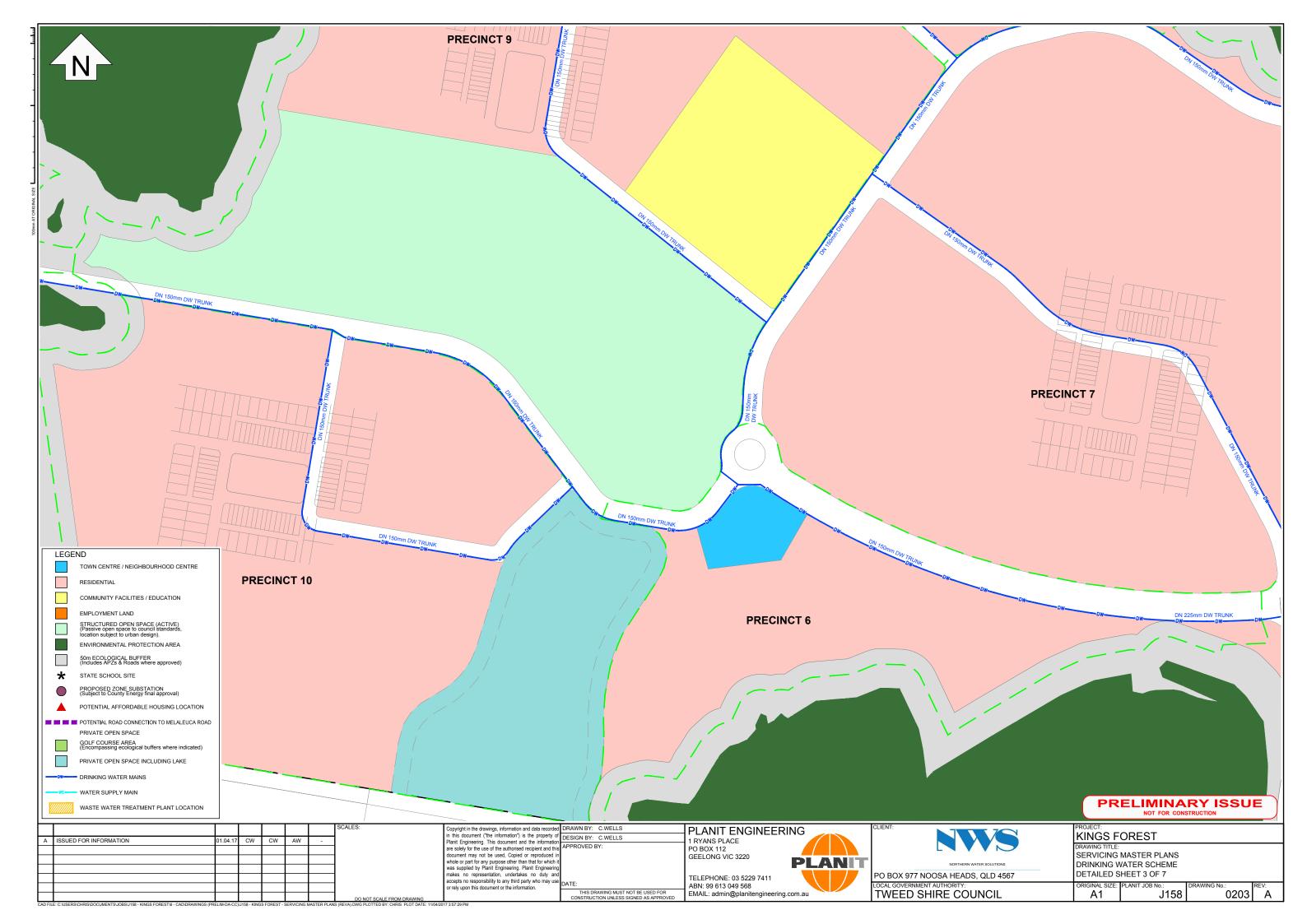
Planit ABN 99 613 049 568 Suite 9a, 80-84 Ballina Street Lennox Head NSW 2478 (PO Box 161, Lennox Head NSW 2478) Telephone – 02 6687 4666 admin@planitengineering.com.au

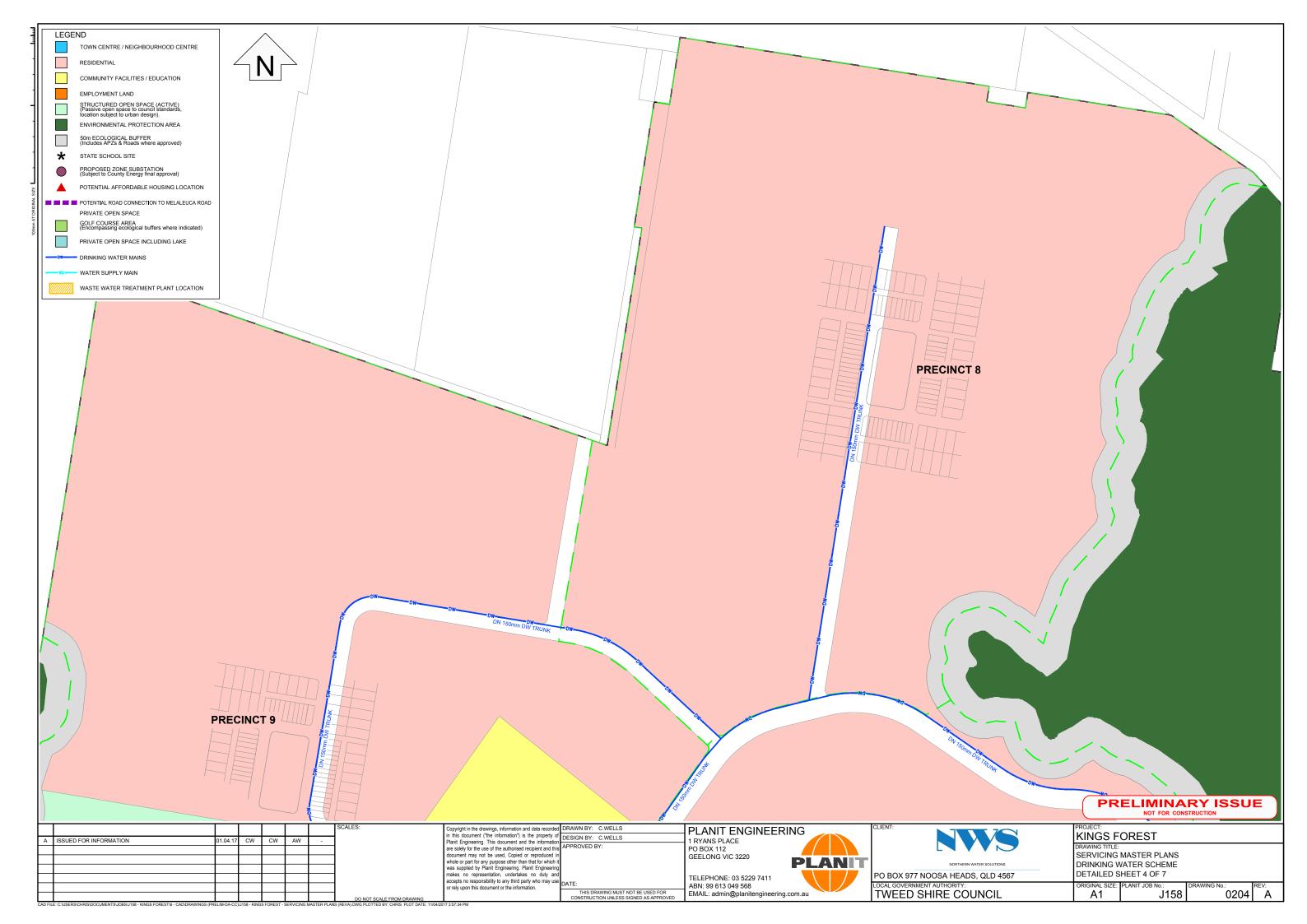


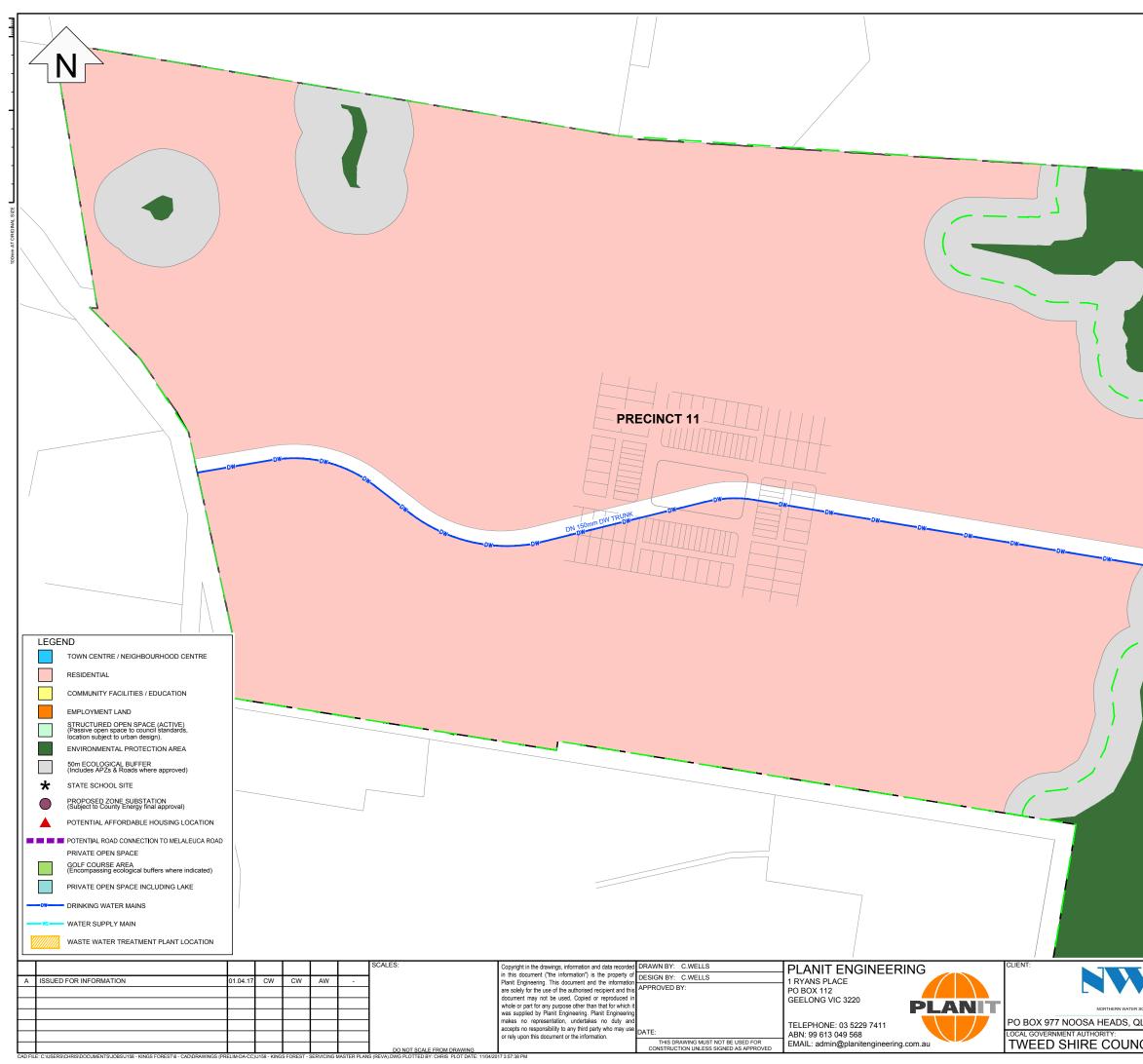
Contents

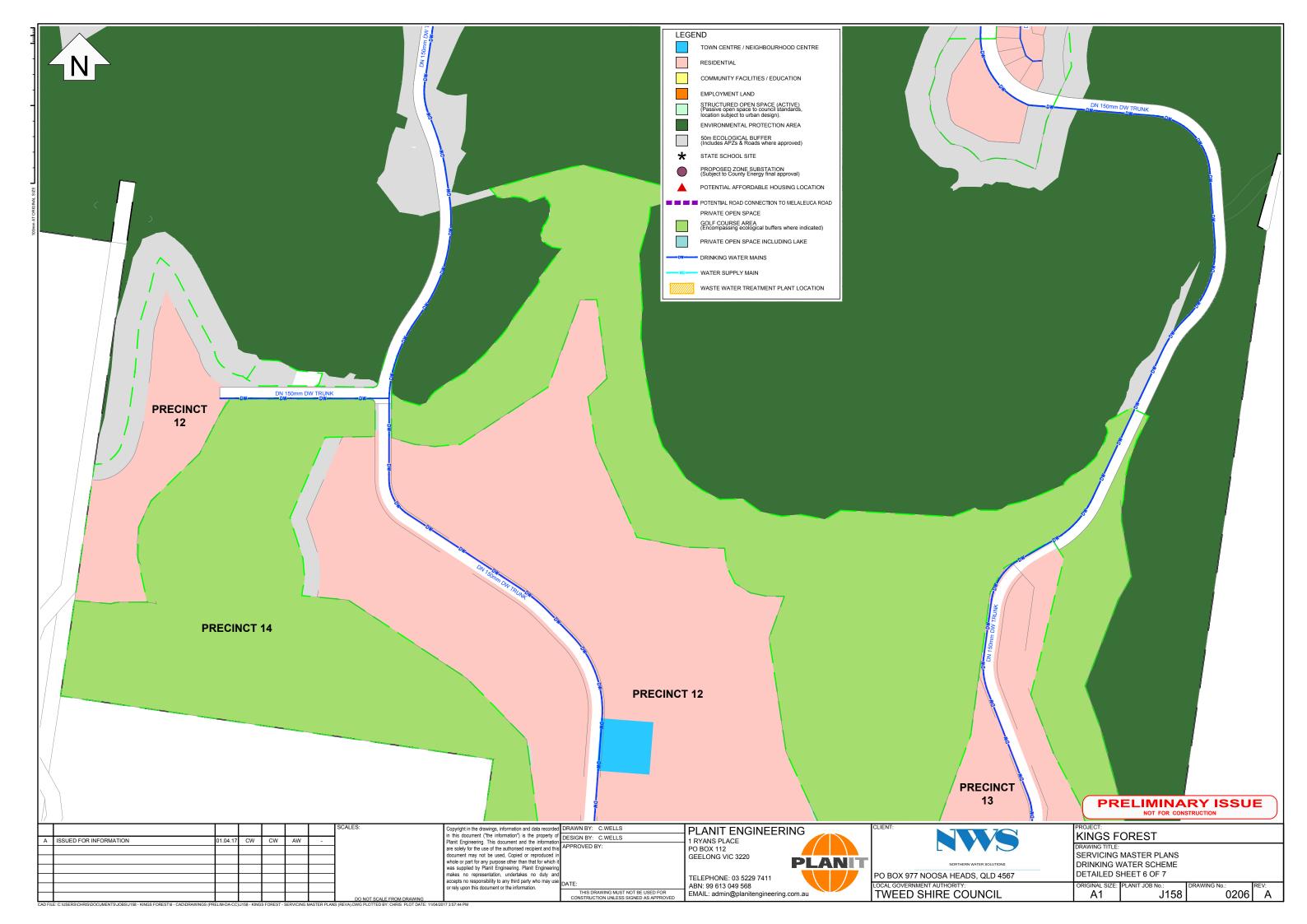

1	Intr	oduction	3
	1.1	The Stakeholders	3
	1.2	The Drinking Water Network to be provided by NWS	4
	1.3	Roles and Responsibilities	5
2	Bac	kground	7
	2.1	The Stakeholders	7
	2.2	The Referenced Documents	7
	2.3	The Kings Forest Estate Development Site	7
	2.4	Land Use Areas	8
	Table ²	1 – Land Use Areas	8
3	The	Kings Forest Estate Drinking Water Servicing Strategy	9
	3.1	The Owner and Operator	9
	3.2	Kings Forest Estate Drinking Water Network	9
	3.3	Kings Forest Estate Drinking Water Demands	9
	Table 2	2 - Average Daily Drinking Water Requirements per Equivalent Tenement	9
	3.4	Quality	10
	3.5	Drinking Water Flow Rates	10
	Table	3 - The Drinking Water Equivalent Tenement Demand	10
	3.6	Kings Forest Estate DWRM Connection Location	10
	3.7	Kings Forest Estate Monitoring and Control System	10
4	King	ys Forest Estate Drinking Water Network Agreement Requirements	. 11
5	Reg	ulatory Requirements	. 11
6	Terr	n Sheet	. 11
7	Terr	ns	. 12
8	Role	es and Responsibilities	. 13
	8.1	Scope of works required by each stakeholder to be included in any tri party agreements	.13
	8.2	Demarcation lines of responsibility to be included in the draft agreements	
	8.3	Fees and Charges	. 15
	8.4	Regulatory Requirements	. 15
A	opendi	x A – Kings Forest Drinking Proposed TSC Water Connection Location Plan	i
A	opendi	x B – Drinking Water PFD	ii

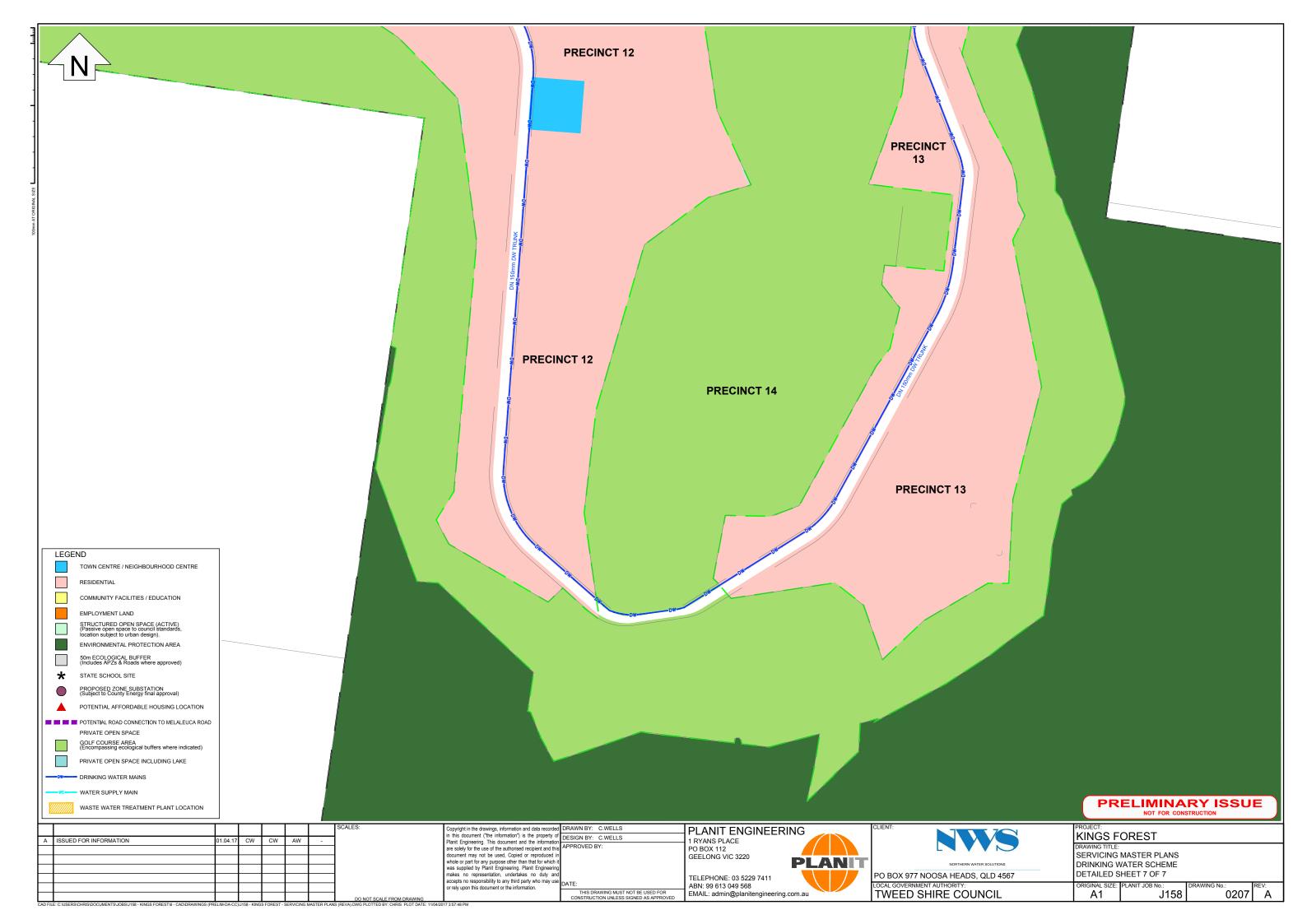

List of Figures

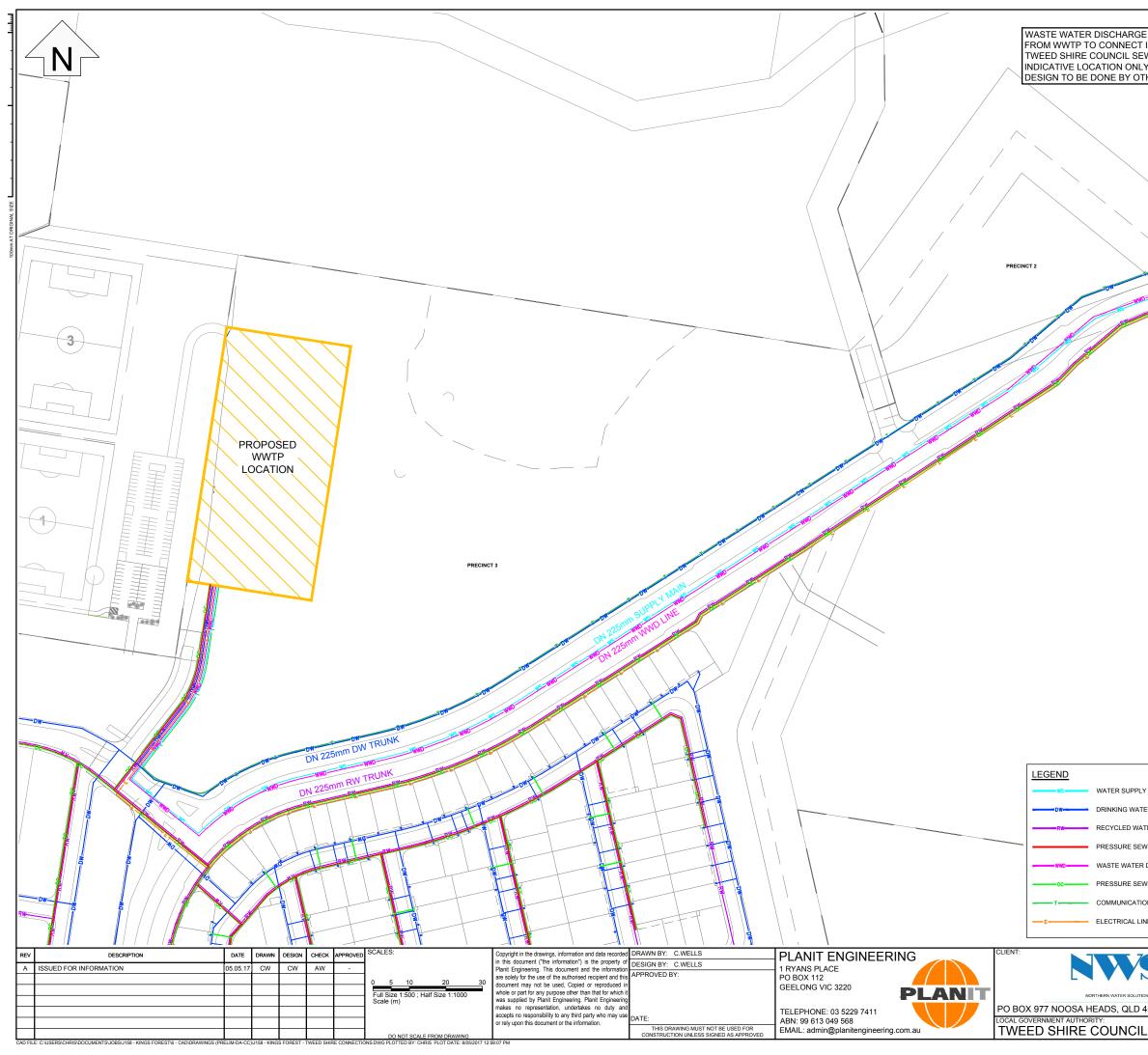

Figure 1 – Kings Forest Integrated Water Scheme Average Daily Demand	6
Figure 2 – Kings Forest Service Area	8

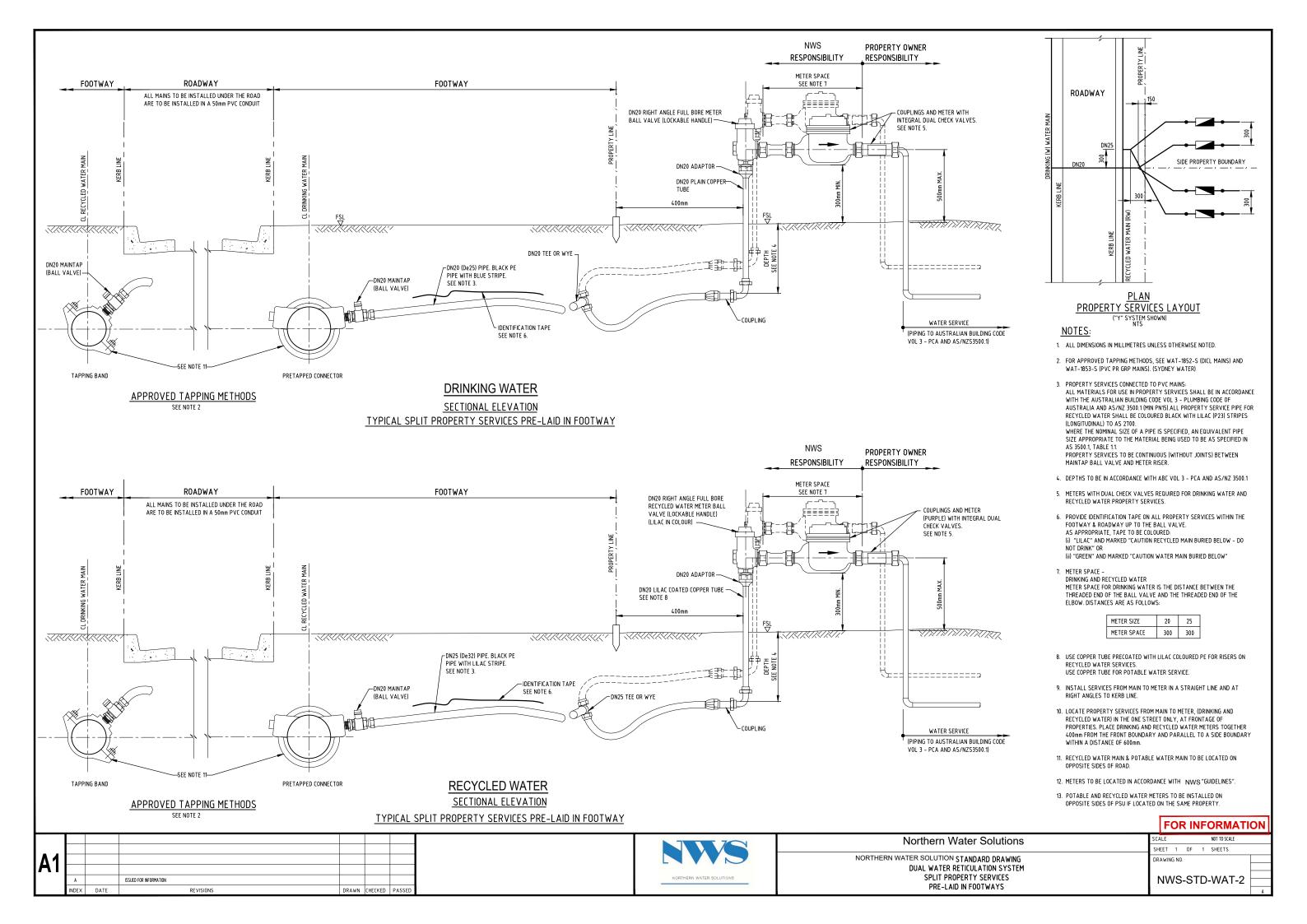


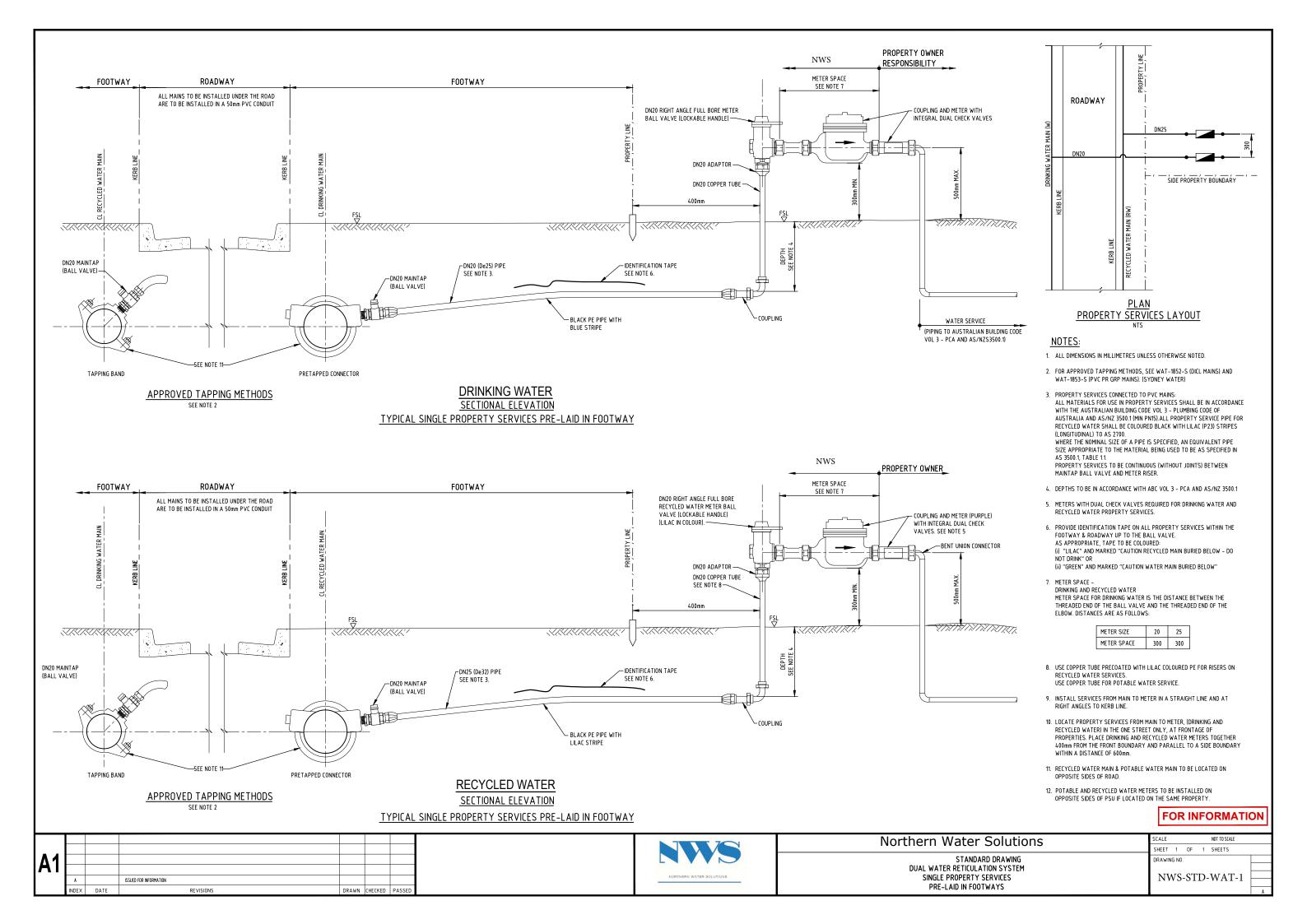

	INTELD CORST ROAD
	6
202	
	PRELIMINARY ISSUE
OLUTIONS LD 4567	PROJECT: KINGS FOREST DRAWING TITLE: SERVICING MASTER PLANS DRINKING WATER SCHEME OVERALL LAYOUT PLAN
CIL	ORIGINAL SIZE: PLANIT JOB No.: DRAWING No.: REV: A1 J158 0200 A

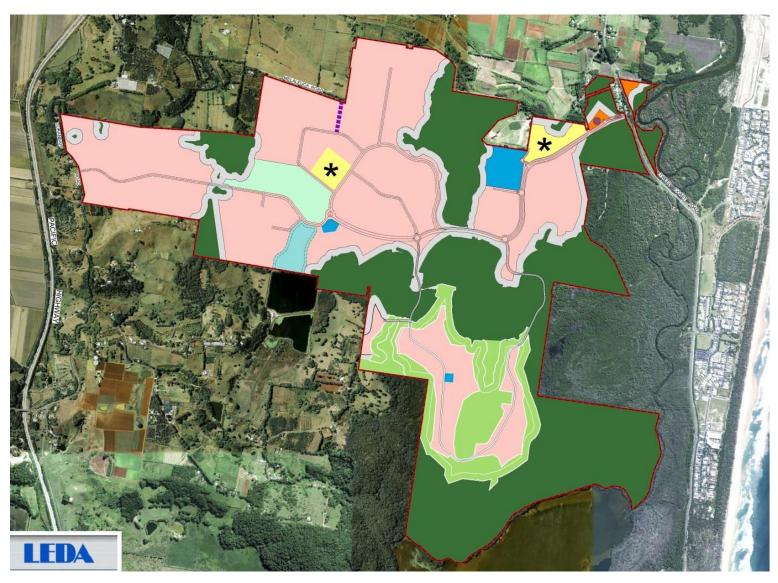







DW	DW DW DW 150mm DW TRUNK DW DW DW DW DW
	PROJECT: KINGS FOREST
R SOLUTIONS QLD 4567	DRAWING TITLE: SERVICING MASTER PLANS DRINKING WATER SCHEME DETAILED SHEET 5 OF 7 ORIGINAL SIZE: PLANIT JOB NO.: DRAWING NO.: REV:
ICIL	A1 J158 0205 A




K	1//////////////////////////////////////		1	
RGE				
ONLY. OTHERS.			/ /	
$\langle \rangle$	I			
H				
\vdash				
、		T V C		
\sim /				
\sim				$\left(\right)$
	OWNER			
011				
	All and a second se			
MAD RANGE		1 I	\mathcal{H}	
			$\langle \rangle \rangle \langle \rangle$	
			Ŝ \ 	
		,	// \' /	
WATER SUPPLY (CONNECTION		TWIEED COAS	
FROM TWEED SH WATER MAIN.			-+'2	\backslash
INDICATIVE LOCA			THE A	
DESIGN TO BE DO	ONE BY OTHE	RS.	日	
			C C	
			5	Ŋ \
			\ `	R
			\ \	Q
			\	0
				$\setminus \setminus$
				\sim
IPPLY LINE				
OWATER MAIN				
ESEWER MAIN				
ATER DISCHARGE LINE				
E SEWER - OPTIC FIBRE CABLE				
CATIONS LINE TO WWTP				
AL LINE TO WWTP	PR			E)
	PROJECT:	NOT FOR CONS		
	KINGS F			
		RE COUNCIL SEWE	ER AND WATER	
LD 4567	CONNECTIC	ONS SCHEMATIC		
			DRAWING No.:	REV:
CIL	A1	J158	0001	A

Kings Forest Development, Tweed Heads Water Balance Summary

For Northern Water Solutions Pty Ltd Developer: Project 28 Pty Ltd PLANIT January 2017 Document No. J158 - RPT001 – Rev02

Document Status

Version	Document type	Reviewed by	Checked by	Date Issued
Rev01	Report	A.Wells	B. Gohl	29/12/2016
Rev02	Report	S. Robinson	A.Wells	23/01/2017

Project Details

Project Name:	Water Balance Summary – Kings Forest Development, Tweed Heads
Client	Northern Water Solutions Pty Ltd
Client CEO/Project Manager	Wayne Williamson
Authors	Andrew Wells
PLANIT Reference:	J158 – RPT001

Copyright

PLANIT has produced this document in accordance with instructions from Northern Water Solutions for its use only. The concepts and information contained in this document are copyright of PLANIT.

Use or copying of this document in whole or in part without written permission of PLANIT constitutes an infringement of copyright.

PLANIT does not warrant this document is definitive and free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

PLANIT

ABN 99 613 049 568 Suite 9a, 80-84 Ballina Street Lennox Head NSW 2478 (PO Box 161, Lennox Head NSW 2478) Telephone – 02 6687 4666 admin@planitengineering.com.au

Contents

E	xecutive Summary	4
1	Project Details	7
	Table 1 – Proposed Developable Area Summary	8
	Table 2 – Proposed Equivalent Tenement Yield - Residential	8
2	Average Daily Water Demands and Wastewater Generation Rates	9
	2.1 Residential Water Demands	9
	Table 3 – Residential End Use and Average Daily Demand	9
	2.2 Non - Residential Water Demands	9
	Table 4 – Non-Residential End Use and Average Daily Demand Per Equivalent Tenement	10
	2.3 Wastewater Generation Rates per Equivalent Tenement – Residential and Non-Residential	10
	Table 5 – Average Daily Wastewater Generation per Equivalent Tenement	10
	2.4 Average Daily Water Balance per Household	11
3	Public Open Space Irrigation Water Demand	12
	3.1 Rainfall and Evapotranspiration Rates	12
	Table 6 – Daily Rainfall Data Collected by the BOM from the 'Coolangatta' Weather Station (Monthly Summary) (mm)	12
	Table 7 – Daily Evapotranspiration Data Collected by the BOM from the 'Gold Coast Seaway' Weather Station (Monthly Summary) (mm)	12
	Table 8 – Typical Number of Wet Days per Annum (Data Collected by the BOM from the 'Coolangatta Weather Station)	13
	3.2 Irrigation Requirements	13
	Table 9 – Projected Daily Irrigation Requirements (Monthly Summary)	14
	Table 10 – Total Irrigation Water Demand (Monthly Summary)	15
4	Total Development Demands Based on Equivalent Tenement Yields	16
	Table 11 – Average Daily Total Development Demands	16
	Table 12 – Average Annual Total Development Demands	17
5	Recycled Water Production	17
	5.1 Recycled Water Generation	18
	Table 13 – Recycled Water Generation from MBR WWTP	18
	5.2 Recycled Water Balance	18
	Table 14 – Recycled Water Balance	18
6	Kings Forest Integrated Water Scheme Water Balance	19
	Table 15 – Summary of Kings Forest Integrated Water Scheme Average Daily Flows	19
7	Integration with the Tweed Shire Council	19
	7.1 Drinking Water Equivalent Tenement Demand	19
	Table 16 – Drinking Water TSC Equivalent Tenement Demand	20
	7.2 Excess Treated effluent Discharge Equivalent Tenement Calculation	20

	Table	17 – Summary of Daily External Recycled Water Reuse	20
	Table	18 – Recycled/Wastewater Excess Discharge TSC Equivalent Tenement Demand	20
8	Con	clusion	. 21
	8.1	Emergency Waste Water Discharge	21
	8.2	Drinking Water Supply	21
	8.3	Summary of Equivalent Tenements	21
	Table	19 – Summary of Equivalent Tenements	21
	8.4	Boundary Conditions Report	22

List of Figures

Figure 1 – Kings Forest Integrated Water Scheme Average Daily Demand	6
Figure 2 – Proposed Kings Forest Development	7
Figure 3 – Average Daily Water Balance Per Household	.11
Figure 4 – Typical Distribution of Wet Days During a Year	.13
Figure 5 – Daily Irrigation Water Demand Over a Typical Year	.15

Council Reference: Kings Forest Development Your Reference:

20 March 2017

Customer Service | 1300 292 872 | (02) 6670 2400

tsc@tweed.nsw.gov.au www.tweed.nsw.gov.au

Fax (02) 6670 2429 PO Box 816 Murwillumbah NSW 2484

Please address all communications to the General Manager

ABN: 90 178 732 496

Wayne Williamson Northern Water Solutions PO Box 977 NOOSA QLD 4567

Sent via email: <u>wayne@northernwatersolution.com</u>

Dear Wayne

Provision of Water and Sewerage Services to Kings Forest

Northern Water Solutions (NWS) has requested a letter from Council indicating that it was feasible for Council to provide bulk water and receive treated wastewater from an operator, licensed under the Water Industry Competition Act 2006, of water and sewerage infrastructure at the Kings Forest development.

On 16 March 2017 Council resolved to issue a letter to NWS advising NWS that it is technically feasible for Council to provide bulk water and receive treated wastewater from NWS for the Kings Forest development subject to:

- 1. Determining the impact on Council's infrastructure
- 2. Developing an agreement which ensures Council is not disadvantaged, and
- 3. A further resolution of Council approving the negotiated agreement

It should be noted that to enable this to occur there is a need for additional Council infrastructure to supply the bulk water and accept the treated wastewater from the development.

The intent of this letter, as requested by Northern Water Solutions, is to inform the Independent Pricing and Regulatory Tribunal that it is technically feasible for Council to provide bulk water to and receive bulk wastewater from a licenced operator at the Kings Forest development. The letter is not a commitment to do so as any such commitment would require a resolution of Council after consideration of a proposed agreement between Northern Water Solutions and Tweed Shire Council.

If you have any enquiries in respect to this matter please contact Rob Siebert at Tweed Shire Council at rsiebert@tweed.nsw.gov.au

Yours faithfully

David Oxenham DIRECTOR ENGINEERING

Scheme	Herend	Herendeus Frant	lunnant	Unr	nitigated Ris	sk			Constant Streets my	Mitig	ated Risk			
Component	Hazard	Hazardous Event	Impact	Like	elihood	Со	nsequences	Risk	Control Strategy	Likel	lihood	Co	nsequences	Risk
Drinking Water Supply	Contaminants in the drinking water from the source	Contaminants detected by Tweed Shire Councils monitoring systems	Supply of non- compliant drinking water	D	Unlikely	3	Moderate	High	 The drinking water supply agreement from Tweed Shire Council guarantees drinking water supply will be compliant with the Australian Drinking Water Guidelines. The Tweed Shire Council is responsible for all upstream management of the catchments, water treatment and monitoring the drinking water quality upstream of the NWS connection point. TSC & NWS are to develop notification and communication protocols with each other to notify any water quality events that may occur in a timely manner. 	D	Unlikely	3	Moderate	Moderate
Drinking Water Rising main from the TSC existing	Oil and pump lubricants	Water supply contaminated with oil/lubricant from failed pump seal	Supply of non- compliant drinking water	E	Rare	2	Minor	Low	 Appropriate pump selection and design. Routine inspection and maintenance of transfer pump station 	D	Unlikely	2	Minor	Low
network to the NWS connection point	Transfer Pump Station Failure	Mechanical, electrical or control system failure or power outage	Loss of supply capacity to TSC Reservoir	D	Unlikely	3	Moderate	High	 Multiple pump set with standby capacity 24 hours storage provided in Existing TSC water storage Reservoirs and 72 hours in the NWS storage tanks 	D	Unlikely	2	Minor	Low
Drinking	Microbiological contamination	Water main break	Supply of non- compliant drinking water	с	Possible	4	Major	Very High	 Design, construction, pressure testing and commissioning of the transfer main to WSAA Standards. Emergency Response Plan to be developed for water main breaks will include water main sterilization procedures 	D	Unlikely	3	Moderate	Moderate
Water Transfer Pipeline from the TSC connection point to the	Microbiological contamination	Cross contamination due to poor maintenance practices	Supply of non- compliant drinking water	D	Unlikely	3	Moderate	High	 Standard operating and maintenance procedures will be developed for the scheme. Procedures will include water main flushing, hygiene and disinfection requirements. Transfer drinking water main is a dedicated pipeline. 	E	Low	2	Moderate	Low
NWS storage tanks at the WWTP site in Precinct 3	Microbiological contamination	Backflow and cross connections	Supply of non- compliant drinking water	E	Rare	2	Moderate	Moderate	1. No direct connections to the transfer pipeline. The only connection point to the pipeline is the onsite drinking water storage tanks via a 300 mm air gap.	E	Unlikely	2	Minor	Low
	Sedimentation in pipeline	Excessive sedimentation in pipeline during off peak periods	Taste, odor and color complaints	E	Rare	2	Minor	Moderate	 Undertake routine flushing of the water transfer main Customer taste and odor complaint monitoring system with Customer Service. 	E	Unlikely	1	Insignificant	Low

	Pipeline breakage	Major pipeline breakage	Localized flooding, soil erosion, loss of supply	с	Possible	4	Major	Very High	 If a break or damage occurs in the existing 300 mm main it will be repaired, air scoured, disinfected and pressure tested before being put back into service. Covered by construction quality assurance. Flow monitoring at each end of the pipeline to detect flow differential. 72 hours 6ML of storage is provided in onsite drinking water storage tanks. Emergency Response Plan for drinking water main breaks. Frequent inspection along water main corridor to detect leaks and breaks. 	в	Likely	3	Moderate	High
	Pipeline leakage	Minor leaks	Water wastage	в	Likely	2	Minor	High	 Use VSD controlled transfer pump station to minimize operating pressure during low flows. Pumps will only ramp up to maximum pressure when pumping peak flows. Flow meters and pressure sensors on the transfer pipeline for monitoring of "midnight flows" for identification of leaks. Walk over and visual inspection along water main corridor to identify leaks. Use leak detection equipment if required. 	В	Likely	1	Insignificant	Moderate
	Microbiological contamination	Vermin, animal and mosquito access to storage	Supply of non- compliant drinking water	D	Unlikely	2	Minor	High	 Sealed tank designed to drinking water storages with screens on all tank openings. Ongoing inspection & maintenance program 	D	Unlikely	2	Minor	Low
Vermin, animal and mosquito access to storage	Material compatibility	Dissolution of tank materials into drinking water supply	Supply of non- compliant drinking water	D	Unlikely	2	Minor	High	 Tank to be constructed to drinking water storage standards using materials compatible with drinking water supply Metallic tanks to use food grade HDPE liner. 	D	Unlikely	2	Moderate	Moderate
	Cross connection	Backflow into dedicated drinking water transfer main	Supply of non- compliant drinking water	D	Unlikely	3	Moderate	High	1. Connection of transfer main uses an Air gap above the high water overflow level in the drinking water storage tanks	E	Rare	3	Moderate	Moderate
Recirculation & Chlorine Dosing	Chlorine residual	Inadequate chlorine residual (low or high)	Supply of non- compliant drinking water	с	Possible	3	Moderate	High	 Continuous online monitoring of free chlorine residual with alarms for low and high concentrations. Duty/Standby chlorine dosing pumps with low level drum storage alarm. 	D	Unlikely	3	Moderate	Low

									3. Fault detection and alarms on dosing pumps.					
	Pump seals and lubricants	Water supply contaminated from failed pump seal	Supply of non- compliant drinking water	с	Possible	2	Minor	Moderate	 Appropriate pump selection and design. Routine inspection and maintenance of drinking water variable speed pump stations. 	D	Unlikely	2	Minor	Low
Drinking Water Supply Variable Speed Pump Station Located in	Low pressure	Water pressure in the drinking water network below that in the recycled water networks	Increased risk of backflow if a cross connection occurs	в	Likely	4	Major	Very High	 Duty of drinking water supply pump stations are to be set at a minimum of 50 KPA above duty of the recycled water pump stations. Monitoring of water pressure differential between the drinking water recycled water networks. 	С	Possible	4	Major	High
Located in the WWTP Building	Booster pump station failure	Mechanical, electrical or control system failure or power outage	Loss of supply capacity	с	Possible	4	Major	Very High	 VSD pressure booster pump set with standby capacity. Routine inspection and maintenance of booster pump station. Standby emergency diesel pump with automatic changeover 	С	Possible	4	Major	High
Drinking Water Reticulation Networks inside the Kings Forest boundaries	Class A+ recycled water network	Cross connection with the Class A+ recycled water network	Supply of non- compliant drinking water	O	Possible	4	Major	High	 Cross connection controls including: Reticulation networks designed, constructed and commissioned to WSAA standards, AS3500 & the plumbing code of NSW. Using different piping color and materials. Drinking water to use blue PVC pipe. Class A+ recycled water networks to use, lilac striped HDPE pipe, lilac color water meters and taps. Color piping Identification, identification tape labelling and minimum separation distances in common trenches. Only approved NWS contractors can undertake work on the reticulation networks. The drinking water network to operate a minimum of 50 KPA above that in the recycled water network. Routine monitoring of drinking water quality Monitoring of pressure and salinity differential between the drinking and recycled water networks. 	в	Likely	3	Moderate	High
	Sedimentation and slime growth	Excessive sedimentation in reticulation networks during off peak periods	Taste, odor and color complaints	D	Unlikely	1	Insignificant	Low	 Routine monitoring and water main flushing program to be put in place. Monitoring of taste and odor complaints through customer service processes. 	D	Unlikely	1	Insignificant	Low
	Microbiological	Drinking water main	Supply of non-	с	Possible	4	Major	Very High	1. Design, construction, pressure testing and	D	Unlikely	3	Moderate	Moderate

	contamination	break	compliant drinking water						commissioning to WSAA Standards, AS3500 & Plumbing Code NSW.2. Emergency Response Plan for drinking water main breaks will include water main disinfection procedures					
	Microbiological contamination	Cross contamination due to poor maintenance practices	Supply of non- compliant drinking water	D	Unlikely	3	Moderate	High	 Standard operating and maintenance procedures will be developed for the scheme. Procedures will include hygiene and disinfection requirements. Separate tools to be used on drinking water and sewerage systems. 	D	Unlikely	3	Moderate	Moderate
	Microbiological contamination	Backflow and cross connections	Supply of non- compliant drinking water	С	Possible	2	Minor	Moderate	1. No direct connections to the transfer pipeline. The only connection to the pipeline is at the onsite drinking water storage tanks via an 300mm air gap.	D	Unlikely	2	Minor	Low
	Reticulation pipe breakage	Major breakage	Localized flooding, soil erosion, loss of supply	С	Possible	3	Moderate	High	 Design, construction, pressure testing and commissioning to WSAA Standards, AS3500 & Plumbing Code NSW. Emergency Response Plan for drinking water main breaks will include a drinking water main disinfection procedure 	с	Possible	3	Moderate	High
	Reticulation pipe leakage	Minor leaks	Drinking water wastage	с	Possible	2	Minor	Moderate	 Use VSD controlled pump stations with a jacking pump to minimize operating pressure during low flows. Flow meters and pressure sensors on reticulation networks for monitoring of "midnight flows" for identification of leaks. Walk over and visual inspection along water main corridors and easements to identify leaks. Use leak detection equipment if required. 	с	Possible	1	Insignificant	Low
	Fire hydrants on the Drinking water network	Reduction in water pressure in drinking water network during fire flows	Increased risk of backflow if a cross connection occurs	В	Likely	4	Major	Very High	 Cross connection controls. Network design to minimize pressure losses during fire flow events. Use the VSD controlled pump stations to ramp up to maintain pressure during fire flows. 	с	Possible	3	Moderate	High
Customer Consumption and Private Water Systems	Onsite Class A+ recycled water pipes	Cross connection on private land	Supply of non- compliant drinking water	В	Likely	4	Major	Very High	 Domestic plumbing systems installed and tested to comply with AS3500 and the NSW Code of Practice for Plumbing and Drainage by licensed plumbing contractors. Each customer when applying for a drinking water connection must provide a cross flow connection test certificate as required by the Department of Fair Trading 	с	Possible	4	Major	Very High

								NSW before NWS will issue and install a drinking water meter to the customer.					
								2. NWS to provide induction, training and compliance auditing for all domestic plumbing contractors.					
								3. Dual check valve for backflow prevention at all meter connection points.					
Excessive drinking water use	Poor user behavior	Excessive water use, Potential overload of onsite water systems	с	Possible	3	Moderate	High	 Customer supply and trade waste agreements will outline expected water consumptions rates. Ongoing customer awareness and education Smart water meters at all connection points to provide feedback on water use 	с	Possible	3	Moderate	High
Leaks	Leaks in onsite water systems	Water wastage	в	Likely	1	Insignificant	Moderate	1. Smart water meters at all connection points to enable detection of leaks by residents	с	Possible	1	Insignificant	Low

Kings Forest DRINKING WATER

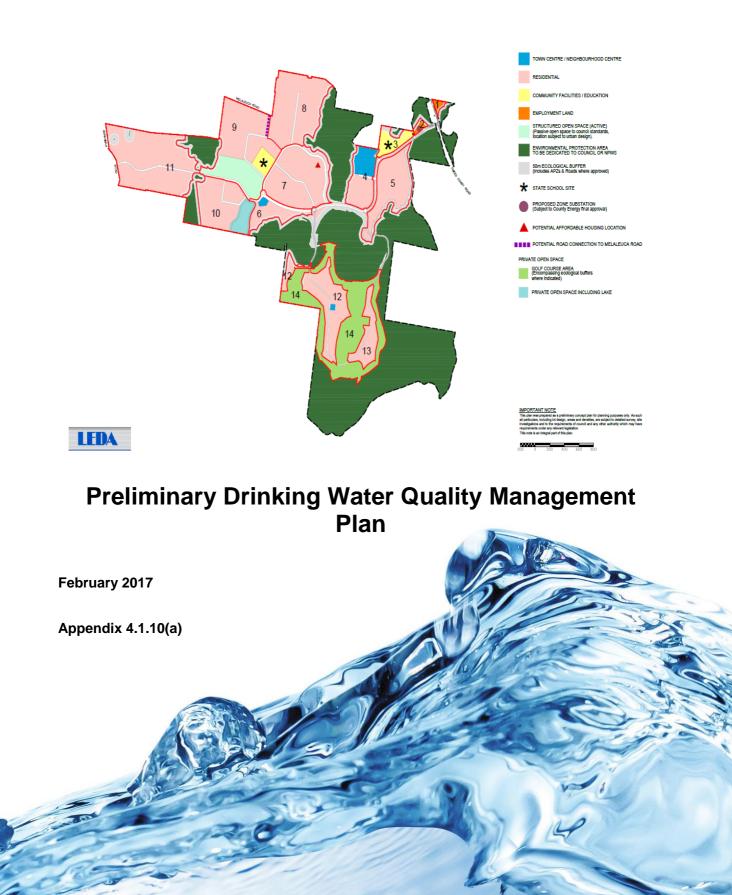
QUALITATIVE ENVIRONMENTAL AND PUBLIC HEALTH RISK ASSESSMENT CRITERIA From Tables 3.1, 3.2 & 3.3 on Page 3-8 of the Australian Drinking Water Guidelines (2011)

Qualitative Measures of Likelihood

Level	Descriptor	Example Description from ADWG
А	Almost certain	Is expected to occur in most circumstances
В	Likely	Will probably occur in most circumstances
С	Possible	Might occur or should occur at some time
D	Unlikely	Could occur at some time
E	Rare	May occur only in exceptional circumstances

Qualitative Measures of Consequence or Impact

Level Descriptor	Descriptor	Example Description from ADWG
1	Insignificant	Insignificant impact, little disruption to normal operation, low increase in normal operation costs
2	Minor	Minor impact for small population, some manageable operation disruption, some increase in operating costs
3	Moderate	Minor impact for large population, significant modification to normal operation but manageable, operation costs increased, increased monitoring
4	Major	Major impact for small population, systems significantly compromised and abnormal operation if at all, high level of monitoring required
5	Catastrophic	Major impact for large population, complete failure of system



Qualitative Risk Analysis Matrix: Level of Risk

		Consequences					
	Likelihood	1	2	3	4	5	
	Likeimood	Insignificant	Minor	Moderate	Major	Catastrophic	
A	Almost Certain	Moderate	High	Very High	Very High	Very High	
В	Likely	Moderate	High	High	Very High	Very High	
С	Possible	Low	Moderate	High	Very High	Very High	
D	Unlikely	Low	Low	Moderate	High	Very High	
Е	Rare	Low	Low	Moderate	High	High	

Kings Forest Development Tweed Heads, NSW

Table of Contents

1	Introd	uction	1
	1.1	Background	1
	1.2	Scheme Overview	2
	1.3	Plan Framework	5
2	Drinki	ng Water Quality Management Framework	6
	2.1	Element 1 – Commitment to Drinking Water Quality Management	
	2.1.1	Drinking Water Quality Management Policy	6
	2.1.2	Regulatory and Formal Requirements	7
	2.1.3	Engaging Stakeholders	7
	2.2	Element 2 – Assessment of the Drinking Water Supply System	8
	2.2.1	Drinking Water Supply System Analysis	8
	2.2.2	Assessment of Water Quality Data	11
	2.2.3	Hazard Identification and Risk Assessment	12
	2.3	Element 3 – Preventive Measures for Drinking Water Quality	
		Management	
	2.3.1	Preventative Measures and Multiple Barriers	
	2.3.2	Critical Control Points	
	2.4	Element 4 – Operational Procedures and Process Controls	
	2.4.1	Operational Procedures	
	2.5	Operational Monitoring	
	2.5.1	Corrective Actions	
	2.6	Equipment Capability and Maintenance	
	2.6.1	Materials and Chemicals	
	2.7	Element 5 – Verification of Drinking Water Quality	
	2.7.1	Drinking Water Quality Monitoring	
	2.8	Consumer Satisfaction	
	2.8.1	Short Term Evaluation of Results	
	2.8.2	Corrective Action	
	2.9	Element 6 – Management of Incidents and Emergencies	
	2.9.1	Communication	
	2.9.2	Incident and Emergency Response Plans	
		Element 7 – Employee Awareness and Training	
		Employee Awareness and Involvement	
	2.10.2	Employee Training Element 8 – Community Involvement and Awareness	
		Community Consultation	
		Communication	
	2.11.2	Element 9 – Research and Development	
		Investigative Studies and Research Monitoring	
		Validation and Processes	
		Design of Equipment	
	2.12.3	Element 10 – Documentation and Reporting	
		Management of Documentation and Records	
		Reporting	
	2.13.2		
			<u> </u>

Bibliography	37
2.15.2 Drinking Water Quality Management Improvement Plan	35
2.15.1 Review by Executive Management	35
2.15 Element 12 – Review and Continuous Improvement	35
2.14.2 Audit of Drinking Water Quality Management	
2.14.1 Long Term Evaluation Results	

Tables

Table 1	Drinking Water TSC Equivalent Tenement Demand2
Table 2	Preliminary Regulatory and Formal Requirements Summary7
Table 3	Preliminary Stakeholder Register
Table 4	Description of the Drinking Water Supply System9
Table 5	Preliminary Critical Control Points and Limits
Table 6	Summary of Operational and Maintenance Procedures to be Developed16
Table 7	Summary of Preliminary Operational Monitoring
Table 8	Preliminary Corrective Actions for Potential Operational Non - Compliances 19
Table 9	Preliminary Verification Monitoring Program
Table 10	Preliminary Corrective Actions for Non - Compliance with Verification Monitoring
T-11-44	
Table 11	Preliminary Emergency Contact List
Table 12	Overview of Emergency Response Plans to be developed27

Figures

Figure 1	Kings Forest Staging Plan	4	
Figure 2	12 - Element Framework for Management of Drinking Water Quality		
	(ADWG: 2011)	5	
Figure 3	Critical Control Point Decision Tree (Source: AGWR, 2006)	14	

Appendices

Appendix A Kings Forest Drinking Water Process flow Diagrams Appendix B TSC Source to Connection Point in Tweed Coast Road

Appendix C Kings Forest Drinking Water Master Plan

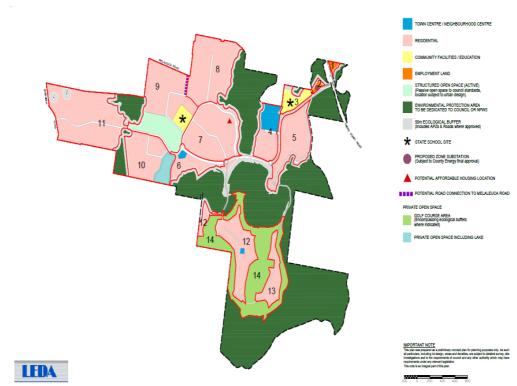
1 Introduction

1.1 Background

Northern Water Solutions Pty Ltd (NWS) has been engaged under an service agreement with Project 28 Pty Ltd (The Owner and Developer) to Design & Construct an integrated Drinking Water, Sewerage and Recycled Water Scheme as a Private Water Utility providing the Network Operator and Retail Supplier for the approved residential Development at the Kings Forest Tweed Heads NSW.

The provision of private Integrated Water Services under the Water Industry Competition Act WICA (2006) New South Wales, which is issued by the NSW Independent Pricing and Regulatory Tribunal (IPART) NSW.

The Kings Forest Water Scheme will be 100% owned, operated and maintained by Northern Water Solutions Pty Ltd (NWS). The design & construction of the four stages of the scheme under the WIC Act Network Operator License will be funded by Project 28 Pty Ltd (P28) and the Operation and Retail functions under the WIC Act (2006) NSW will be funded by rating of the individual customers as is the case with conventional water authorities.


The NWS will take on all the risks associated with the Kings Forest scheme and will operate the scheme in accordance with the Licenses and Conditions issued by IPART NSW under the WIC Act (2006) NSW.

The Preliminary Drinking Water Quality Management Plan has been prepared to address Question 4.1.10 of the IPART application, which reads:

Describe how the 12 elements of the framework for the management of drinking water quality, as detailed in the Australian Drinking Water Guidelines (ADWG) has been addressed and will be implemented and maintained. Provide evidence of the applicant corporation's capacity to implement the 12 elements of the framework in the ADWG in Appendix 4.1.10.

The Preliminary Drinking Water Quality Management Plan will be updated and finalized during the future detailed design, following approval of the IPART Network Operator License where and if required.

Kings Forest Development Tweed Heads, NSW Infrastructure Operating Plan February 2017

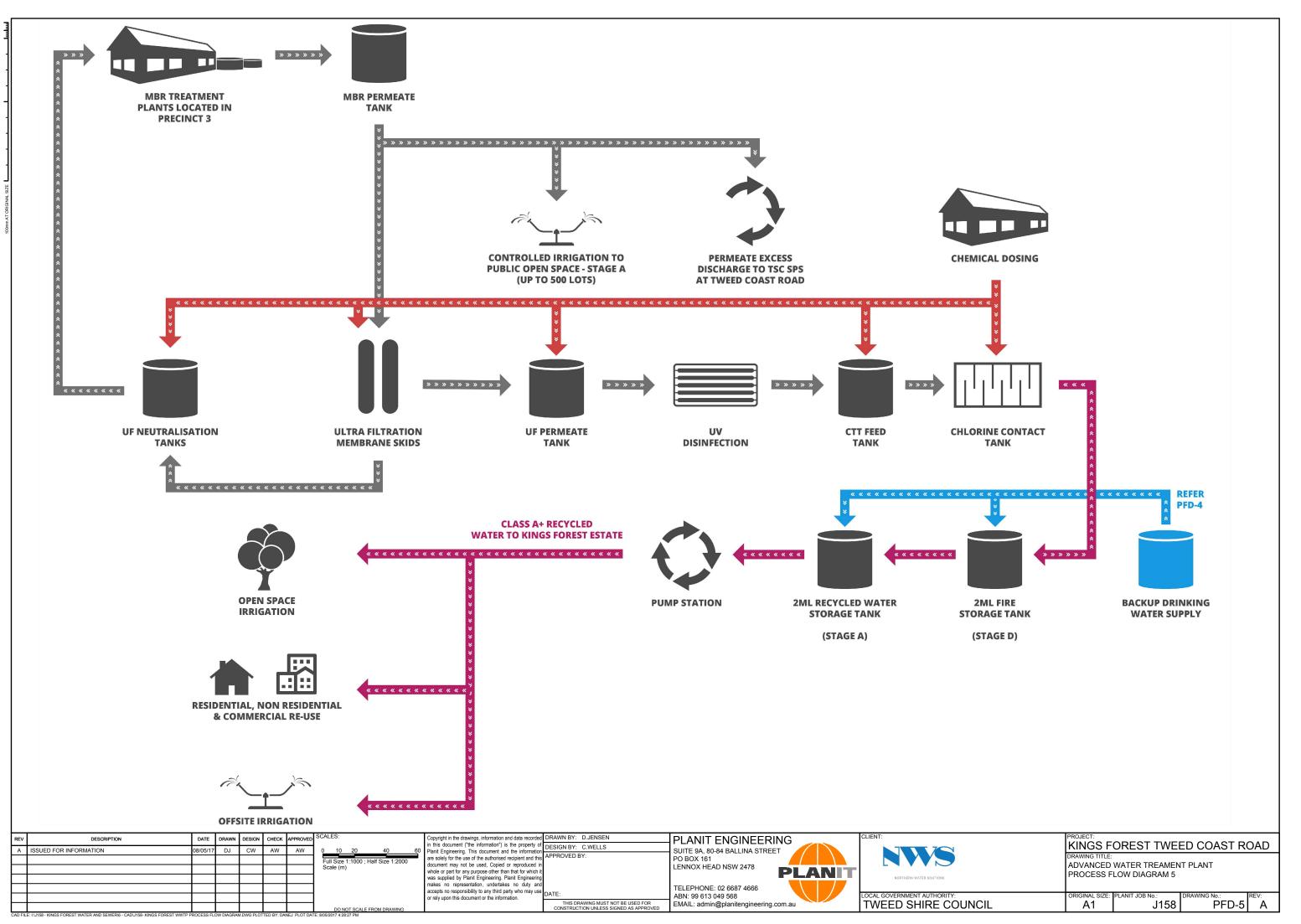
Appendix 4.1.12A

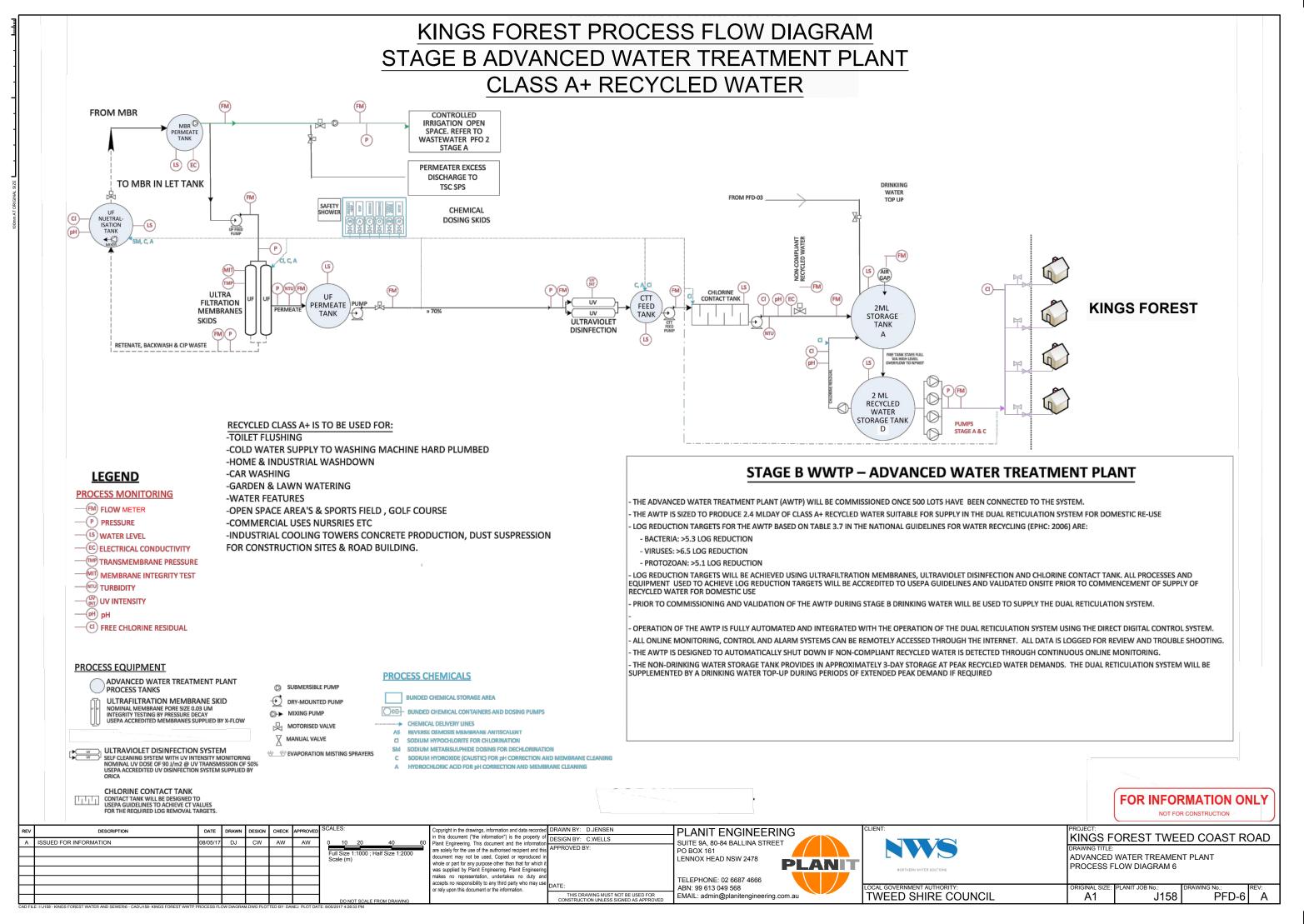
Table of Contents

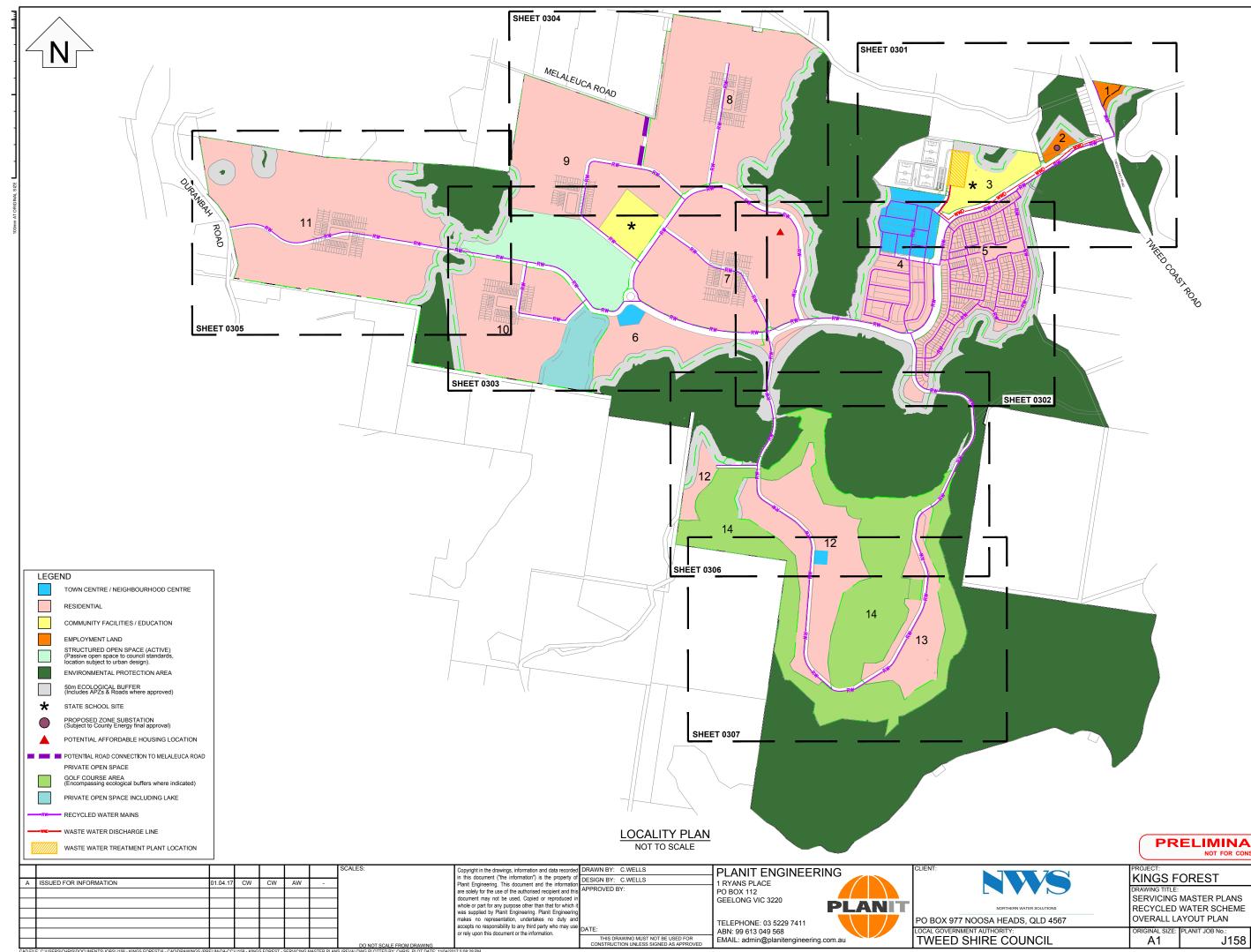
1 Int 1.1	roduction Plan Framework	
	rastructure Description	
2.1	Overview	
2.2	Kings Forest Scheme	
3 Th	e Pressure Sewer Collection Network	6
4 Wa	astewater Treatment	
4.1	Membrane Bioreactor Stages A, C & D	8
4.2	The MBR WWTP Process Description	8
4.2		
4.3	Stage B - The Advanced Water Treatment Plant	
4.4	The Class A+ Recycled Water Quality, Uses and Log Reduction Targets	
4.5	Waste Products generated by the processes at the Kings Forest WWTP S	
	.1 MBR Screenings	
4.5		
	0.3 UF Filtration Back Wash	
4.6		
	age A – up to the first 500 ET	
Kir	ngs Forest Ultimate Scheme – Offsite Discharge	15
5 Le	vels of Service	16
6 Co	orporate Asset Management Systems	17
6 Co 6.1	orporate Asset Management Systems Asset Management System Software	
		17
6.1	Asset Management System Software	17 17
6.1 6.2	Asset Management System Software Finance System	17 17 17
6.1 6.2 6.3	Asset Management System Software Finance System Geographical Information System	17 17 17 17
6.1 6.2 6.3 6.4	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre	17 17 17 17 18
6.1 6.2 6.3 6.4 6.5 6.6	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management.	17 17 17 17 18 19
6.1 6.2 6.3 6.4 6.5 6.6	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre	17 17 17 17 18 19 20
6.1 6.2 6.3 6.4 6.5 6.6	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets	17 17 17 18 19 20 22
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets .1 Routine Operation & Preventative Maintenance Systems	17 17 17 18 19 20 22 22
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets .1 Routine Operation & Preventative Maintenance Systems	17 17 17 18 19 20 22 22 23
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance	 17 17 17 18 19 20 22 22 23 24
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.2	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment	 17 17 17 18 19 20 22 22 23 24 28
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.2 7.3	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets .1 Routine Operation & Preventative Maintenance Systems .2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans	 17 17 17 18 19 20 22 23 24 28 31
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.2 7.3 7.4 7.5	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement	 17 17 17 18 19 20 22 23 24 28 31 31
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.2 7.3 7.4 7.5	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal	17 17 17 18 19 20 22 23 24 28 31 31 32
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal Financial Summary Financial Overview	17 17 17 18 19 22 23 24 28 31 31 31 32
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal Financial Summary Financial Overview	17 17 17 18 19 22 23 24 28 31 31 31 32 32 32
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.1 7.2 7.3 7.4 7.5 8 Fin 8.1 8.1 8.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal Financial Summary Financial Overview 1 Capital Funding	17 17 17 18 19 22 23 24 28 31 31 32 32 32 32 32

9	Re	view and Continuous Improvement	33
		Infrastructure Operating Plan Review	
9	.2	Improvement & Implementation Plan	33

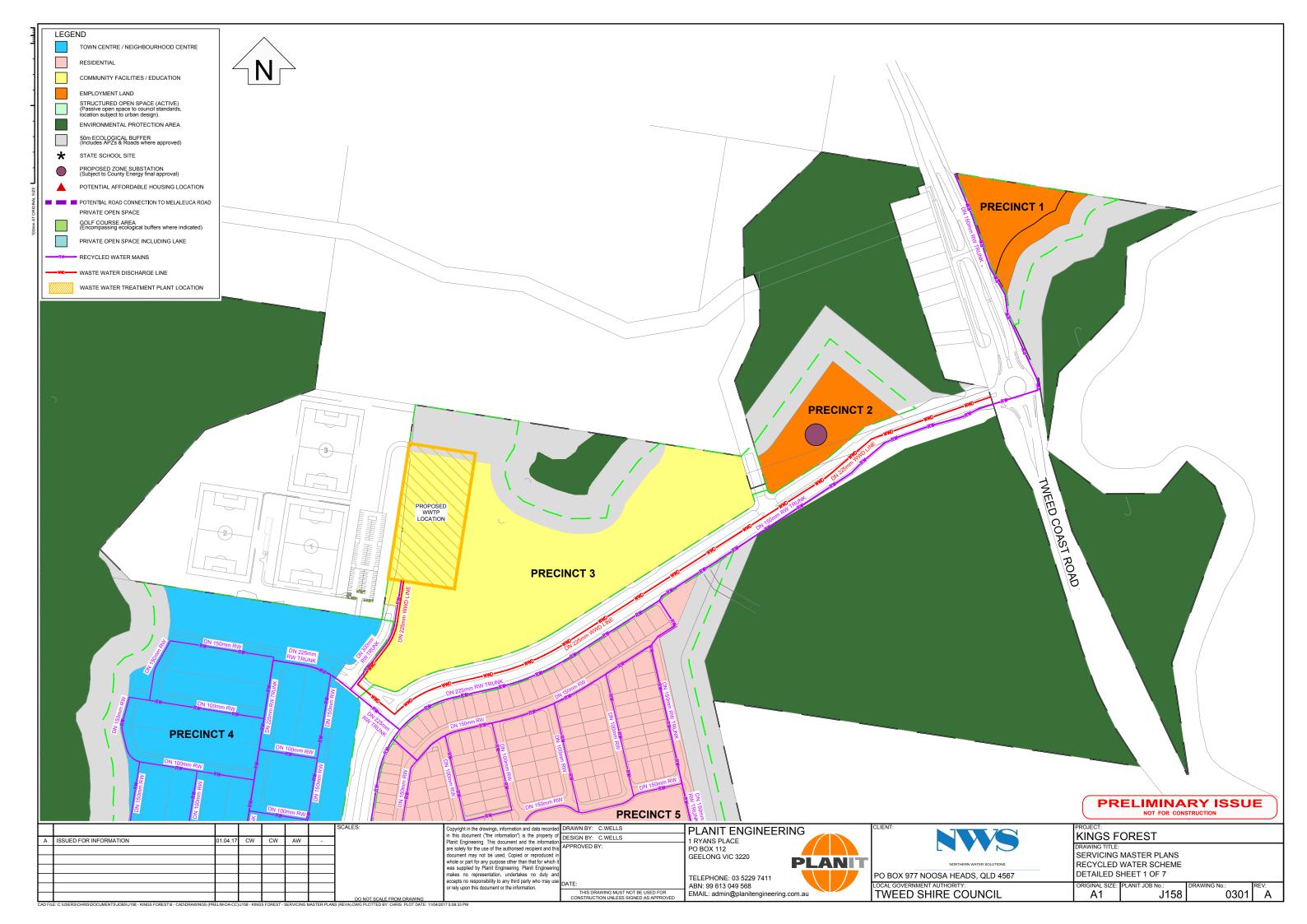
Tables

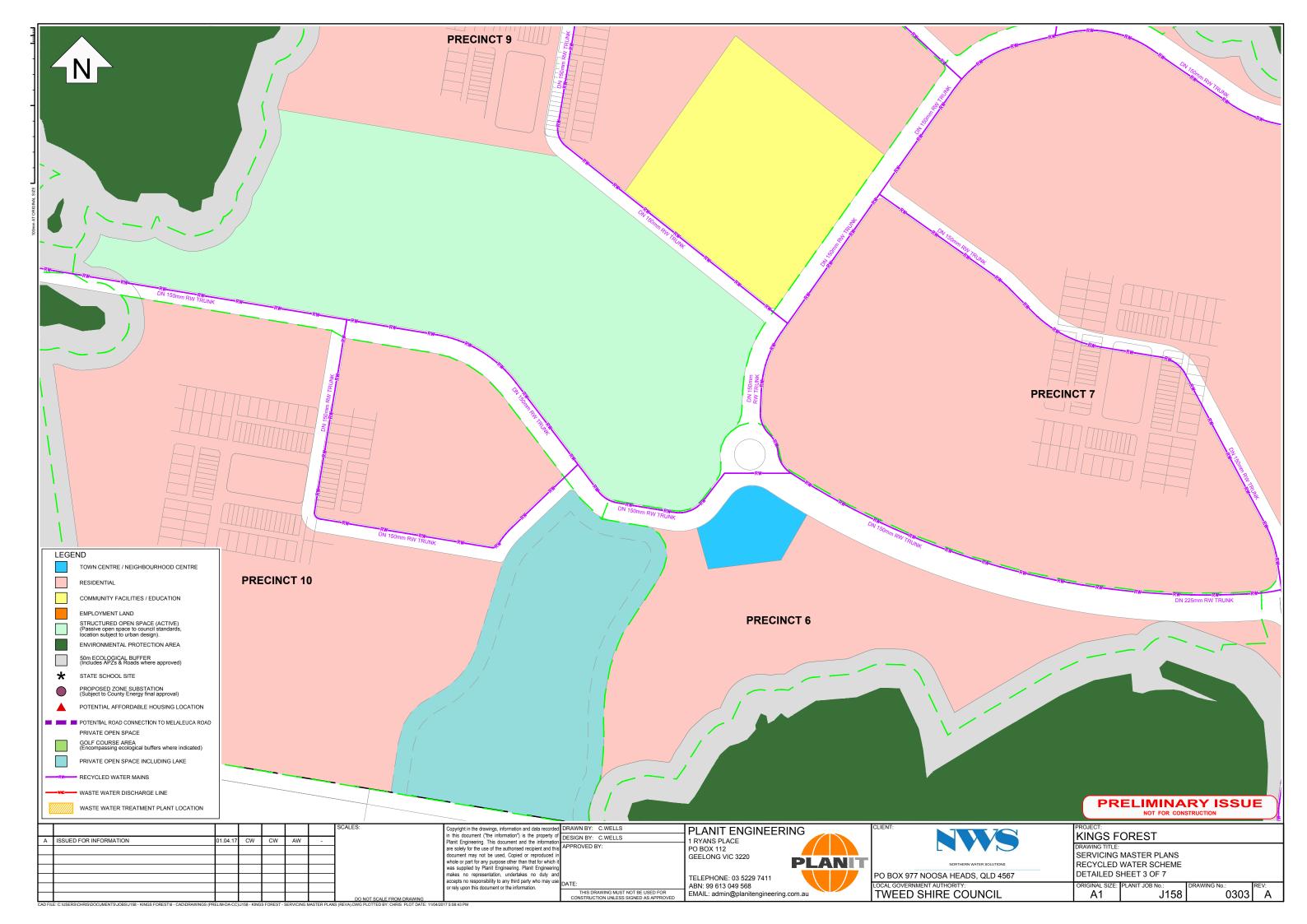

Table 1	Description of the MBR WWTP Process	8
Table 2	Typical effluent quality from the MBR	9
Table 3	Recycled Water Quality for Domestic Re-use Class A+	10
Table 4	Pathogen Log Reduction Target and Credits Being Claimed for the AWTP	11
Table 5	Recycled Water Storage Tank Operation	14
Table 6	Overview of Operation and Maintenance plans & Procedures	23
Table 7	Infrastructure Monitoring and Condition Assessment Methodology	25
Table 8	Contingency planning and Emergency Response Plans	29

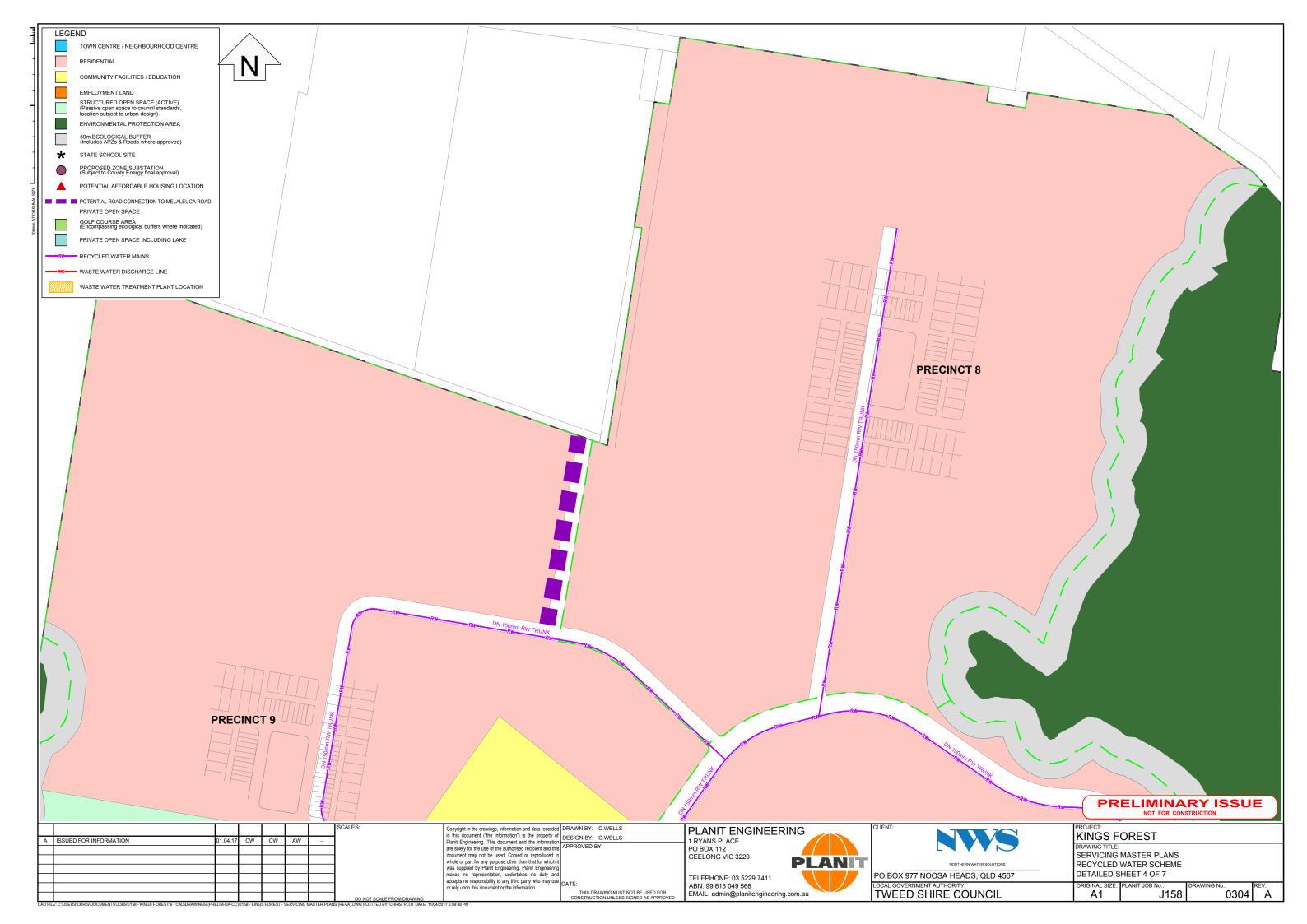

Figures

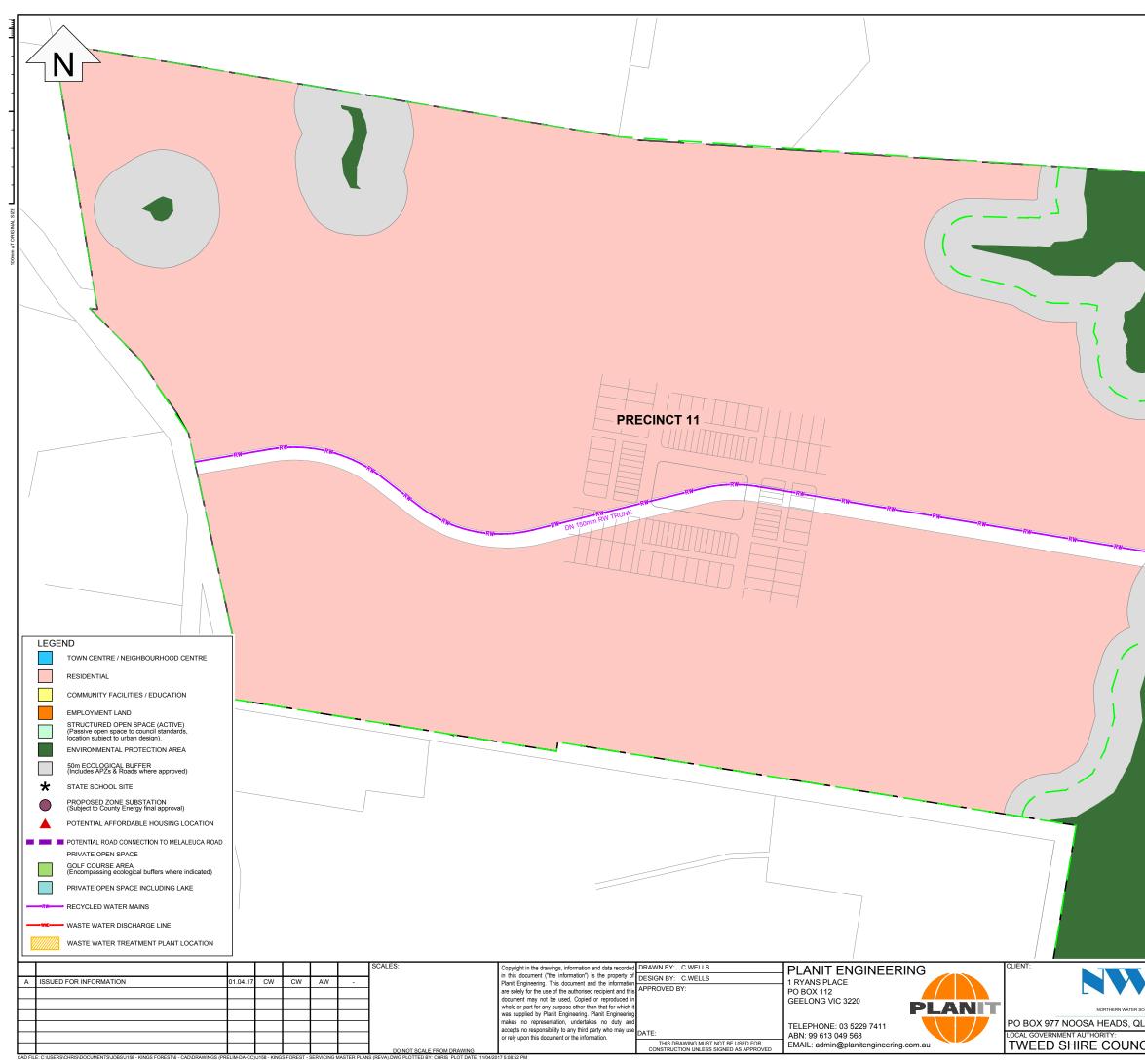

Figure 1	Kings Forest Integrated Water Scheme Average Daily Demand	2
Figure 2	Kings Forest Staging Plan	3
Figure 3	Kings Forest PSU & Control Pillar	6

Appendices

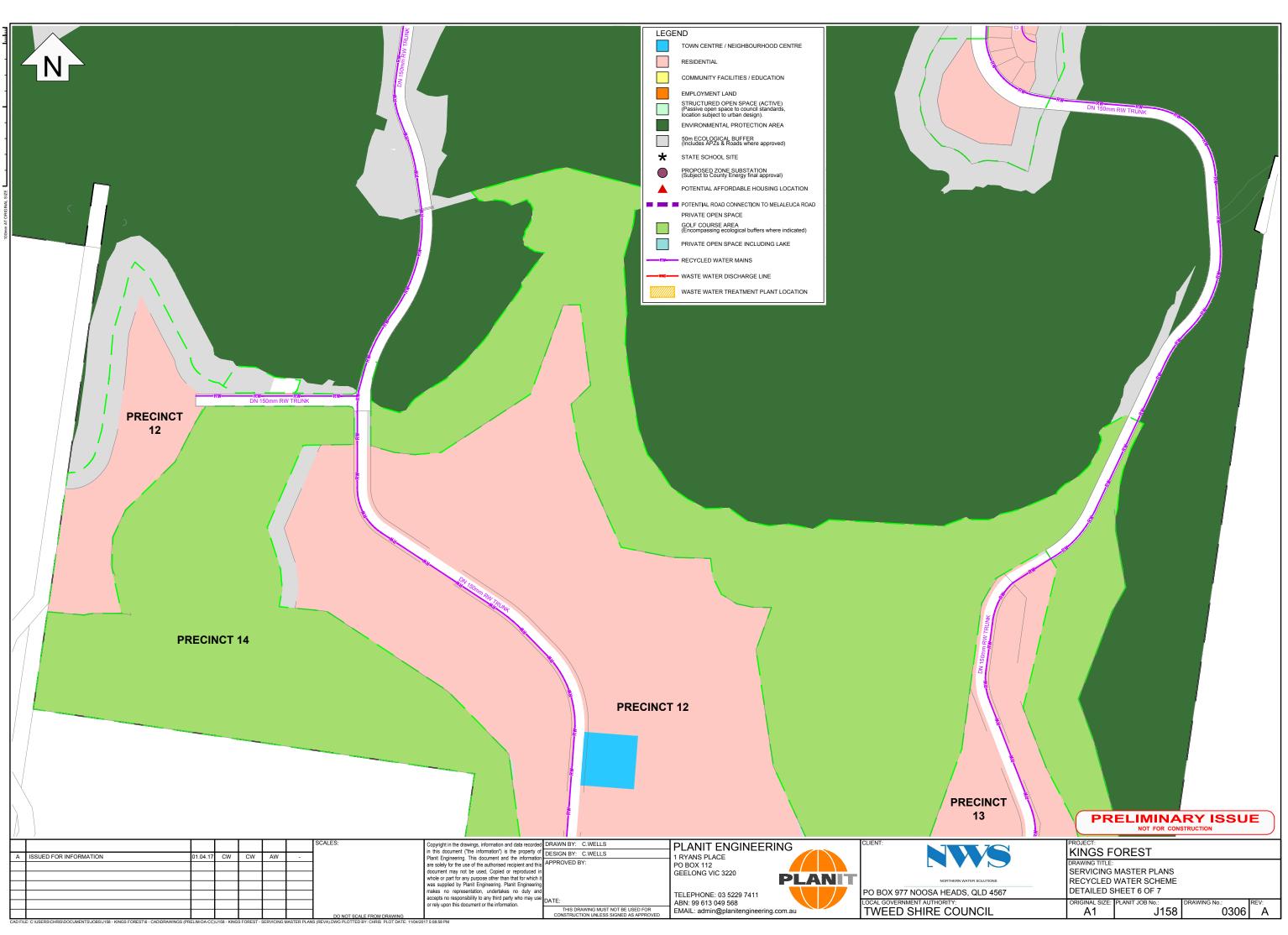

Appendix A	Kings Forest Preliminary	Risk Assessments 1
, , , , , , , , , , , , , , , , , , , ,	range i ereet i enninger	

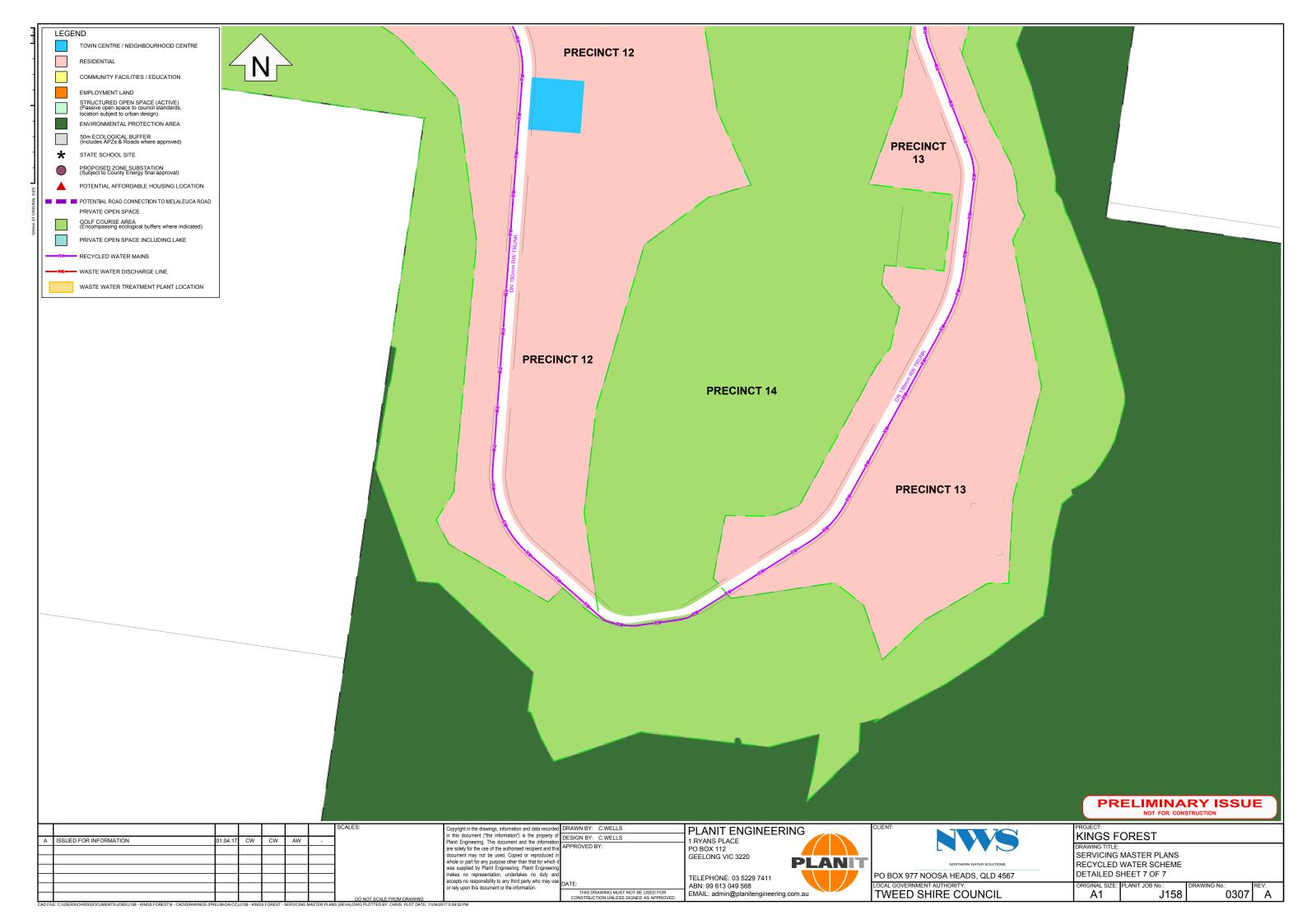


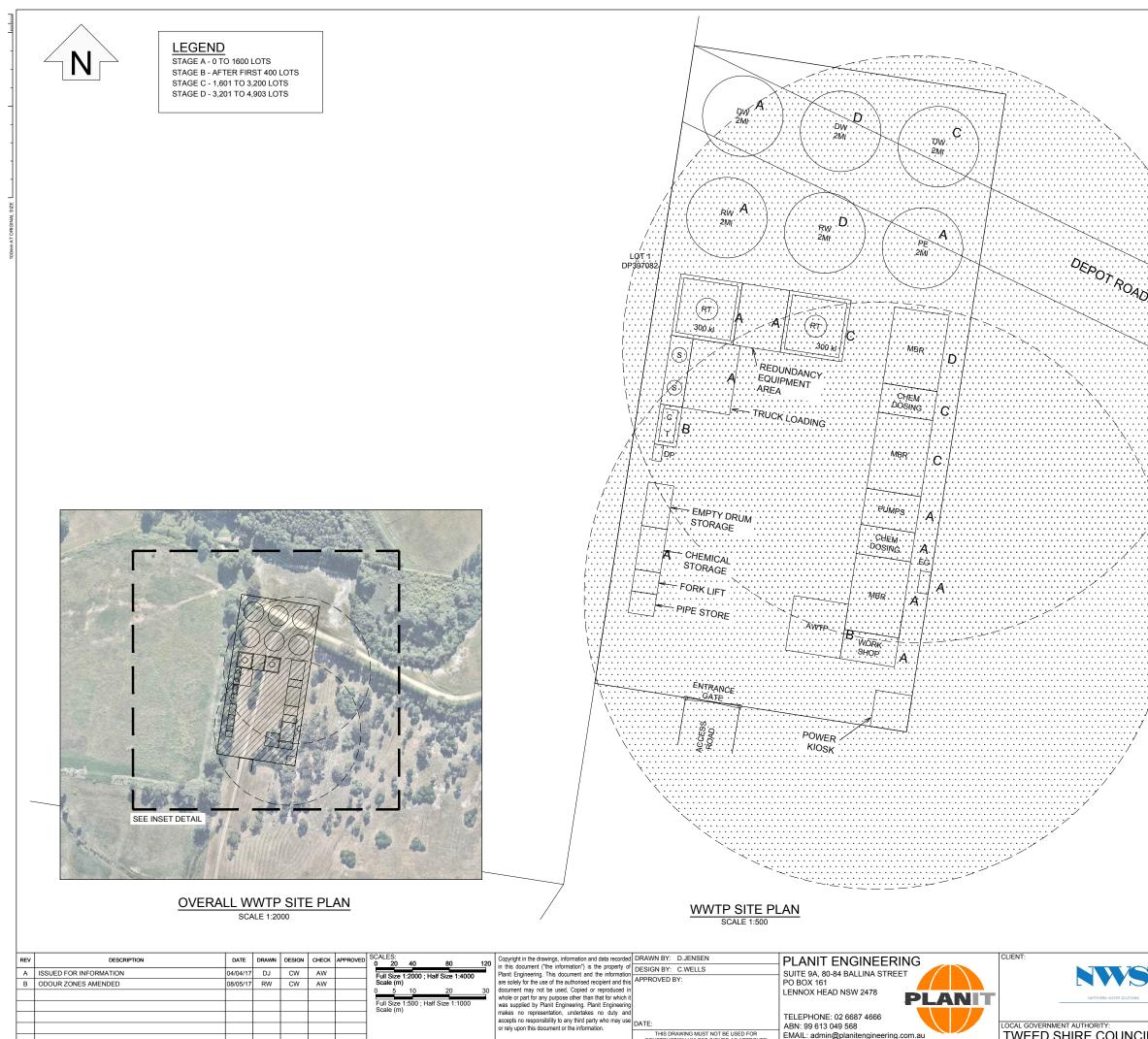

	PR	ELIMINA	RY ISSU	E
	PROJECT:	NOT FOR CONS	STRUCTION	
	KINGS F			
SOLUTIONS	SERVICING	MASTER PLANS WATER SCHEME		
QLD 4567	OVERALL LA	YOUT PLAN		
CIL	ORIGINAL SIZE:	PLANIT JOB No.: J158	DRAWING No.: 0300	REV: A



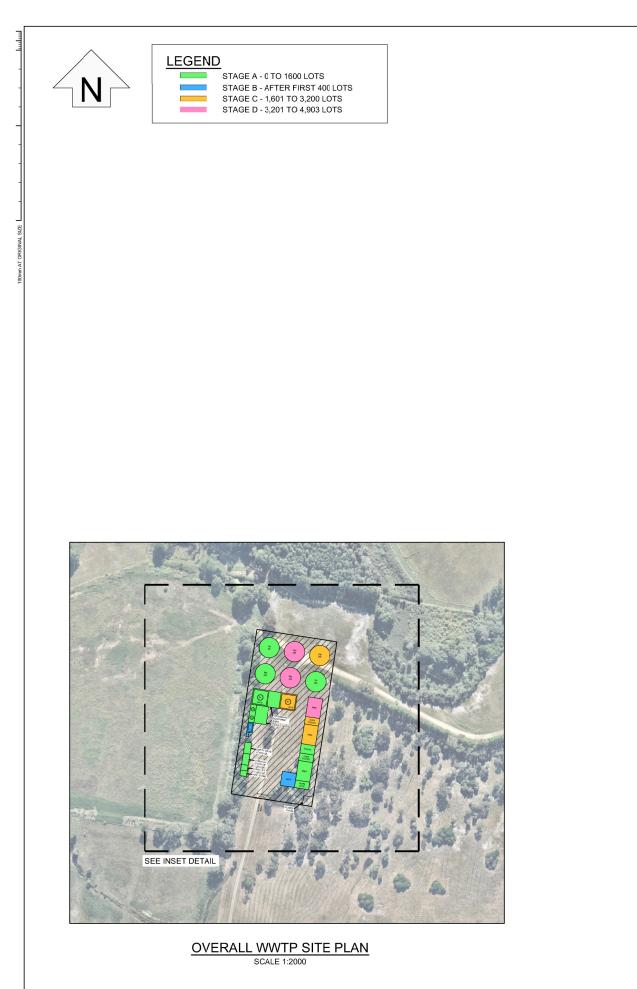
				AN TRUE BY				PRECIN		
-	A ISSUED FOR INFORMATION	01.04.17	7 CW 0	CW AW	-	SCALES:	Copyright in the drawings, information and data recorded in this document ("the information") is the property of Planit Engineering. This document and the information	DRAWN BY: C.WELLS DESIGN BY: C.WELLS	PLANIT ENGINEERING 1 RYANS PLACE PO BOX 112	CLIENT:
							In this document ('the information') is the property of Planit Engineering. This document and the information are solely for the use of the authorised recipient and this document may not be used. Copied or reproduced whole or part for any purpose other than that for which it was supplied by Planit Engineering. Planit Engineering makes no representation, undertakes no duty and accepts no representiation to any third party who may use or rely upon this document or the information.	APPROVED BY: DATE: THIS DRAWING MI IST NOT BE LISED FOR	GEELONG VIC 3220 TELEPHONE: 03 5229 7411 ABN: 99 613 049 568	
CAD	D FILE: C:\USERS\CHRIS\DOCUMENTS\JOBS\J158 - KINGS FOREST\6 - CAD\DRAWING:	S (PRELIM-DA-CO	C)\J158 - KINGS FOR	REST - SERVICINO	MASTER PLANS	DO NOT SCALE FROM DRAWING		THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED	EMAIL: admin@planitengineering.com.au	LI WEED SHIKE COUN

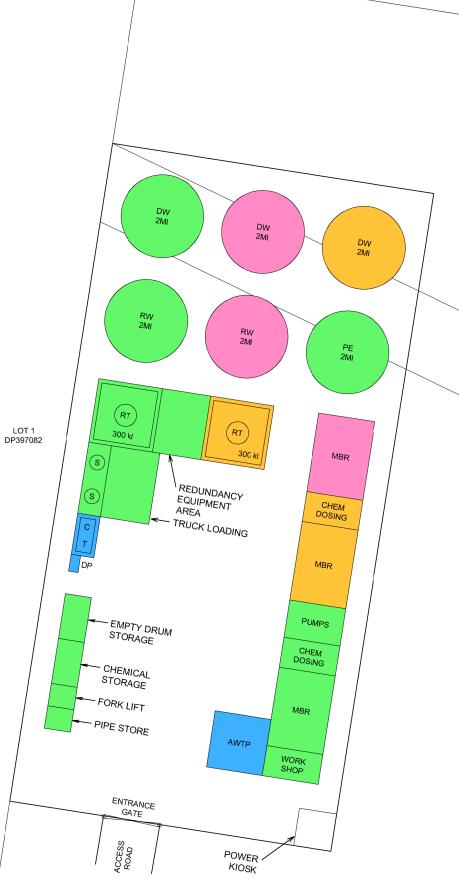






	RW RW ZW
VSS REGULTIONS 2LD 4567 JCIL	PROJECT: KINGS FOREST DRAWING TITLE: SERVICING MASTER PLANS RECYCLED WATER SCHEME DETAILED SHEET 5 OF 7 ORIGINAL SIZE: PLANIT JOB NO.: A1 J158 DRAWING NO.: A1 J158 DRAWING NO.:

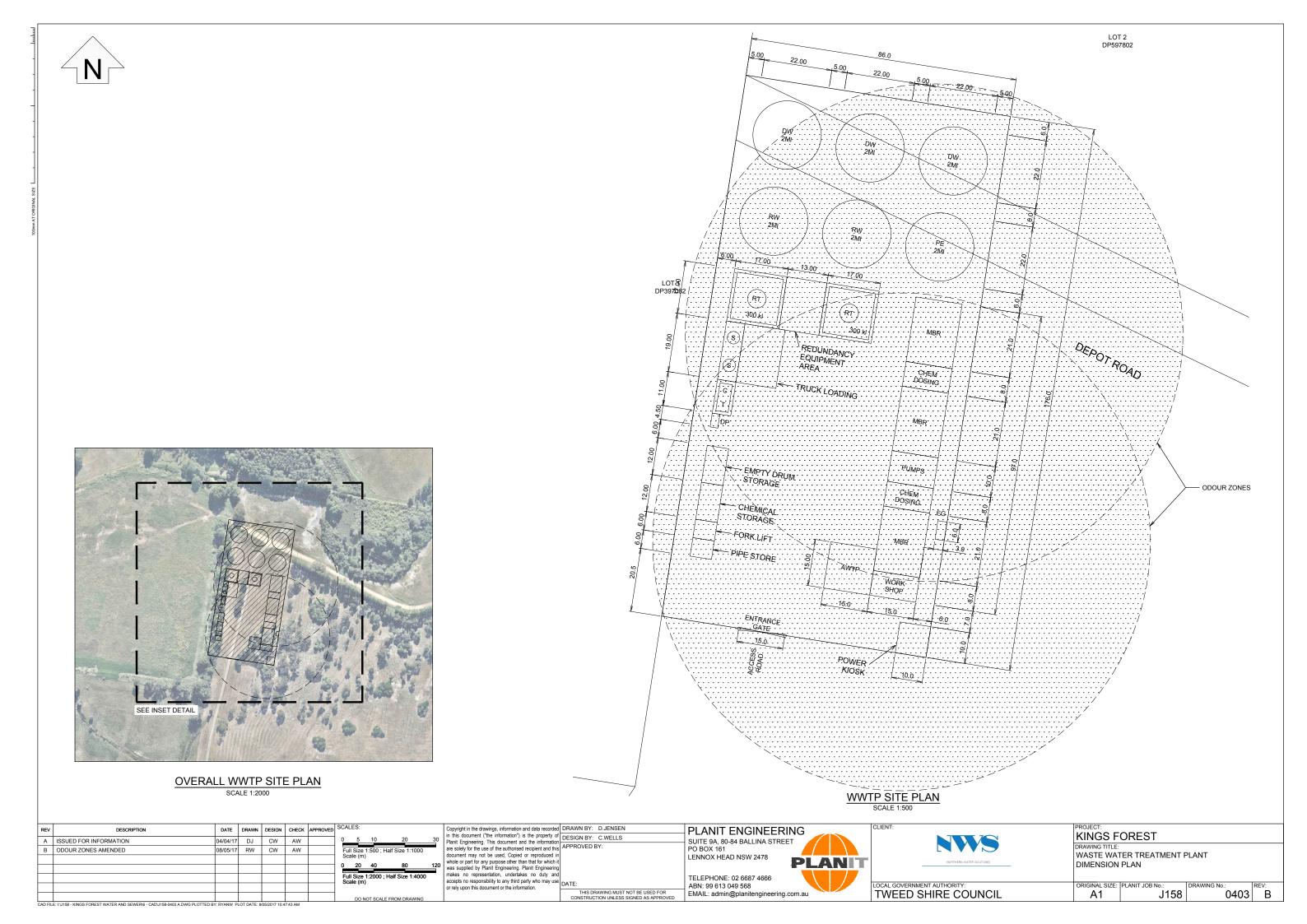

DO NOT SCALE FROM DRAW


KINGS FOREST WATER AND SEWER\6 - CAD

ABN: 99 613 049 568 EMAIL: admin@planitengineering.com.au

THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED

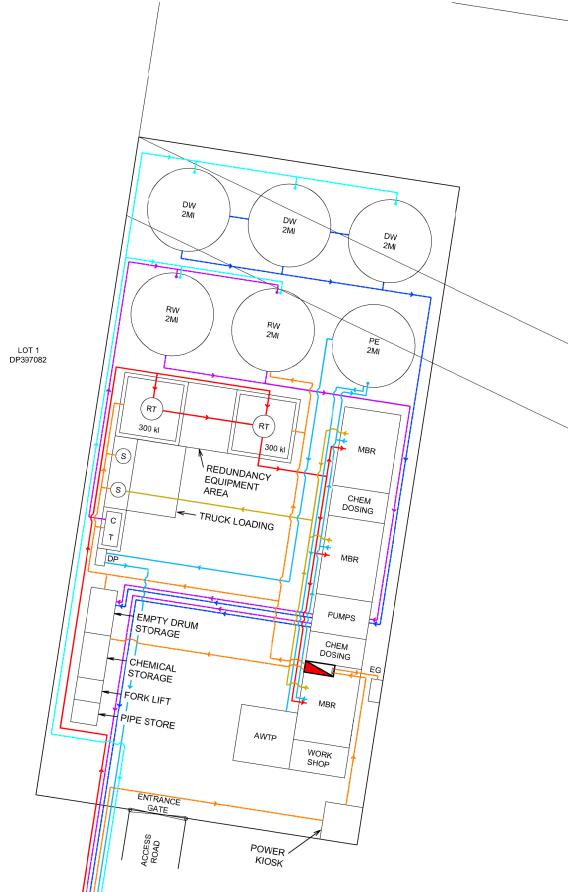
	1070		
~ _	LOT 2 DP597802		
[×			
DEPOTROAD			
ROAR			
		~	
			<
1			
/			
<u> </u>			
·····			
	ODOUR ZOI	NES	
······/			
·····;/			
·····/ ·····/			
/			
······································			
······································			
CLIENT:	PROJECT: KINGS F		
	DRAWING TITLE: TWEED SHIF		
NOTT-FRN WATER BOUTIONS	SITE LAYOU	T	
	ORIGINAL SIZE:	PLANIT JOB No.:	WING No.: REV:
TWEED SHIRE COUNCIL	A1	J158	0401 B



WWTP SITE PLAN SCALE 1:500

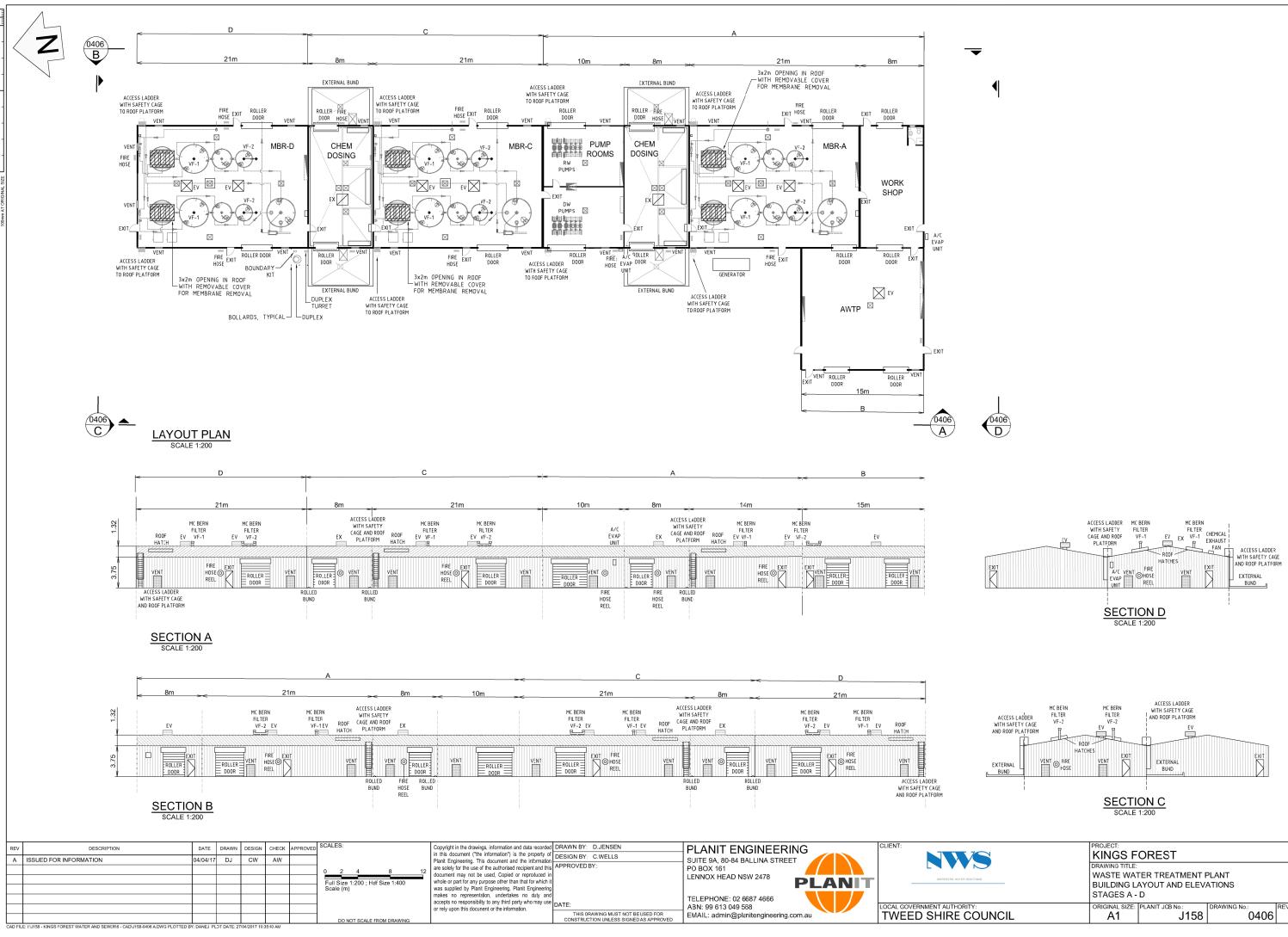
Copyright in the drawings, information and data recorded DRAWN BY: D.JENSEN in this document ('the information') is the property of Planit Engineering. This document and the information are solely for the use of the authorised recipient and this document may not be used. Copied or reproduced in whole or part for any purpose other than that for which it was supplied by Planit Engineering makes no representation, undertakes no culy and accepts no responsibility to any third party who may use or rely upon this document or the information. THIS DRAWING MUST NOT SCALES: PLANIT ENGINEERING SUITE 9A, 80-84 BALLINA STREET PO BOX 161 CLIENT DESCRIPTION DATE DRAWN DESIGN CHECK APPROVED ISSUED FOR INFORMATION 04/04/17 DJ CW AW А Full Size 1:500 ; Half Size 1:1000 Scale (m) LENNOX HEAD NSW 2478 PLANIT Full Size 1:2000 ; Falf Size 1:4000 Scale (m) TELEPHONE: 02 6687 4666 ABN: 99 613 049 568 EMAIL: admin@planitengineering.com.au CAL GOVERNMENT AUTHORITY THIS DRAWING MUST NOT BEUSED FOR CONSTRUCTION UNLESS SIGNED AS APPROV TWEED SHIRE COUNCIL DO NOT SCALE FROM DRAW

	LOT 2 DP597802
Ø	EPOT ROAD
	'OAO
1	PROJECT: KINGS FOREST DRAWING TITLE:
	WASTE WATER TREATMENT PLANT STAGING PLAN
L	ORIGINAL SIZE: PLANIT JOB No.: DRAWING No.: REV: A1 J158 0402 A

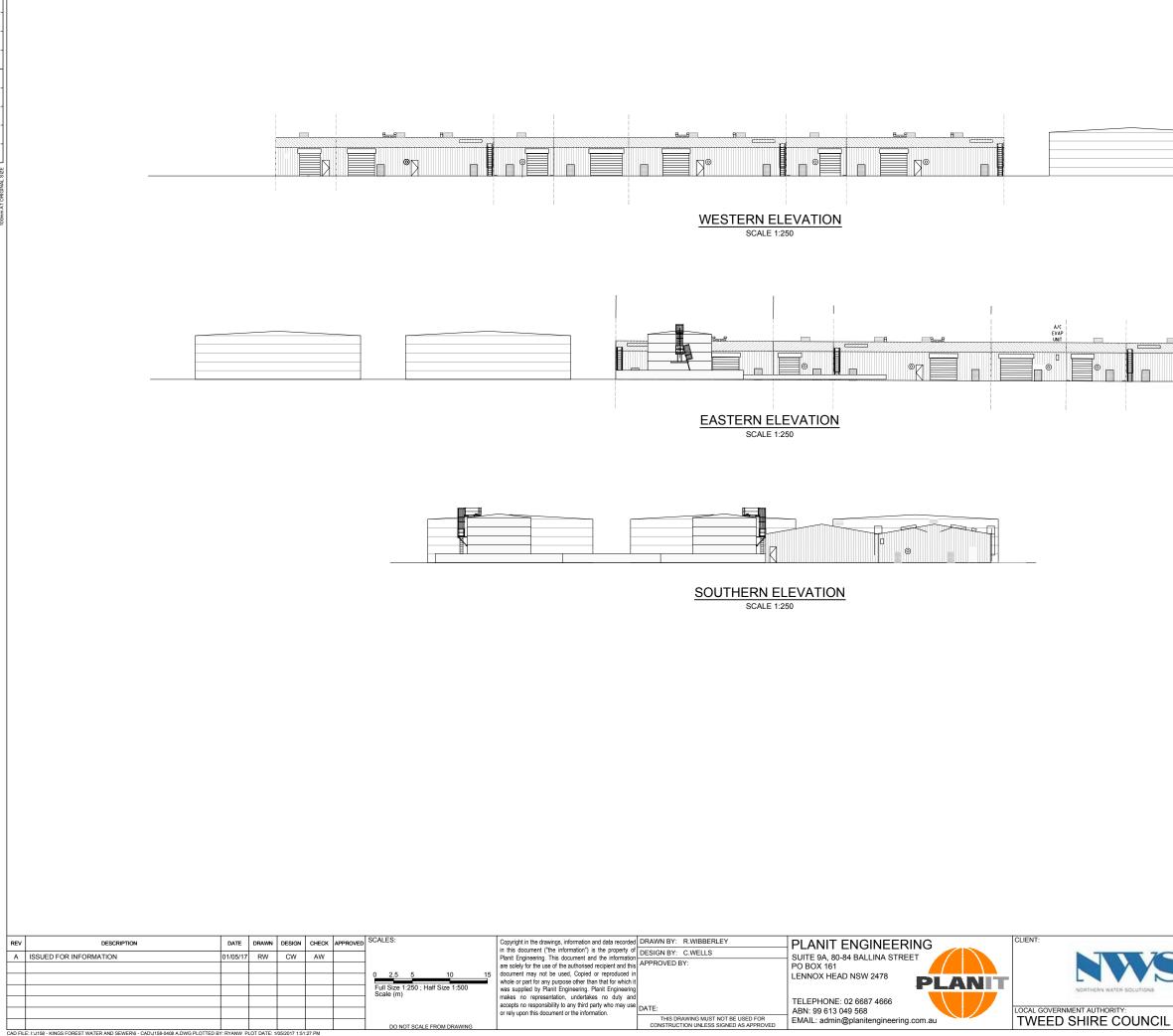


LEGEND PRESSURE SEWER DRINKING WATER RECYCLED WATER PERMEATE ACTIVATED SLUDGE WATER SUPPLY POWER SUPPLY COMMUNICATIONS CABLE

OVERALL WWTP SITE PLAN SCALE 1:2000

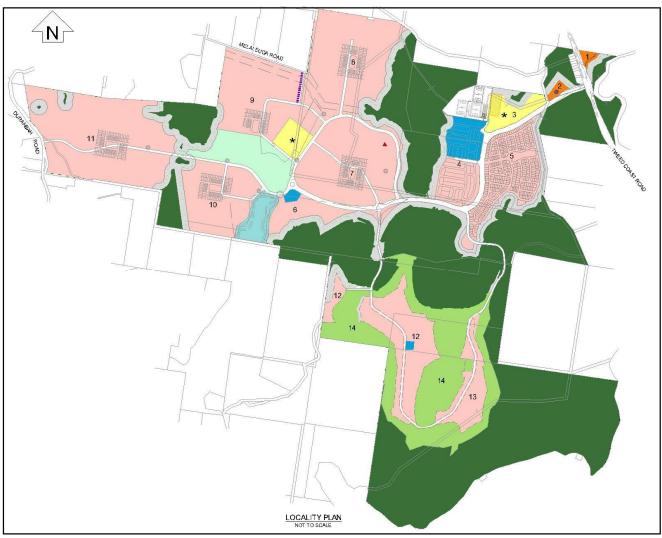


WWTP SITE PLAN SCALE 1:500


Copyright in the drawings, information and data recorded in this document ("the information") is the property of Planit Engineering. This document and the information are solely for the use of the authorised recipient and this document may not be used. Copied or reprodued in whole or part for any purpose other than that for which it was supplied by Planit Engineering makes no representation, undertakes no duly and accepts no representation, undertakes no duly and accepts no representation, undertakes no duly and or rely upon this document or the information. SCALES: DESCRIPTION DATE DRAWN DESIGN CHECK APPROVI CLIENT PLANIT ENGINEERING REV 04/04/17 DJ CW AW SUITE 9A, 80-84 BALLINA STREET PO BOX 161 A ISSUED FOR INFORMATION Full Size 1:500 ; Haf Size 1:1000 Scale (m) LENNOX HEAD NSW 2478 PLANIT Full Size 1:2000 ; Half Size 1:4000 Scale (m) TELEPHONE: 02 6687 4666 LOCAL GOVERNMENT AUTHORITY ABN: 99 613 049 568 THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED EMAIL: admin@planitengineering.com.au TWEED SHIRE COUNC DO NOT SCALE FROM DRAWIN CAD FILE: I:\J158 - KINGS FOREST WATER AND SEWER\6 - CAD\J158-0404 A.DWG PLOTTED BY: DANEJ PLOT DATE: 28/0

DEPOTROAD	
PROJECT: KINGS FOREST DRAWING TITLE:	
DRAWING TITLE: WASTE WATER TREATMENT PLANT SERVICE CONNECTIONS	
ORIGINAL SIZE: PLANIT JO3 No.: A1 J158 0404	REV: A

LOT 2 DP597802


TERNAL VENT © FIRE		EXTERNAL BUND	EXIT	
	SECTI SCALE			
	PROJECT: KINGS F	OREST		
-	DRAWING TITLE: WASTE WAT	FER TREATMENT F AYOUT AND ELEV		
CIL	ORIGINAL SIZE:	PLANIT JOB No.: J158	DRAWING No.: 0406	REV: A

n °R An				
	PROJECT:			
	KINGS F	URESI		
	WASTE WAT	FER TREATMENT F	PLANT	
nis.	SITE ELEVA	TIONS		
	ORIGINAL SIZE:	PLANIT JOB No.:	DRAWING No.:	REV:
ICIL	A1	J158	0408	A

Kings Forest Development, Tweed Heads Waste Water Boundary Conditions Report

For Northern Water Solutions Pty Ltd Developer: Project 28 Pty Ltd Planit Engineering Date: January 2017 Document No. J158 - RPT002 – Rev03

Document Status

Version	Document type	Reviewed by	Checked by	Date Issued
Rev 01	Report	SR	AW	19 December 2016
Rev 02	Draft	WW	AW	31st December 2016
Rev 03	Draft	WW	AW	20 th April 2017

Project Details

Project Name:	Kings Forest Estate – Waste Water Discharge Boundary Conditions Report
Client	Northern Water Solutions Pty Ltd
Client CEO/ Project Manager	Wayne Williamson
Authors	Andrew Wells
Planit Reference:	J158-RPT002

Copyright

Planit has produced this document in accordance with instructions from Northern Water Solutions for its use only. The concepts and information contained in this document are copyright of Planit.

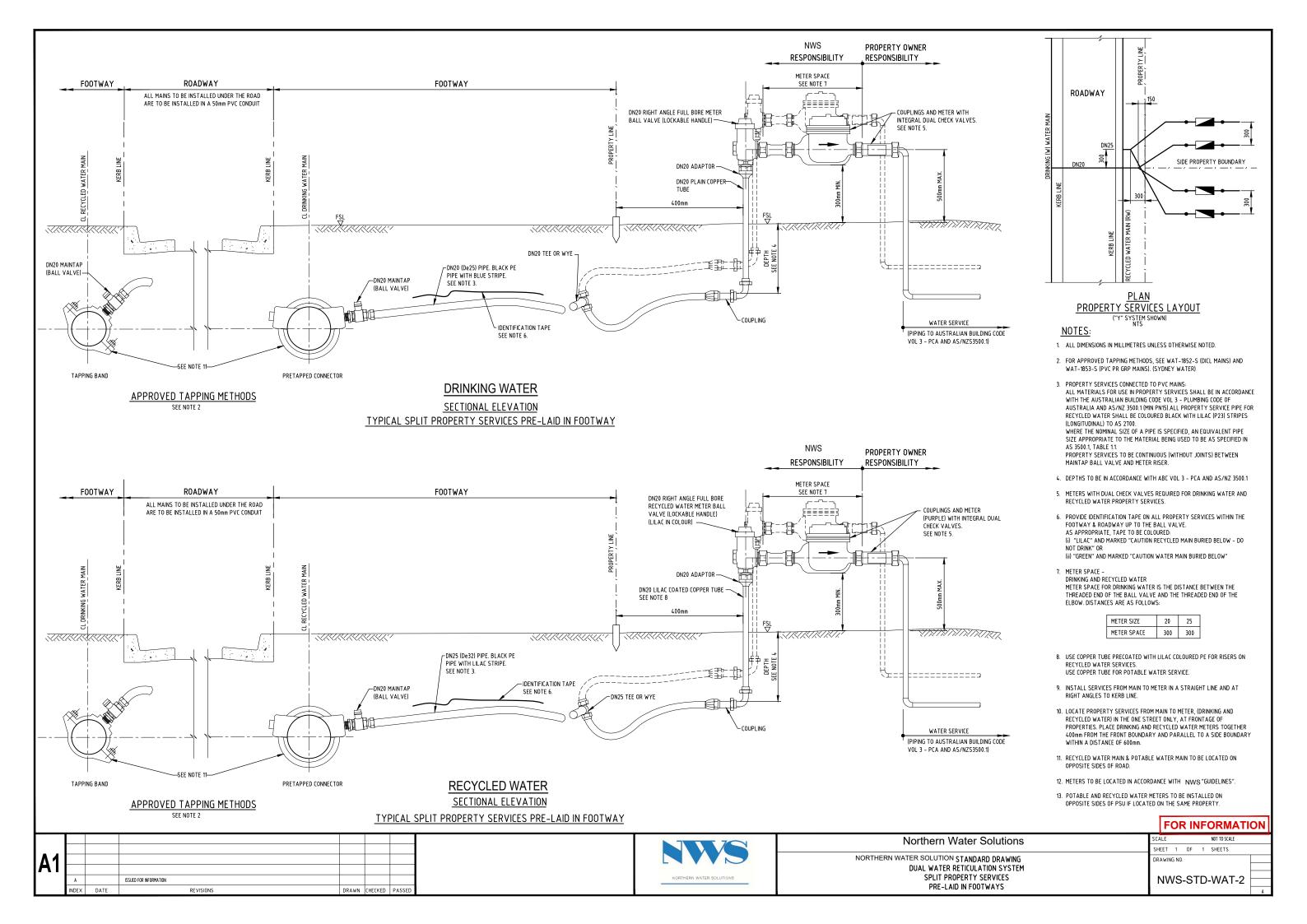
Use or copying of this document in whole or in part without written permission of Planit constitutes an infringement of copyright.

Planit does not warrant this document is definitive and free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

Planit

ABN 99 613 049 568 Suite 9a, 80-84 Ballina Street Lennox Head NSW 2478 (PO Box 161, Lennox Head NSW 2478) Telephone – 02 6687 4666 admin@planitengineering.com.au

Contents


1	Introduction	4
	1.1 The Stakeholders	4
	1.2 Roles and Responsibilities	5
2	Background	7
	2.1 The Stakeholders	7
	2.2 The Referenced Documents	7
	2.3 The Kings Forest Estate Development Site	7
	2.4 Land Use Areas	8
	Table 1 – Land Use Areas	8
3	Kings Forest Estate Pressure Sewer Servicing Strategy	9
	3.1 The Owner and Operator	9
	3.2 Collection System	9
	3.3 Kings Forest Sewage Generation Quantity and Flow Rates	10
	3.3.1 Wastewater Generation per Equivalent Tenement	10
	Table 2 – Average Daily Wastewater Generation per Equivalent Tenement	10
	3.3.2 Ultimate Flow per Lot	10
	Table 3 – Ultimate Flow per Lot	11
	3.3.3 The Total Waste Water Flow for the Kings Forest Estate Development	11
	Table 4 – Total Flow at Full Development	11
	3.4 Wastewater Quality Parameters	11
	Table 5 – Waste Water Quality	11
	3.5 Recycled Water Reuse	12
	3.5.1 Recycled Water Excess Daily Discharge Rates	12
	Table 6 – Summary of Daily External Recycled Water Reuse Not Required on Wet Days	12
	3.5.2 Total Annual Recycled/Wastewater Excess	12
	Table 7 – Tweed Shire Council Equivalent ET Demand	12
	3.6 WWTP	12
	3.7 The new Sewerage Pumping Station and Rising Main	13
	3.7.1 Design flows	13
	3.8 Metered Discharge Rising Main	13
	3.9 The Kings Forest DRM Connection Location, SPS and Discharge Rising Main Parameters	13
	3.10 Kings Forest Monitoring and Control System	13
	3.10.1 Aspects to Be Monitored	14
	3.11 Odour Control	14
	3.11.1 DRM	14
4	Discharge Agreement Requirements 1	5
	Table 8 – Water Quality for Domestic Re-use Class A+	15

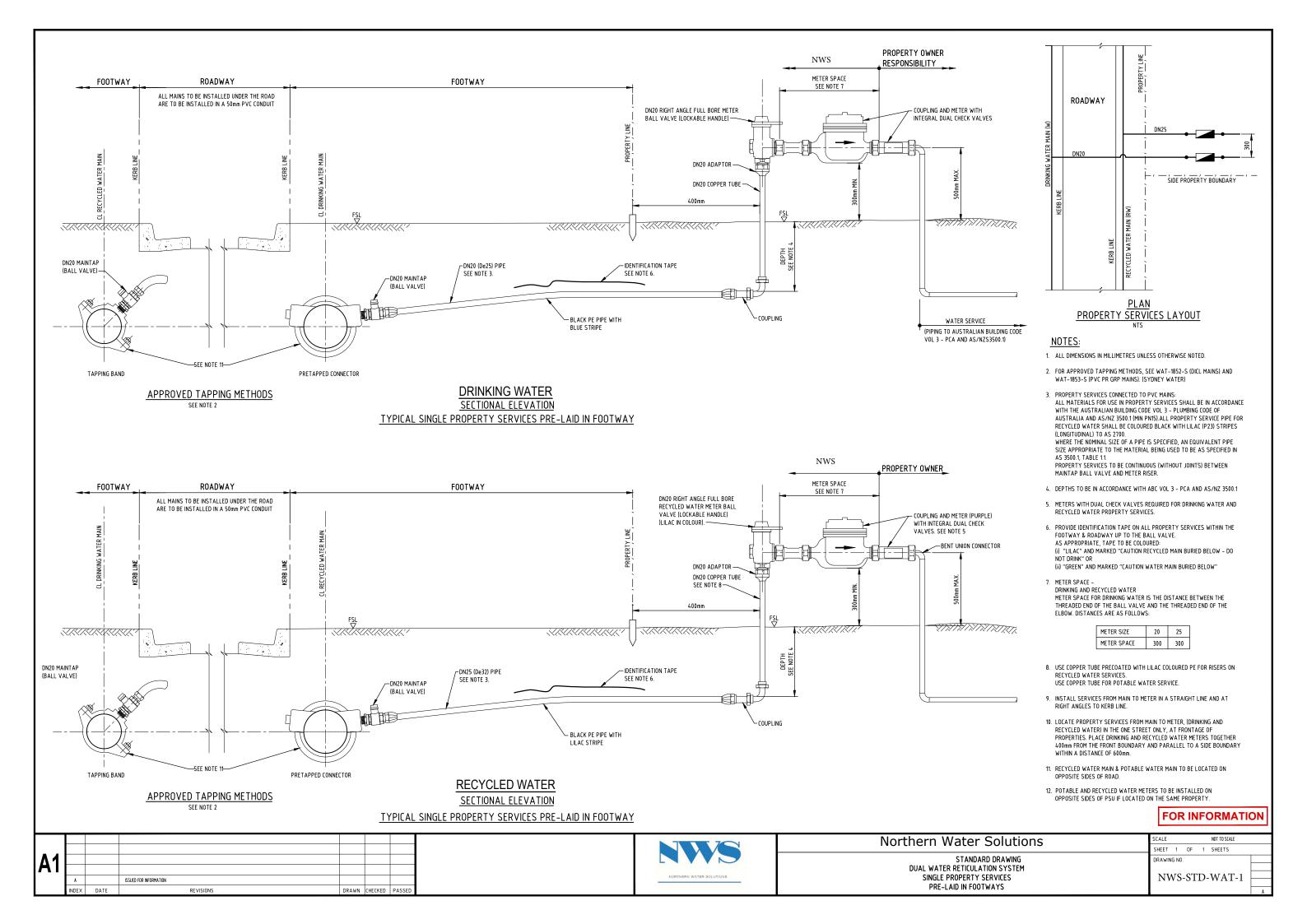


	Table	9 – MBR Treated Effluent Permeate Class A	15	
5	Reg	ulatory Requirements	16	
6	Eme	ergency Provision	16	
	6.1	After an Electricity Interruption	16	I
7	Terr	n Sheet	17	
8	Dra	ft Terms	18	
9	Role	es and Responsibilities	19	
	9.1 parties	The Draft Scope of works required by each stakeholder to be included in a agree s are: but not limited to,		,
	9.2	Demarcation lines of responsibility to be included in the draft agreements		
	9.3	Draft Fees and Charges	21	
	9.4	Regulatory Requirements	21	
A	opendi	x A – Waste Water Discharge PFD	i	
A	opendi	x B – Kings Forest Connection Location Plans	ii	

List of Figures

Figure 1 – Kings Forest Integrated Water Scheme Average Daily Demand	.6
Figure 2 – Kings Forest Service Area	.8

 Project:
 Kings Forest TWEED HEAD NSW

 Client:
 Project 28 Pty Ltd

 Title:
 Appendix 4.2.10(a) Kings Forest Recycled Water Preliminary Risk Assessment for IPART Application

 Author:
 WW

 Date (Revision):
 20/02/2017 (Revision D)

 Risk Criteria:
 As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks-phase 1 (2006)

	Usered					Unn	nitigated Risk					Mitigated Risk		
Scheme Component	Hazard	Hazardous Event	Impact	Li	ikelihood	(Consequence	Risk	Control Strategy	1	Likelihood	c	consequence	Risk
MBR Treated Waste Water	Trace contaminants in MBR feed effluent/Waste Water	Trace contaminants following MBR treatment	Potential impacts on recycled water uses	В	Unlikely	2	Minor	Low	 Majority of waste water is from the residential catchment hence there is a low likelihood of significant trace contaminants being present in the treated effluent. Refer to sewerage wastewater generation risk assessment table. Customer supply contracts, recycled water use agreements and ongoing awareness and education through information provided with rates notices and via the NWS Website. Regular detailed Nata certified lab testing of the recycled water quality monitoring for trace contaminants. If contaminants are detected a source control investigation will be undertaken through analysis of raw wastewater data. All treated effluent (Permeate) will have additional treatment will be provided in the AWTP process using Ultra Filtration, UV disinfection & Chlorine Contact. 	в	Unlikely	2	Minor	Low
Wat	Poor quality Feed Water Permeate from MBR	Membrane failure, Equipment Failure etc	Poor quality feed water permeate to the AWTP process	В	Unlikely	2	Moderate	Moderate	 Continuous online monitoring and alarms on critical MBR process parameters MLSS, DO, Permeate Turbidity, UV Intensity, transmembrane pressure or equipment failure. Shut down of the MBR WWTP if any of the above events were to occur which could produce poor quality Permeate. The SCADA control system will send a critical alarm to the plant operator if any of the above events should occur. 	в	Unlikely	2	Minor	Low
	Pathogen break through from UF membranes	Rupture of membrane fibers	Non-compliant recycled water	В	Unlikely	4	Major	Very high	 Use USEPA accredited ultrafiltration membranes. Membrane integrity testing by air pressure decay as per manufacturer requirements. Continuous online monitoring of UF permeate turbidity with alarms and automatic shutdown. Continuous online monitoring and alarms on transmembrane pressure. High quality MBR permeate as feed water. Membrane chemical cleaning in line with manufacturer requirements to maximize membrane life. Design flux, TMP and other process parameters as per manufacturer recommendations to maximize membrane life and maintain design flow. 	В	Unlikely	4	Major	Low
Advanced Water Treatment Plant	Inadequate pathogen inactivation due to low UV dose	Inadequate UV dose caused by lamp failure, reactor fouling, high flow, poor feed water quality	Non-compliant recycled water	в	Unlikely	4	Major	Very high	 Use USEPA accredited UV disinfection system. Continuous online monitoring of UV intensity and UV lamp faults with alarms and automatic shutdown. Continuous online monitoring of flow through the UV reactor with alarms and automatic shutdown. UV unit to include self- cleaning functions. Design and operation of UV unit as per manufacturer recommendations. Replace UV lamps every 12 months or when low dose alarms are activated. 	в	Unlikely	4	Moderate	Low
	Inadequate pathogen die off due to low CT in chlorine contact tank	Inadequate CT due to low chlorine concentration, high flow, low level in CCT, high COD, high temperature, incorrect pH	Non-compliant recycled water	В	Unlikely	4	Major	Very high	 Chlorine contact tank designed to USEPA standards. Continuous online monitoring of free chlorine residual and pH at the outlet of the CCT with alarms and automatic shutdown. Continuous online monitoring of flow and water level in the CCT with alarms and automatic shutdown. 	в	Unlikely	4	Major	Low
	High salt concentration	High salt concentration in feed water	Non-compliant recycled water	С	Possible	2	Minor	Moderate	 Continuous online monitoring and control of EC/TDS in blended product water. The ratio of UF treated recycled water will automatically be mixed with drinking water if the EC/TDS increases to above 500 TDS in the finished recycled water. Continuous online monitoring of feed water MBR permeate EC/TDS with alarms. If there is persistent high TDS in MBR permeate feed water then a source control investigation will be undertaken through review of catchment raw wastewater quality and waste water data. 	В	Unlikely	2	Minor	Low

 Project:
 Kings Forest TWEED HEAD NSW

 Client:
 Project 28 Pty Ltd

 Title:
 Appendix 4.2.10(a) Kings Forest Recycled Water Preliminary Risk Assessment for IPART Application

 Author:
 WW

 Date (Revision):
 20/02/2017 (Revision D)

 Date (Revision):
 20/02/2017 (Revision D)

 Risk Criteria:
 As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks-phase 1 (2006)

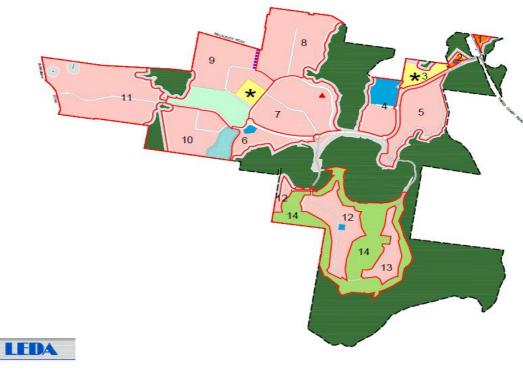
		Hazardova Event	•	Unmitigated Risk						Mitigated Risk				
Scheme Component	Hazard	Hazardous Event	Impact	L	ikelihood	C	Consequence	Risk	Control Strategy	1	_ikelihood	С	onsequence	Risk
	Process chemicals	Spillage of chemicals used in the AWTP process	Potential OH&S and public health impacts. Potential environmental impacts in receiving environment	с	Possible	2	Moderate	Moderate	 Appropriate bund and separation in chemical storage and delivery areas. Standard operating procedures to be developed for use of all chemicals. MSDS of all chemicals maintained onsite. Emergency Response Plan for chemical spillages. 	в	Unlikely	2	Minor	Low
Advanced Water Treatment Plant continued	Metals, organic chemicals and other potential trace contaminants.	Presence of excessive amounts of metals, organic chemicals and other trace contaminants in treated Class A+ Recycled Water	Potential OH&S, public health and environmental impacts.	В	Possible	2	Minor	Low	 Prevention strategy based around Trade Waste Agreements, Residential Supply Agreements, ongoing awareness and education at each billing cycle. Predominately residential catchment, hence the likelihood of significant levels of contaminants is low. Detailed monitoring of treated recycled water quality for trace contaminants at NATA laboratory. If contaminants are detected a source control investigation will be undertaken through review of catchment raw wastewater and trade waste data. If required additional treatment will be provided in the AWTP through activated carbon adsorption and/or ion exchange processes. 	В	Possible	2	Minor	Low
Treatment Plant continued	UF membrane chemical cleaning wastewater or UV acid clean wastewater	Management of chemical contaminated wastewater	Potential impacts on the MBR treatment process if inappropriately managed	в	Possible	3	Moderate	Moderate	 All chemical contaminated wastewater from UF membrane and/or UV disinfection unit cleaning is to be treated in the UF neutralizing tank with pH correction and SMBS for the removal of chlorine in the backwash waste water. When the backwash has completed its cycle and the sensing probes advice the backwash water pH & Chlorine residual is to the correct levels can then be pumped back to the MBR inlet tank for processing with the waste water. Neutralization of all chemical contaminated wastewater before feed back to the MBR inlet balance tank. If process impacts are observed on the MBR then offsite disposal of chemical wastewater will be undertaken by licensed waste contractor. 	В	Possible	sible 2 Minor	Minor	Low
	Vector borne diseases	Vermin or mosquito access to permeate water storage tank	Class A Permeate feed water	в	Possible	2	Minor	Low	 Storage tank constructed to drinking water standards with mosquito screens on all tank openings and overflows. Regular monitoring and inspection for evidence of vermin or mosquito access. If observed contaminated water will be wasted or if appropriate chemical treatment of the storage will be undertaken by addition of chlorine tablets, hydrogen peroxide or similar. 	в	Unlikely	2	Minor	Low
	Overflows	Tank overflow due to failure of level controls	Overflow to the TSC sewerage network	в	Unlikely	2	Minor	Low	1. The permeate storage tank overflows/discharges directly to the TSC SPS at Tweed Coast road and Kings Forest Parkway roundabout.	А	rare	1	Insignificant	Low
Treated effluent 2ML Permeate Water Storage Tank	Decay of free chlorine residual during storage	Loss of adequate free chlorine residual due to equipment failure, high temperature, long detention time or high COD	Nil	A	Rare	1	Minor	Low	 Free chlorine monitoring and sodium hypochlorite dosing and alarms on the permeate water storage tank are not required. If required chlorine tablets can be manually applied to the storage. 	А	rare	1	Insignificant	Low
and 2 x 2ML Recycled Water Storage Tanks	Blue green algae	Blue green algae growth in permeate water storage tank	Non-compliant permeate feed water	A	Rare	1	Minor	Low	 The Permeate Storage tank is covered to prevent sunlight access and algae growth. Regular inspection and monitoring of permeate water storage tank. 	A	Rare	1	Insignificant	Low
	Unintended contact with permeate water in storage	Human access to storage	Potential public health impacts	D	Likely	2	Minor	Low	 Storage located inside the fenced and secure WWTP site. Warning signage around the perimeter of the site and on each storage tank. CCTV recording at the WWTP site. Lockable manhole access points. 	в	Unlikely	2	Minor	Low
	Tank failure	Tank failure	Flooding, contamination of surface water	с	Possible	2	Minor	Low	 Tank constructed from steel panel tanks with civil/structural engineer certification for tank and footings. Quality assurance in construction. Bollard fence around tanks if there is a risk of vehicular or machinery damage. 	в	Unlikely	2	Minor	Low
	Tank materials	Dissolution of trace metals into permeate feed water	Non-compliant permeate water	A	Possible	1	Minor	Low	 Ensure all tank materials are compatible for use with potable water. Metallic tanks to be lined with a food grade polymer liner to avoid dissolution of metals. 	А	Rare	1	Minor	Low

							itigated Risk					Mitigated Risk		
Scheme Component	Hazard	Hazardous Event	Impact	L	ikelihood	C	onsequence	Risk	Control Strategy	I	Likelihood	C	onsequence	Risk
Recycled Water Supply System	Cross connections	Cross connection with the Cobaki Estate drinking water network	Contamination of drinking water supply	D	Likely	4	Major	Very high	 Only approved contractors or staff that have undergone an NWS induction can perform work on NWS water utility infrastructure. Drinking Water and Recycled water reticulation networks have been designed, constructed and tested in accordance with the WSAA standards, The Plumbing code of NSW & AS3500. Water pressure in Recycled Water network is to be maintained a minimum of 50 KPA below the pressure in the Drinking Water network. Quality assurance, inspection (ITPs) and pressure testing during construction. Ongoing monitoring of water pressure and electrical conductivity in both networks during operation to assist with detection of cross connections. Unique pipe materials in each water network. The drinking water network will use blue PVC and blue stripped HDPE pipe and the Recycled Water network will use lilac colored UPVC pipe and fittings & lilac striped HDPE pipe. Minimum pipe separation distances to be maintained in common trenches. Drinking water pipework to be located above Recycled water pipework. Identification tape and signage on all trenches. Drinking water will be used in the recycled water network until Stage B is completed when the AWTP is constructed. Compliance audits will be undertaken prior to introducing recycled water to the network. Conservative AWTP log reduction targets based on Table 3.7 in AGWR (2006). 	в	Unlikely	4	Major	High
	Decay of free chlorine residual during storage	Loss of adequate free chlorine residual due to equipment failure, high temperature, long detention time or high COD	Non-compliant Recycled Water for domestic reuse	A	Possible	2	Minor	Low	 Chlorine residual is monitored 24/7 in the leaving water from the recycled water storage tanks. A chlorine addition dosing system will inject chlorine into the suction side of the recycled water variable pump station. Downstream on the outlet side of the pump unit an inline mixer will be installed to mix the leaving waters. A chlorine sensor is mounted at the required distance downstream of the inline mixing unit to measure the chlorine residual 24/7. The chlorine residual must be maintained between .2 to .6 PPM. 					
Recycled Water Storage Tanks 2 x 2ML	Cross connections continued	Cross connection with drinking water line on private property	Potential use of recycled water for drinking water uses inside the affected property (up to say 3 EP)	С	Possible	2	Moderate	Moderate	 All plumbing work on private property to be undertaken by a licensed plumber in compliance with AS3500 and the NSW Plumbing Code. Plumbing inspection during house construction and a cross flow connection test certificate must be provided to TSC and presented with each customer connection application for drinking water, recycled water & sewer connection. No drinking water or recycled water meters will be issued to the customer unless a cross flow certificate is provided. Dual check valve to be located at the drinking water connection point to each property. Residential Customer Supply Contracts outlining responsibilities under the Kings Forest scheme. Ongoing customer awareness and education with information provided at each billing cycle and on the NWS Water Utility website. Conservative AWTP log reduction target based on Table 3.7 in AGWR (2006). 	с	Possible	3	Moderate	Moderate
	Unintended or inappropriate uses of recycled water	Unintended uses of recycled water like swimming pool top up, drinking from outdoor taps, ingestion from excessive spray drift etc	Potential use of recycled water for drinking water uses	D	Likely	3	Moderate	Moderate	 Residential customer supply contracts and recycled water use agreements. Ongoing awareness and education with information provided at each billing cycle and on the NWS Utility website. Appropriate identification and signage to be installed by plumbing contractor and verified during construction by producing the cross flow check certificate and plumbing inspection. Appropriate pricing levels so recycled water is not significantly lower (20%) in cost than drinking water. Flow monitoring to detect larger than normal flows. Conservative AWTP log reduction targets based on Table 3.7 in AGWR (2006). 	В	Unlikely	3	Moderate	Moderate

						Unm	itigated Risk					Mitigated Risk		
Scheme Component	Hazard	Hazardous Event	Impact	L	ikelihood	C	Consequence	Risk	Control Strategy		Likelihood	Consequence		Risk
	Loss of chlorine residual	Loss of chlorine residual due to long detention time, high temperature, high COD	Non-compliant recycled water	с	Possible	2	Moderate	Moderate	 Chlorine dosing regime will be calibrated to ensure the minimum required free chlorine residual is maintained at the furthest point in the reticulation system. 24/7 monitoring of free chlorine in the Recycled Water storages and throughout the reticulation system. 	в	Unlikely	3	Moderate	Moderate
	Pipe breakage	Pipe breakage due to excavation or machinery that leads to surface runoff of recycled water	Potential contamination of surface waters	с	Possible	2	Minor	Moderate	 PN16 HDPE pipe with welded joints and fittings. Quality assurance and pressure testing during construction. Above ground signage and identification tape in all trenches. Register all work as executed plans with dial before you dig service and on the NWS Utility GIS. Pressure and flow monitoring in the network to assist with detecting pipe breaks. Visual inspection for wet, green, boggy areas or signs of soil erosion. Customer fault reporting and response procedures in customer service. Emergency Response Plan for main breaks. All storm water at the site is treated using bio retention basins in the storm water treatment train. 	В	Unlikely	2	Minor	Low
	Minor pipe leaks	Minor leaks from pipe joints and fittings	Potential contamination of groundwater	D	Likely	2	Minor	Moderate	 PN16 HDPE pipe with welded joints and fittings. Quality assurance and pressure testing during construction. Visual inspection for green, wet and boggy areas. Monitor flows throughout the network to identify water losses. Use leak detection systems if required. 	в	Unlikely	2	Minor	Low
Indoor uses on private lots for toilet flushing and washing machine cold water	Pathogens	Unintended uses	Potential public health impacts	В	Unlikely	2	Minor	Moderate	 Class A+ recycled water with conservative log reduction targets. Laundry washing machine cold water supply to be hard plumbed. Residential customer supply contracts and recycled water use agreements. Ongoing awareness and education with information provided at each billing cycle and on the NWS Water Utility website. Appropriate identification and signage to be installed by plumbing contractor and verified during construction and plumbing inspection. Appropriate pricing levels so recycled water is not significantly lower (20%) in cost than drinking water. Flow monitoring to detect larger than normal flows. 	в	Unlikely	3	Moderate	Moderate
	Pathogens	Human contact and ingestion of spray drift or surface runoff	Potential public health impacts	В	Possible	2	Minor	Moderate	 Conservative AWTP log reduction target based on Table 3.7 in AGWR (2006). Customer supply contracts, recycled water use agreements and ongoing customer education and awareness. 	В	Unlikely	1	Insignificant	Low
Uncontrolled outdoor Recycled Water uses on private lots, i.e. irrigation, garden	Nutrients	Excessive nutrient loads in irrigation	Potential contamination of soil and groundwater	в	Unlikely	2	Minor	Moderate	 AWTP treated recycled water contains low nutrients of TN<7 mg/L & TP<0.25 mg/L and under normal irrigation rates and recycled water availability should not result in excessive nutrient impacts. Detailed soil monitoring will be undertaken annually on private land on the 3 biggest users of non-potable water in the scheme based on customer non- potable water meter readings. If required customers will be advised to reduce irrigation rates or other management measure as per the recycled water supply agreement. 	в	Unlikely	2	Minor	Low
watering, water features, car washing and wash down uses.	Salinity	Irrigation with high salt recycled water	Reduction in plant growth and poor appearance	в	Unlikely	2	Minor	Low	 The AWTP includes a side stream using drinking water to maintain salt concentrations at around 500 mg/L TDS as per drinking water standards. Irrigation at 500 mg/L TDS is unlikely to result in vegetation impacts, except for some specific species that may have very low tolerance to salt. Customer supply contracts and recycled water use agreements will advise customers not to irrigate specific plants with very low tolerance to salt. 	A	Rare	2	Minor	Low
		Wash down using high salt recycled water	Corrosion of customer private assets	В	Unlikely	2	Minor	Low	1. The AWTP includes a side stream reverse osmosis process to maintain salt concentrations at around 500 mg/L TDS as per drinking water standards.	A	Rare	2	Minor	Low

				Unmitigated Risk						Mitigated Risk				
Scheme Component	Hazard	Hazardous Event	Impact	L	ikelihood	0	Consequence	Risk	Control Strategy	Likelihood		Consequence		Risk
	SAR	Irrigation with high SAR recycled water	Potential impacts on soil structure	в	Unlikely	2	Minor	Low	 Sandy soil profile hence the sod city issues should not be significant. Annual soil monitoring of Exchangeable Sodium Percent will be undertaken on the 3 biggest recycled water users based on customer recycled water meter records. If required customers will be required to reduce irrigation rates or undertake a gypsum application based on the recycled water use agreement. If required the SAR of the recycled water supply will be reduced to <5 through by addition of calcium and magnesium and/or by reducing sodium inputs. 	A	Unlikely	2	Minor	Low
	рН	Irrigation with low or high pH recycled water	Long term pH impacts on soil	в	Unlikely	2	Minor	Low	 Maintain pH between 6.5 and 8.5 as per drinking water standards. Continuous online monitoring, control and alarms on pH correction system. 	В	Unlikely	2	Minor	Low
		Wash down with high or low pH recycled water	Potential corrosion of private assets	в	Unlikely	2	Minor	Low		В	Unlikely	2	Minor	Low
	Chlorine	Irrigation using recycled water with high chlorine concentration	Potential impacts on vegetation and soil microorganisms	в	Unlikely	2	Minor	Low	 Maximum free residual chlorine concentration of .6 mg/L. Chlorine dosing systems have been installed and monitor the chlorine residual in the recycled water networks 24/7. 	в	Unlikely	2	Minor	Low
	Trace metals, organic chemicals and other potential trace contaminants.	Trace contaminants present during irrigation	Potential impacts on soil and vegetation	В	Unlikely	2	Minor	Low	 Majority residential catchment hence there is a low likelihood of significant trace contaminants being present in recycled water. Customer supply contracts, recycled water use agreements and ongoing awareness and education through information provided with rates notices and via the NWS Utility Website. Detailed annual recycled water quality monitoring for trace contaminants. If contaminants are detected a source control investigation will be undertaken through analysis of trade waste and raw wastewater data. If required additional treatment in the AWTP will be provided using reverse osmosis, activated carbon or ion exchange. 	A	Unlikely	2	Minor	Low
	Cross connection with drinking water network	Cross connection between open space irrigation network and drinking water networks	Contamination of drinking water supplies	с	Likely	3	Moderate	Moderate	 Cross connection control plan will be developed for the scheme and will include the following requirements for the Open Space Irrigation Network: 1. Water pressure in Open Space Irrigation Network to be maintained a minimum of 50 KPA pressure below the pressure in the drinking water network. 2. Unique pipe materials. Open Space Irrigation Network is to use Lilac PVC pipe or lilac striped HDPE piping. 3. Only approved, trained and supervised plumbing contractors are permitted to work on reticulation systems. 4. Monitoring of pressure and salinity differential between drinking water and recycled water networks 	В	Unlikely	2	Moderate	Moderate
Stage B ultimate Public Open Space Irrigation System	Unintended uses or human contact with recycled water	Unintended uses or human contact with recycled water	Potential health impacts	с	Likely	3	Moderate	Low	 Irrigation of high quality "Class A+" recycled water only Above ground taps or fixtures in public open space irrigation areas must be lilac in color and labelled "not fit for drinking". Appropriate warning signage in all open space irrigation areas. Lockable irrigation valves pits and controllers etc. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall, high wind or elevated soil moisture. Surface sprinklers with spray drift control including sprinkler nozzles that operate under low pressure with a large droplet size and low throw height. 	A	Rare	3	Moderate	Low
	Spray drift during irrigation	Spray drift onto sensitive receptor	Potential ingestion of recycled water	E	Almost certain	3	Moderate	Low	 Irrigation of high quality "Class A+" recycled water only. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall, high wind or elevated soil moisture. Surface sprinklers with spray drift control including sprinkler nozzles that operate under low pressure with a large droplet size and low throw height. Proper signage installed in irrigation areas advising the public that recycled water is in use. 	А	Rare	2	Minor	Low
	Irrigation during wet weather	Irrigation during wet weather resulting in surface runoff or deep percolation of effluent	Contamination of surface and/or ground waters	E	Almost certain	3	Moderate	High	1. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall, high wind or elevated soil moisture.	А	Rare	2	Minor	Low

Project: Client: Kings Forest TWEED HEAD NSW Project 28 Pty Ltd Appendix 4.2.10(a) Kings Forest Recycled Water Preliminary Risk Assessment for IPART Application WW Title: Author: 20/02/2017 (Revision D) As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks-phase 1 (2006) Date (Revision): Risk Criteria:


						Unm	itigated Risk					Mitigated Risk		
Scheme Component	Hazard	Hazardous Event	Impact	L	ikelihood	c	consequence	Risk	Control Strategy	L	Likelihood	C	onsequence	Risk
	Irrigation rates and scheduling	Inappropriate irrigation scheduling	Increased risk of surface and ground water contamination	В	Possible	2	Minor	Low	 Irrigation scheduling will use programmable irrigation controllers to control irrigation frequency, time and duration. Irrigation rates will be calibrated to ensure no ponding. Irrigation rates will be seasonally adjusted in the irrigation controller to match seasonal irrigation demand. 	в	Unlikely	2	Minor	Low
	Recycled water	Surface runoff during irrigation	Potential contamination of surface water	В	Possible	2	Moderate	Low	 All irrigation areas to use irrigation scheduling controls to control the time, frequency and duration of irrigation events. Soil moisture probes and weather station override on irrigation controllers to prevent irrigation during rainfall or elevated soil moisture. Site based storm water runoff and environmental controls. 	В	Unlikely	2	Minor	Low
	Nitrogen	Excessive nitrogen load resulting in leaching of nitrate from irrigation areas	Contamination of groundwater	В	Unlikely	2	Moderate	Low	 Irrigation of "Class A+" recycled water with total nitrogen concentration of 7 mg/L and low average irrigation rates of around 0.9 mm/day. Modelling indicates all nitrogen applied in irrigation is taken up by vegetation. Modelling indicates negligible nitrate concentration in deep drainage. 	В	Unlikely	2	Minor	Low
	Phosphorus	Excessive phosphorous load resulting in leaching of phosphate from irrigation area	Contamination of groundwater	В	Unlikely	2	Moderate	Low	 Irrigation of "Class A+" recycled water with total phosphorus concentration of 0.25 mg/L and low average irrigation rates of around 0.9 mm/day. Water balance modelling indicates the majority of phosphorus applied in irrigation is taken up by vegetation. Water balance modelling indicates negligible phosphate concentration in deep drainage. Water balance modelling predicted Phosphorus adsorption into soil at a low rate of 0.3 kg/ha/year. 	В	Unlikely	2	Minor	Low
	Effluent Salinity	Impacts on plant growth due to salinity	Reduction in plant growth and water and nutrient uptake rates	в	Unlikely	2	Minor	Low	 Water balance modelling indicated no impacts on plant growth due to salinity based on a conservative effluent TDS of 500 mg/L. Landscape design processes will ensure appropriate vegetation is selected in temporary irrigation areas that can tolerate the required salt concentrations. The top soil profile and relatively high rainfall at the site will assist with flushing of salt through the soil profile to minimize potential salinity impacts on vegetation. 	в	Unlikely	2	Minor	Low
Stage B ultimate Public Open Space Irrigation System continued	Effluent SAR	Long term sod city impacts on soil	Soil dispersion, reduction in permeability	В	Unlikely	2	Minor	Moderate	 Topsoil profile report hence the likelihood of sod city impacts is low. Detail geotechnical testing to be undertaken for each development stage will avoid areas with high clay content and Exchangeable Sodium Percentage (ESP). Ongoing monitoring of soil cations will detect changes in soil ESP over time. If required gypsum/lime application to irrigation areas will be undertaken. If required the irrigation water SAR will be adjusted through addition of calcium/magnesium or reduction in sodium inputs to maintain effluent SAR<5. 	В	Unlikely	2	Minor	Low
	Metals and trace contaminants	Trace contaminants is irrigation supply resulting in long term accumulation in irrigation area	Contamination of soil and groundwater	В	Unlikely	2	Minor	Low	 Source catchment is >99% domestic wastewater hence the likelihood of trace contaminants is low. Customer awareness campaigns, supply contracts, trade waste agreements and recycled water use agreements will further reduce the likelihood of events occurring. Detailed monitoring of effluent quality for trace contaminant will be undertaken annually using a NATA accredited laboratory. Soil monitoring in open space irrigation area will identify any build up or increase in contaminants. If contaminants are detected then an investigation into the likely source will be undertaken and trade waste/source controls implemented. 	В	Unlikely	2	Minor	Low
	Recycled water	Pipe breakage	Potential contamination of surface or groundwater	с	Possible	2	Minor	Moderate	 Flow and pressure monitoring in the irrigation supply system. Visual inspection to identify boggy areas or erosion etc. Fault and main break reporting system through customer service processes. 	в	Unlikely	2	Minor	Low
	Odor	Odor released during	Odor impacts on	В	Unlikely	2	Minor	Low	1. Irrigation of high quality "Class A+" recycled water with low BOD	Α	Rare	2	Minor	Low

Scheme Component Hazar		Hazardous Event	•	Unmitigated Risk							Mitigated Risk			
	Hazard		Impact	Likelihood		Consequence		Risk	Control Strategy	Likelihood	Consequen	e Risk		
		irrigation	nearby residents											
	Storm water run on	Storm water running onto irrigation areas from up gradient	Water logging of irrigation area	D	Likely	2	Minor	Moderate	 Storm water diversion drains to divert all up gradient storm water runoff around effluent irrigation areas. Appropriate buffers to waterways, ponds, storm water drains and SEPP14 wetlands 	A	Rare	2 Min	or Low	
	Percolation to groundwater	Excessive percolation of effluent to groundwater	Contamination of groundwater	С	Possible	3	Moderate	Moderate	 Low long term average irrigation rate of approximately 0.9 mm/day, hence low risk of groundwater contamination. Minimal presence of groundwater within 3 meters of ground surface is geotechnical investigation. High quality effluent with low nutrients. Water balance modelling indicates negligible concentrations of nutrients in deep drainage for conservative soil profile. A minimum of 600mm sandy loam topsoil cover will be provided on irrigation areas if there is potential for seasonal high water table. 	В	Unlikely	2 Min	or Low	

Kings Forest Development Tweed Heads, NSW Recycled Water Quality Management Plan

February 2017

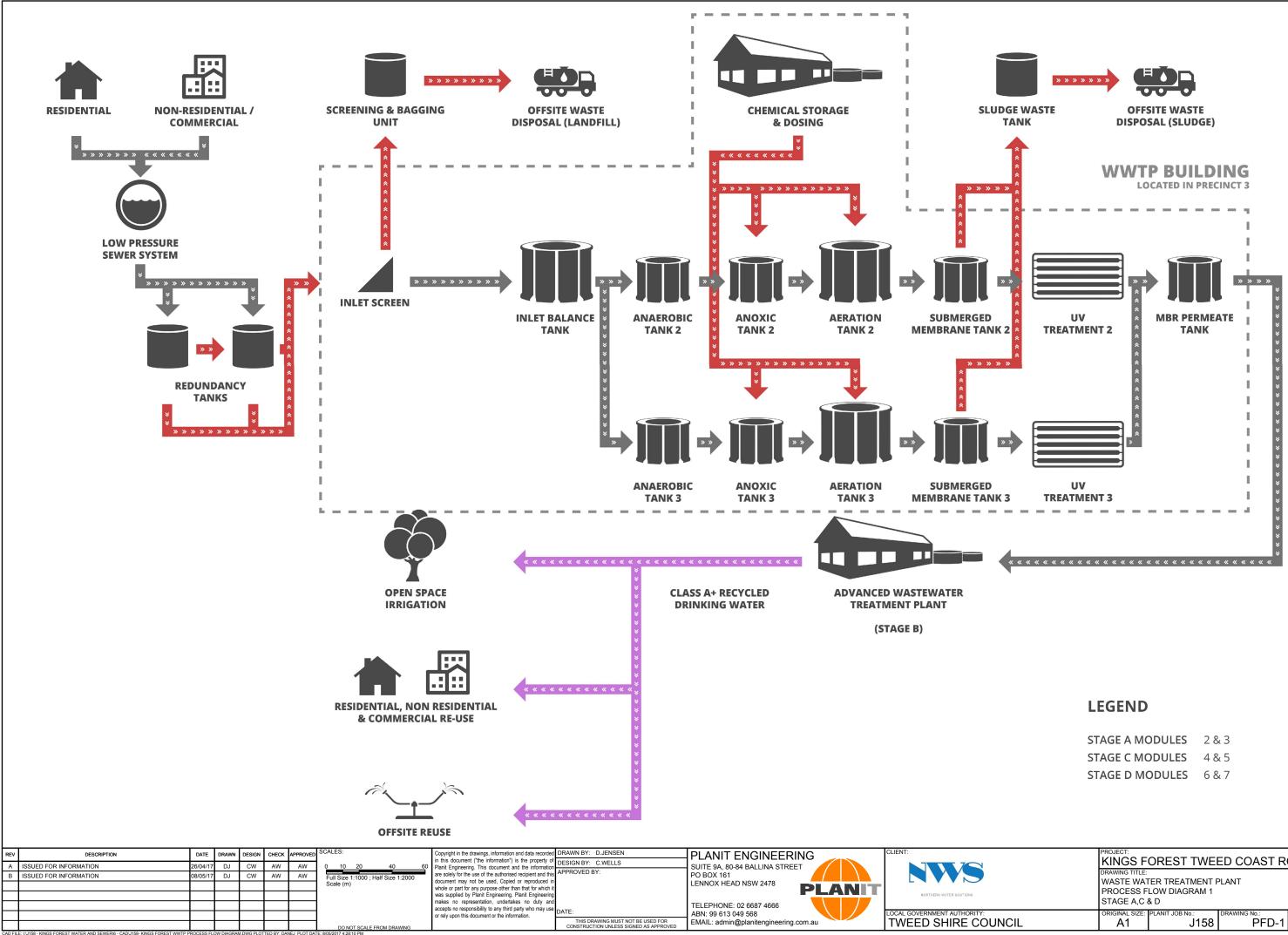
Appendix 4.2.11(a)

Table of Contents

1 Inti	roduction	1
1.1	Background	1
1.2	Scheme Overview	1
1.3	Recycled Water Generation	2
1.4	Recycled Water Balance	
1.5	Plan Framework	5
	cycled Water Quality Management Framework	6
2.1	Element 1: Commitment to Responsible Use and Management of	6
2.1.	Recycled Water	
2.1.		
2.1.		
	Element 2: Assessment of the Recycled Water Supply System	
2.2		
2.2.	• • • • •	
2.2.		
	Element 3: Preventive Measures for the Recycled Water Quality	12
2.0	Management	13
2.3	•	
2.3		
2.4	Element 4: Operational Procedures and Process Controls	
2.4	-	
2.4	•	
2.4.		
2.4.		
2.4.		
2.5	Element 5: Verification of Recycled Water Quality	21
2.5.		
2.5.	2 Consumer Satisfaction	22
2.5.	.3 Short Term Evaluation of Results	22
2.5.	4 Corrective Action	23
2.6	Element 6: Management of Incidents and Emergencies	24
2.6.		
2.6.		
2.7	Element 7: Employee Awareness and Training	
2.7.		
2.7.	1 - 5	
2.8	Element 8: Community Involvement	
2.8.	,	
2.8.		
2.9	Element 9: Research and Development	
2.9.	5 5	
2.9.		
2.9.	5 1 1	
2.5	Element 10 – Documentation and Reporting	30

2		graphy	
		Recycled Water Quality Management Improvement Plan	
	2.11.1	Review by Executive Management	32
2	2.11 E	Element 12: Review and Continuous Improvement	32
	2.10.2	Audit of the Recycled Water Quality Management	32
	2.10.1	Long Term Evaluation Results	31
2	2.10 E	Element 11: Evaluation and Audit	31
	2.5.2	Reporting	31
	2.5.1	Management of Documentation and Records	30

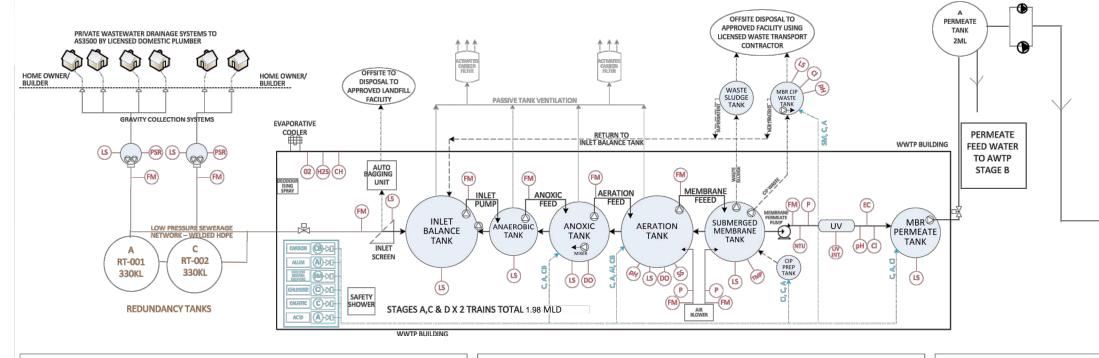
Tables


Table 1	Recycled Water Generation from MBR WWTP2
Table 2	Recycled Water Balance2
Table 3	Preliminary Regulatory and Formal Requirements Summary7
Table 4	Preliminary Stakeholder Register
Table 5	Description of the Recycled Water System9
Table 6	Preliminary Critical Control Points and Limits15
Table 7	Summary of Operational and Maintenance Procedures to be Developed
Table 8	Summary of Preliminary Operational Monitoring17
Table 9	Preliminary corrective actions for potential operational non - compliances 18
Table 10	Preliminary Verification Monitoring Program21
Table 11	Preliminary Corrective Actions for Non - Compliance with Verification Monitoring
Table 12	Preliminary Emergency Contact List
Table 13	Overview of Emergency Response Plans to be Developed

Figures

Figure 1	Precinct and Yield / ET 4
Figure 2	Elements of the Framework for Management of Recycled Water Quality and Use.
Figure 3	Critical Control Point Decision Tree (Source: ARWG) 14

Appendices


Appendix A	Process Flow Diagram – Kings Forest Recycled Water	. 1
Appendix B	Recycled Water Master Plan	. 2

STAGE A MODULES	2&3
STAGE C MODULES	4&5
STAGE D MODULES	6&7

	PROJECT: KINGS FOREST TWEED COAST ROAD DRAWING TITLE: WASTE WATER TREATMENT PLANT PROCESS FLOW DIAGRAM 1 STAGE A,C & D						
SIL .	ORIGINAL SIZE:	PLANIT JOB No.: J158	DRAWING No.: PFD-1	^{REV:}			

KINGS FOREST PROCESS FLOW DIAGRAM STAGE A & C DRINKING WATER INFRASTRUCTURE

LOW PRESSURE SEWERAGE SYSTEM

- WASTEWATER WILL DRAIN THROUGH A GRAVITY SEWERAGE COLLECTION SYSTEMS TO A NUMBER OF DUPLEX LOW PRESSURE SEWAGE PUMP STATIONS THAT SERVICE 1 TO 4 LOTS EACH.

- WASTEWATER IS PUMPED IN A CONTROLLED MANNER THROUGH THE LOW PRESSURE SEWERAGE NETWORK TO THE REDUNDACY TANK AT THE WWTP. OPERATION OF THE PRESSURE SEWER NETWORK PUMPS IS CONTROLLED BY THE DIRECT DIGITAL CONTROL SYSTEM AT THE WWTP TO CONTROL PEAK INFLOWS TO THE

- LOW PRESSURE SEWER NETWORK TO BE CONSTRUCTED WITH BROWN-STRIPED PN 16 HDPE PIPE WITH WELDED PIPE JOINTS AND FITTINGS.

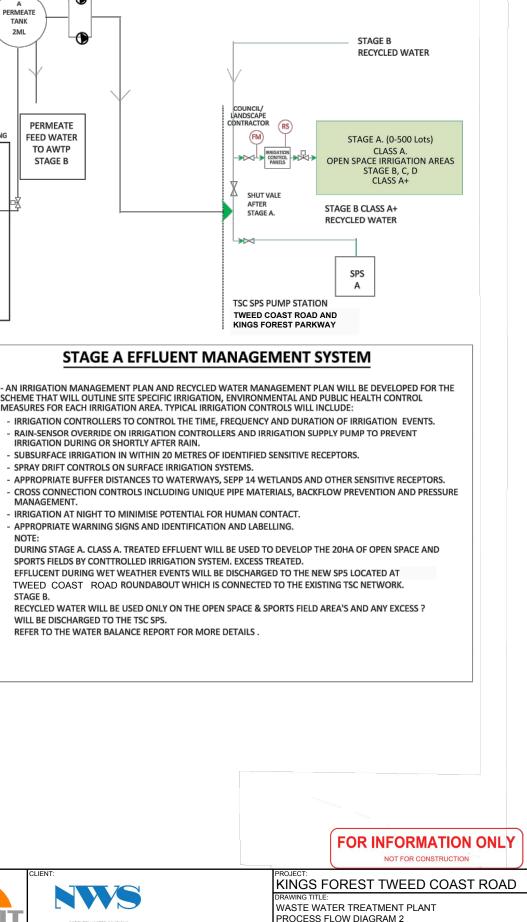
- EACH LOW PRESSURE SEWERAGE PUMP STATION WILL INCLUDE:

- PUMP HEAD AND FLOW CAPACITY TO SERVICE BETWEEN 1 AND 4 LOTS.
- DUTY AND STANDBY PUMPS WITH ONLINE FAULT DETECTION AND ALARMS.
- 24 HOURS EMERGENCY STORAGE CAPACITY IN THE WET WELL.
- HARD WIRED COMMUNICATION CABLING BACK TO THE DIRECT DIGITAL CONTROL SYSTEM AT THE WWTP.
- CONTINUOUS ONLINE WET WELL WATER LEVEL AND FLOW MONITORING WITH ALARMS.
- AUTOMATED SYSTEM START-UP AND RECOVERY FOLLOWING POWER OUTAGE VIA THE DIRECT DIGITAL
- CONTROL SYSTEM
- ADDITIONAL ONLINE WATER QUALITY MONITORING PROBES, E.G. PH, TDS, NTU, FOR DETECTION OF INAPPROPRIATE CHEMICAL DISPOSAL OR TRADE WASTE PRACTICES, DURING OPERATION.

STAGE A.C.& D WASTEWATER TREATMENT PLANT -**MEMBRANE BIOREACTOR**

- ALL WASTEWATER TREATED IN THE MEMBRANE BIOREACTOR TO PRODUCE "CLASS A" RECYCLED WATER SUITABLE FOR CONTROLLED IRRIGATION . MBR TARGET EFFLUENT QUALITY: - BIOCHEMICAL OXYGEN DEMAND < 10 mg/L
- SUSPENDED SOLIDS < 10 mg/L
- TOTAL NITROGEN < 10 mg/L
- TOTAL PHOSPHOROUS < 0.3 mg/L
- pH 6.5 TO 8.5
- FAECAL COLIFORMS < 10 cfu/100 mL
- PEAK DESIGN CAPACITY OF MBR PROCESS TRAIN IS 600kL PER MODULE X4

THE ADVANCED WATER TREATMENT PLANT TO PRODUCE "CLASS A+ RECYCLED WATER" WILL BE OPERATIONAL ONCE 500 LOTS ARE CONNECTED TO THE SYSTEM IN STAGE B.

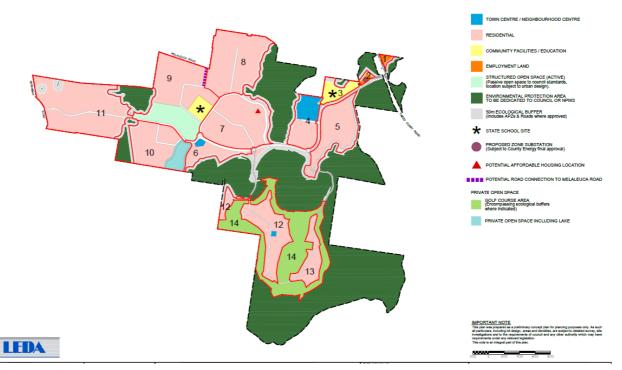

- OPERATION OF THE WWTP IS FULLY AUTOMATED AND INTEGRATED WITH OPERATION OF THE PRESSURE SEWER NETWORK TO CONTROL PEAK FLOWS INTO THE MBR USING THE DIRECT DIGITAL CONTROL SYSTEM. - ALL ON LINE MONITORING, CONTROL AND ALAM SYSTEM CAN BE REMOTELY ACCESSED THROUGH THE INTERNET, ALL DATA IS LOGGED FOR LATER REVIEW AND TROUBLE SHOOTING

- IRRIGATION DURING OR SHORTLY AFTER RAIN.
- SPRAY DRIFT CONTROLS ON SURFACE IRRIGATION SYSTEMS.
- MANAGEMENT IRRIGATION AT NIGHT TO MINIMISE POTENTIAL FOR HUMAN CONTACT.
- APPROPRIATE WARNING SIGNS AND IDENTIFICATION AND LABELLING. NOTE

SPORTS FIELDS BY CONTTROLLED IRRIGATION SYSTEM. EXCESS TREATED. STAGE B.

WILL BE DISCHARGED TO THE TSC SPS. REFER TO THE WATER BALANCE REPORT FOR MORE DETAILS

LEGEND					PROCESS EQUIF	MENT	PROCESS CHEMICA	<u>s</u>		
PSR PUMP STARTS AND RUN HOURS US WATER LEVEL DO DISSOLVED OXYGEN SS MIXED LIQUOR SUSPENDED SOLIDS PH PH	B B B B	JV INTENS ELECTRIC/ RAIN SENS METHANE HYDROGE	Sity AL CONDU SOR E GAS IN SULPHI SAS	DE GAS	SUBMERSIBLE PUI DRY-MOUNTED P MIXING PUMP MOTORISED VALV HOUSEHOLD SEW EVAPORATIVE AIR	IMP	AI POLYALUMINIUM CHLORIDI CI SODIUM HYPOCHLORITE FO SM SODIUM METABISULPHIDE C SODIUM HYDROXIDE (CAUS A HYDROCHLORIC ACID FOR p	INERS AND DOSING PUMPS ING AS SUPPLEMENTARY FOOD SOURCE DOSING FOR PHOSPHORUS REMOVAL	9	
DESCRIPTION	DATE	DRAWN	DESIGN	CHECK	APPROVED SCALES:		Copyright in the drawings, information and data reco in this document ("the information") is the propert		PLANIT ENGINEERING	CLIENT:
ED FOR INFORMATION	26/04/17	DJ	CW	AW	AW 0 10 20	40 60	Planit Engineering. This document and the informative are solely for the use of the authorised recipient and	tion	SUITE 9A, 80-84 BALLINA STREET	
ED FOR INFORMATION	08/05/17	DJ	CW	AW	AW Full Size 1:10 Scale (m)	0 ; Half Size 1:2000	document may not be used, Copied or reproduce	d in	PO BOX 161 LENNOX HEAD NSW 2478	
	-						whole or part for any purpose other than that for whi was supplied by Planit Engineering. Planit Engineer		PLAN	NORTHERN WATER SOUTIONS
	+						makes no representation, undertakes no duty	and	TELEPHONE: 02 6687 4666	
							accepts no responsibility to any third party who may or rely upon this document or the information.		ABN: 99 613 049 568	LOCAL GOVERNMENT AUTHORITY:
					DO NOT S	ALE FROM DRAWING		THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED	EMAIL: admin@planitengineering.com.au	TWEED SHIRE COUNCIL


A1

J158

PFD-2

В

Kings Forest Development Tweed Heads, NSW

Onsite Wastewater Management Plan

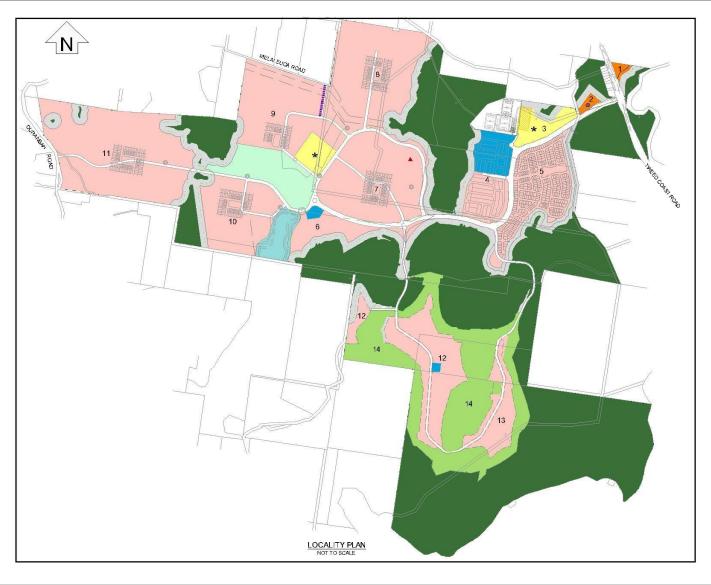
Table of Contents

1 Introduction	1
2 Background	2
2.1 Location	2
2.2 Previous Environmental Assessment & Approvals	2
3 Overview of the Northern Water Solutions Integrated Water &	•
Wastewater Management System	
4 Equivalent Population	
4.1 Land Use and Development Yield	
4.2 Wastewater Generation Rates per Equivalent Tenement – Residential an Non-Residential	
5 Wastewater Generation	
5.1 Total Development Demands Based on Equivalent Tenement Yields	
6 Average Daily Water Demands and Wastewater Generation Rates	
6.1 Residential Water Demands6.2 Non - Residential Water Demands	
6.3 Wastewater Generation Rates per Equivalent Tenement – Residential and	
Non-Residential	
7 Recycled Water Demands	
7.1 Recycled Water Generation from MBR WWTP	
7.2 Recycled Water Balance	
8 Public Open Space Irrigation Water Demand	15
8.1 Pressure Sewer Network	
8.2 WWTP Redundancy Balance Tank	16
8.3 Pressure Sewer Control System	17
9 Wastewater Treatment Plant	19
9.1 WWTP Inlet Balance Tank	-
9.2 Membrane Bio-Reactors	
9.2.1 The MBR Design Capacity	
9.2.2 Target Effluent Quality9.2.3 Description of MBR Process	
9.3 Advanced Water Treatment Plant	
9.3.1 The AWTP Design Capacity	
9.3.2 The AWTP Recycled Water Quality	22
9.3.3 Description of AWTP Process	
9.4 WWTP Building	
9.5 Central Control System	
10 Recycled Water Storage and Supply System	
10.1 Class A+ Recycled Water Network	
10.1.1 Recycled Water Storage Tanks10.1.2 Recycled Water Reticulation System Variable Speed Pump Stations	
Jacking Pumps	

10.1.4 10.1.4 10.1.6	6 Irrigation Application and Scheduling Controls	. 26 . 26 . 27
11 Mana 11.1 M 11.1.1 11.2 C 11.3 N 11.4 C 11.5 A 12 Envir 13 Moni 13.1 C 13.1.7 13.2 R 13.2.7	 7 Treated Effluent Discharge Location in the Case of Emergencies agement of WWTP Processes Vaste Management	.28 28 28 29 .29 .30 .30 .31 .32 .32 .34 .34
14 Oper 14.1 N 14.1.2 14.1.2 14.1.2	rational Management IWS Systems	.37 .37 .37 .37 .38 .38
Tables		
Table 1	Scheme Component Description	3
Table 2	Proposed Developable Area Summary	6
Table 3	Proposed Equivalent Tenement Yield	7
Table 4	Average Daily Wastewater Generation per Equivalent Tenement	8
Table 5	Summary of Kings Forest Integrated Water Scheme Average Daily Flows	9
Table 6	Average Daily Total Development Demands	10
Table 7	Residential End Use and Average Daily Demand	11
Table 8	Non-Residential End Use and Average Daily Demand Per Equivalent Teneme	
Table 9	Average Daily Wastewater Generation per Equivalent Tenement	13
Table 10	Flows at MBR WWTP	14
Table 11	Recycled Water Balance	14

Table 12	Total Irrigation Water Demand (Monthly Summary)	15
Table 13	Waste Water System Redundancy Storage	17
Table 14	Target Effluent Quality from MBR with UV disinfection	20
Table 15	Membrane Bioreactor Process Description	20
Table 16	Pathogen Log Reduction Target and Credits Being Claimed for the Cobaki Estate AWTP	22
Table 17	Advanced Water Treatment Plant Process Description2	23
Table 18	Estimated Waste Activated Sludge Production in Cobaki MBRs	28
Table 19	Overview of Operational Monitoring Undertaken by the SCADA Central Management System	32
Table 20	MBR Commissioning and Verification Recycled Water Quality Monitoring	
Table 21	AWTP Validation and Verification Recycled Water Quality Monitoring	36

Figures


Figure 1	Мар	2
Figure 2	Average Daily Water Balance per Household	9

Appendices

Appendix A Pressure Sewer Master Plan Appendix B Recycled Water Master Plan Appendix C Waste Water PFD Appendix D Waste Water Treatment Site Layout Plans Appendix E Recycled Water Meter Service Plan Appendix F Sewer and Recycled Water Risks Assessments Appendix G HACCP Report

Kings Forest – Pressure Sewer Master Plan Report

Northern Water Solutions Pty Ltd

Planit Engineering Date: 20th April 2017 Document No.: J158 – RPT005 – Rev01

Document Status

Version	Document type	Reviewed by	Checked by	Date Issued
Rev 00	draft	S Robinson	A.Wells	19/04/2017
Rev 01	draft	WW	A Wells	20/04/2017

Project Details

Project Name:	Kings Forest – Pressure Sewer Master Plan Report	
Client	Northern Water Solutions Pty Ltd	
Client CEO/Project Manager	Wayne Williamson	
Authors	Andrew Wells	
Planit Reference:	J158 – RPT005	

Copyright

Planit Engineering has produced this document in accordance with instructions from Northern Water Solutions Pty Ltd for its use only. The concepts and information contained in this document are copyright of Planit Engineering.

Use or copying of this document in whole or in part without written permission of Planit Engineering constitutes an infringement of copyright.

Planit Engineering does not warrant this document is definitive and free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

Planit Engineering

ABN 99 613 049 568 Suite 9a, 80-84 Ballina Street Lennox Head NSW 2478 (PO Box 161, Lennox Head NSW 2478) Telephone – 02 6687 4666 admin@planitengineering.com.au

This report has been prepared by Planit Engineering Pty Ltd on behalf of Planit Engineering. All information contained within the report is the property of Planit Engineering.

Contents

1	INT	RODUCTION	5
	Table 2	1 – Proposed Equivalent Tenement Yield	6
	1.1	Kings Forest Pressure Sewer Servicing Strategy Overview	6
	1.2	Pressure Sewerage System (PSS) Overview	7
	1.3	Kings Forest Scheme PSS Overview	7
	1.4	Kings Forest Analysis Overview	7
	1.5	The Selected Option	9
	1.6	Base Data	9
	Table 2	2 – Base Information 1	10
	1.7	Information Assumptions 1	0
2	PRO	DJECT DEFINITION	L O
	2.1	Scope of Works1	10
	2.2	Boundary Extents1	10
	2.3	Sewage Loading Table1	1
	Table 3	3 – Sewer Loading Table	1
	2.4	Staging of the Works 1	1
	2.4.	1 High-level System Requirements	1
	2.4.2	2 Staged Works to be completed by March 20191	1
	2.4.3	3 Programed items scheduled for completion around March 2019 1	1
	2.5	Waste Water Treatment Plant Staged Upgrades 1	2
	Table 4	4 – WWTP Staged Upgrade1	2
3	Desi	ign Methodology 1	۱3
	3.1	Design Criteria1	13
	Table 5	5 – Design Criteria	4
	3.2	Maximum Desirable Total Dynamic Head (TDH)1	4
	3.3	PSS Wet Weather Flows 1	4
	3.4	Kings Forest Master Plan Design Overview1	15
	3.4.	1 Tweed Shire Council Emergency Discharge Rising Main (DRM) Connection Point Description 1	16
	3.4.2	2 Pressure Sewer Catchment Areas 1	16
	Table 6	6 – Kings Forest Development Staging Plan1	17
	3.4.	3 Multiple property connections to one duplex PSU 1	17
	3.5	System Performance of the Selected Option1	8
	3.5.	1 Maximum flow velocities1	8
	3.6	Septicity and Odour Control1	19

3.6.1	Accumulated Retention	19
3.6.2	Air Management	19
3.7 Pow	ver outage peak flow	20
3.7.1	Inherent storage within the pressure sewerage system	20
3.7.2	Staggered Pump Start Times	21
3.7.3	Emergency discharge and storage at the WWTP Site	21
3.8 Assi	ignment of Duplex and Simplex units	21
3.9 Proj	perty Connections	21
3.10 King	gs Forest Monitoring and Control System	21
3.10.1	Benefits of a Clear SCADA monitoring and control system	22
3.10.2	Aspects that are monitored	22
APPENDIX A -	- CONCEPT DESIGN MASTER PLAN	i
APPENDIX B -	- HYDRAULIC MODEL	ii
APPENDIX C -	- TSC BOUNDARY CONDITION REPORT	iii
APPENDIX D -	- SIMPLEX AND DUPLEX UNITS	iv
APPENDIX E -	- AIR MANAGEMENT	V
APPENDIX F –	PRESSURE SEWER OPERATING PARAMETERS	vi
APPENDIX G -	- ONGOING OPERATION OF THE PSS	vii
APPENDIX H -	FRONT & BACK PRESSURE SEWER LOT CONNECTION DETAILS	ix
APPENDIX I -	PROCESS FLOW DIAGRAM PFD-001	x
APPENDIX J -	DRAFT WWTP LAYOUT	xi
APPENDIX K -	- SAMPLE REDUNDANCY TANK PHOTO	xii
APPENDIX L -	DRAFT HOME OWNERS MANUAL	xiii

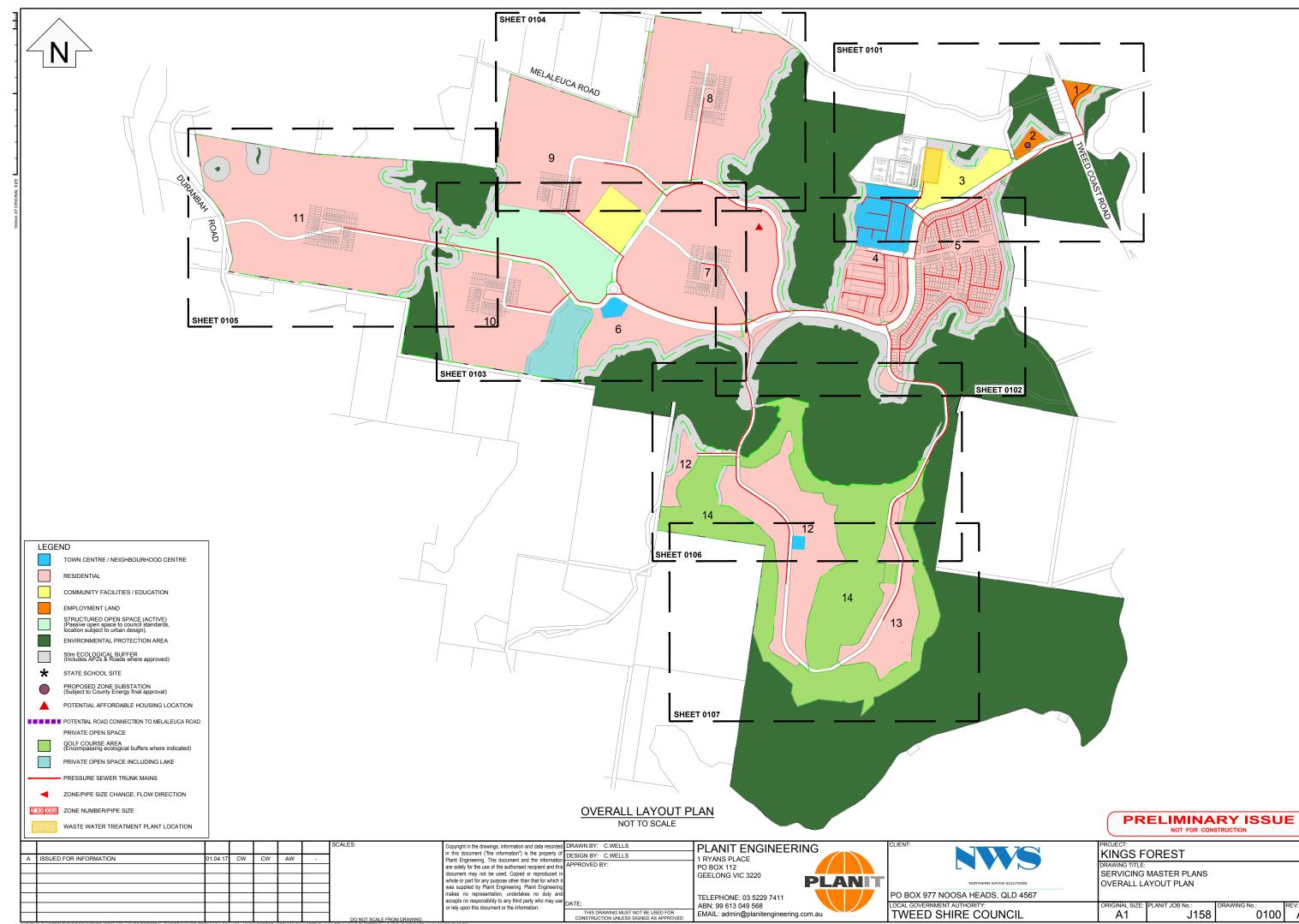
List of Figures

Figure 1 – Location of Kings Forest Development	5
Figure 2 – PSS Master Plan Overview	15
Figure 3 – Pressure Sewer Catchment Master Plan	16
Figure 4 – Examples of multiple property connections to on duplex PSU	18
Figure 5 – Typical Air Valve Installation	20

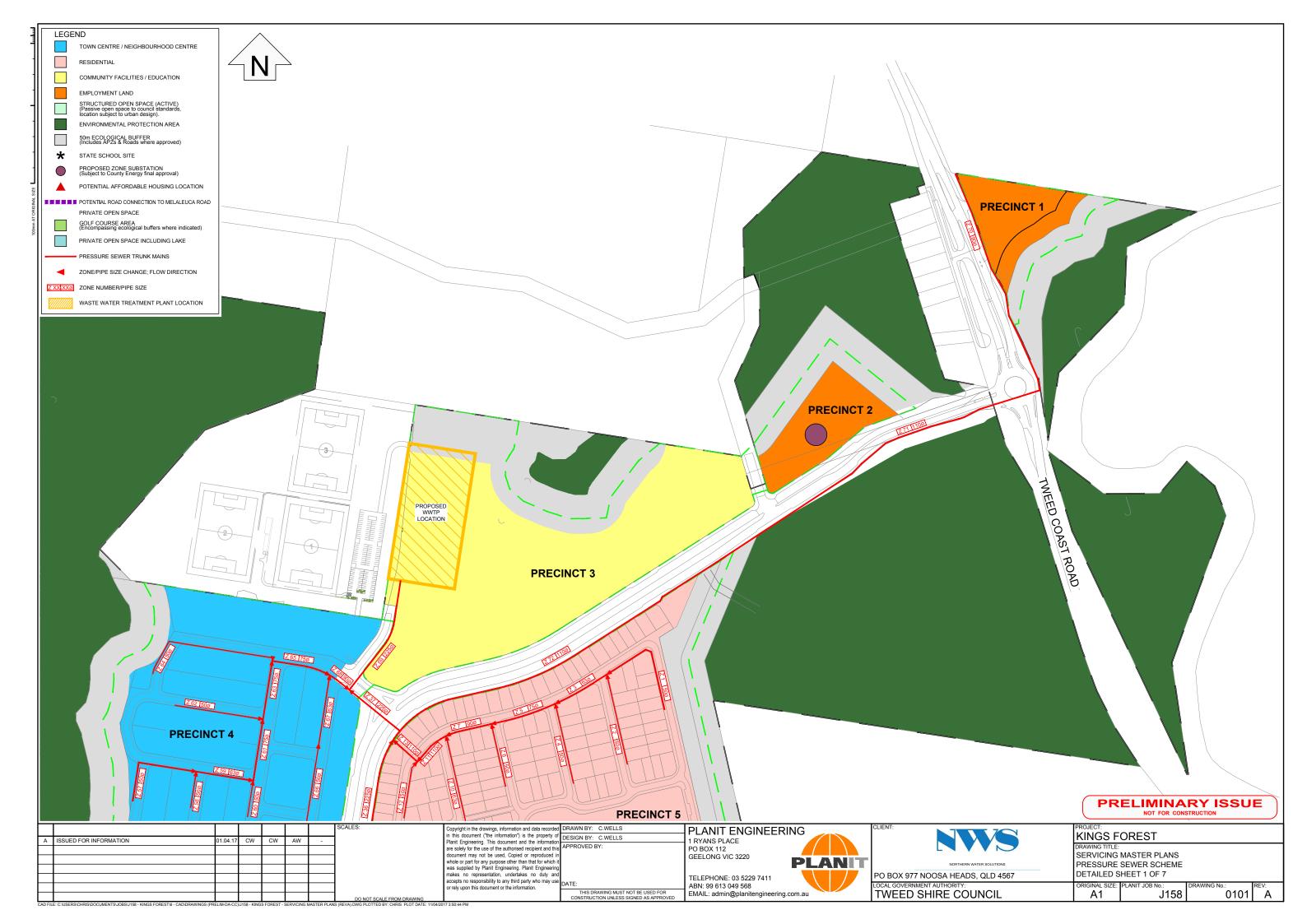
List of Tables

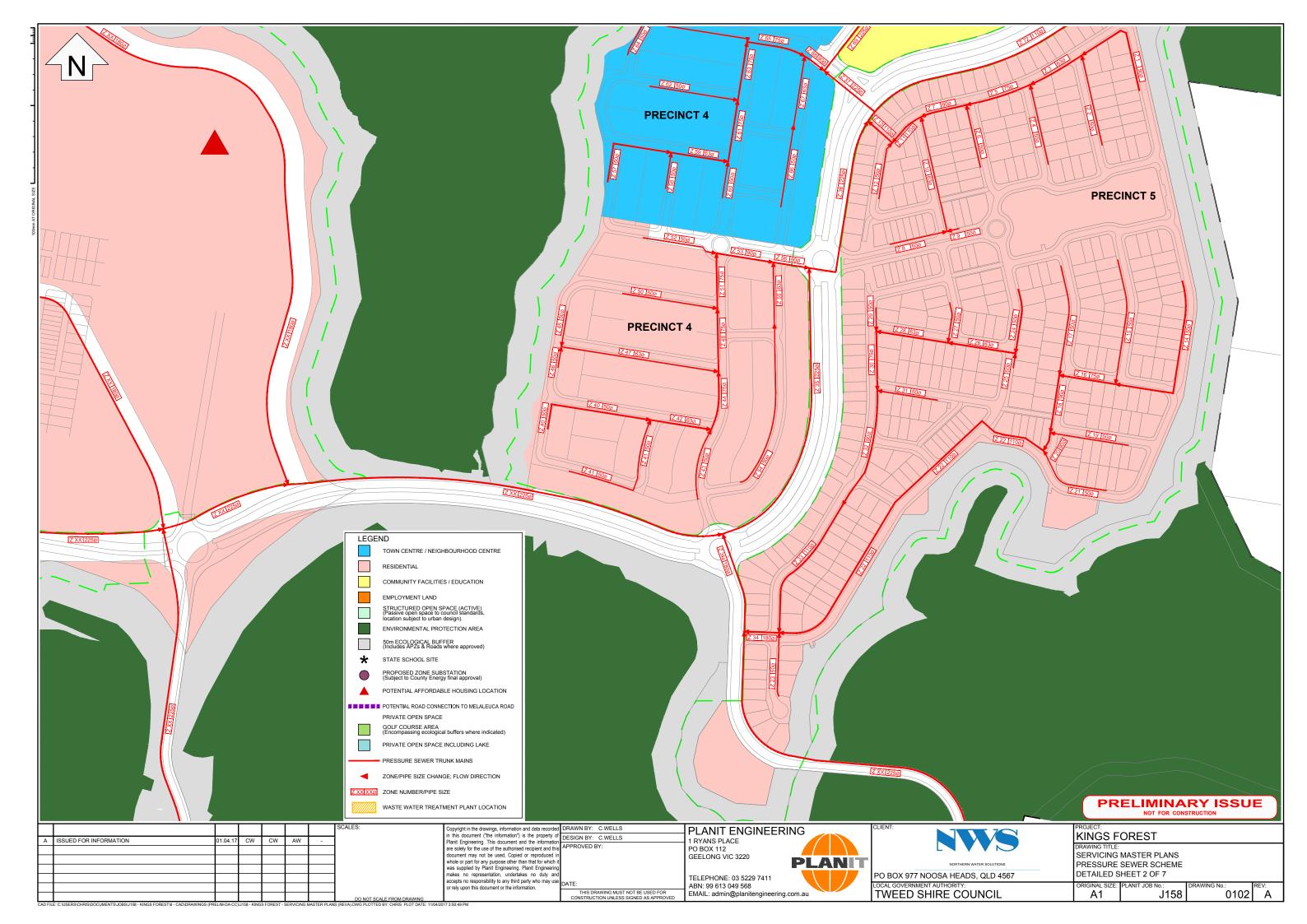
Table 1 – Proposed Equivalent Tenement Yield	6
Table 2 – Base Information	10
Table 3 – Sewer Loading Table	11
Table 4 – WWTP Staged Upgrade	12
Table 5 – Design Criteria	14
Table 6 – Kings Forest Development Staging Plan	17

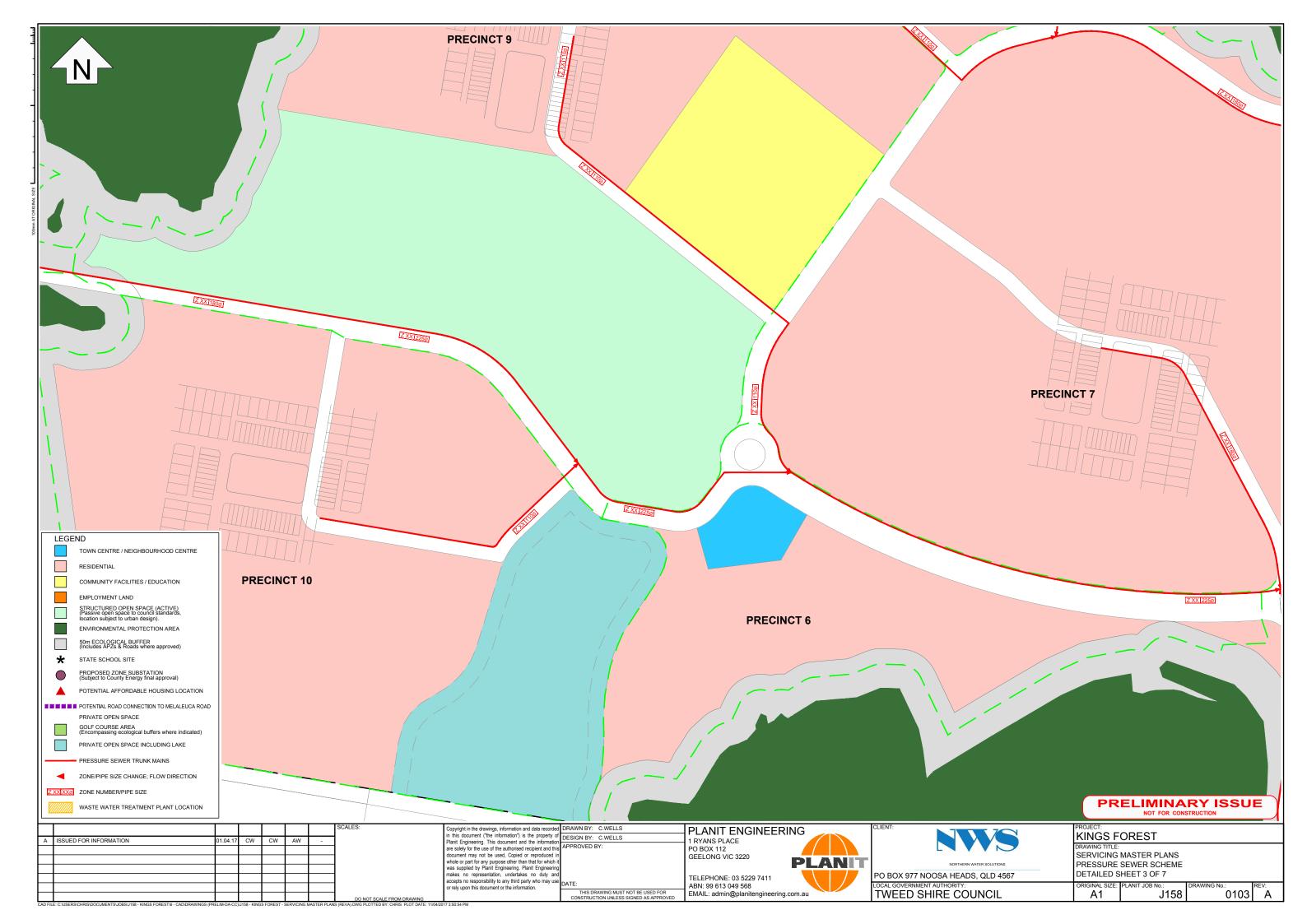
NORTHERN WATER SOLUTIONS KINGS FOREST SEWER AND WATER SERVICING MASTER PLANS

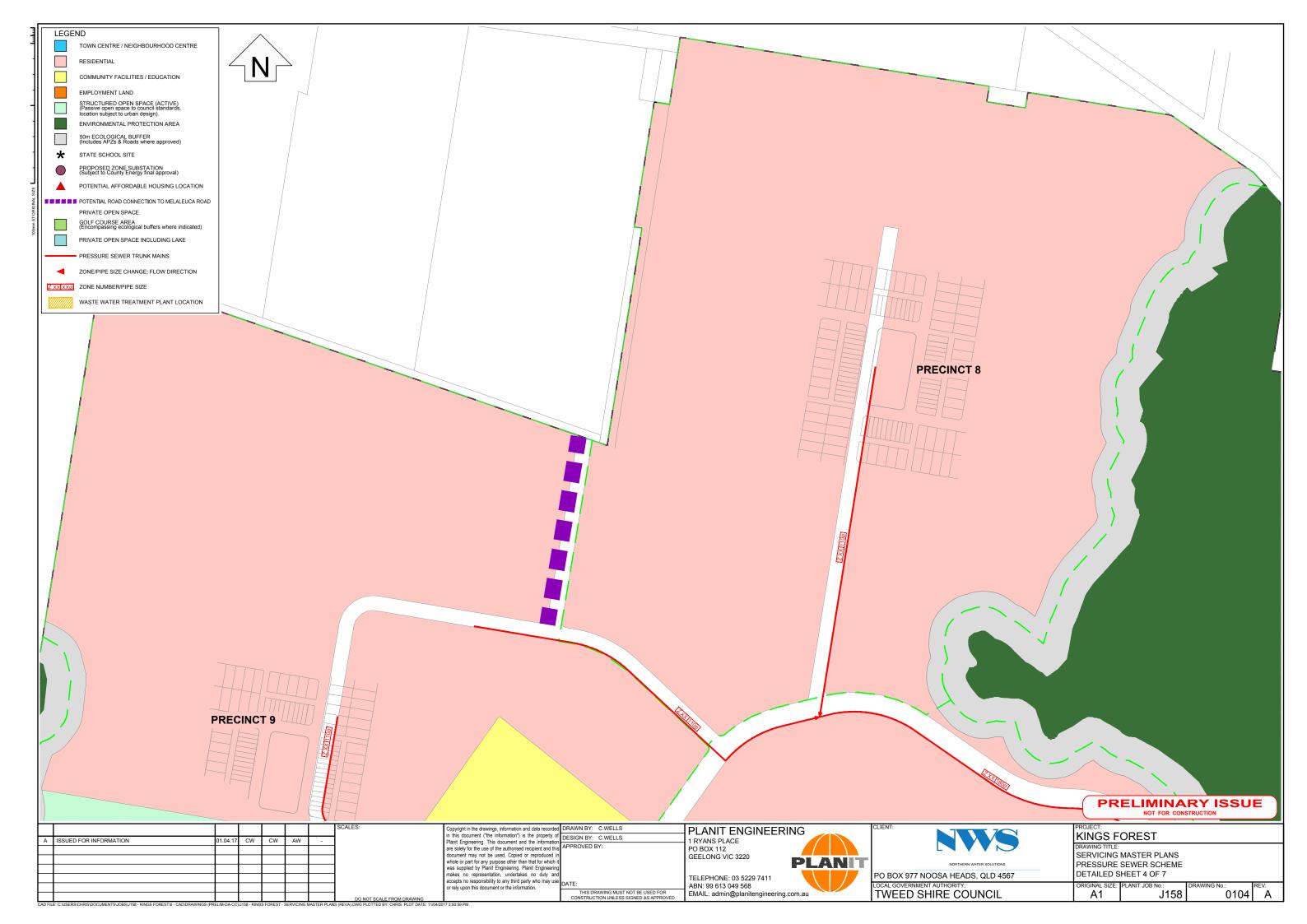

DRAWING NO.	TITLE	REVISON
J158 - 0001	INDEX AND LOCALITY PLAN	A
J158 - 0100	PRESSURE SEWER SCHEME - OVERALL LAYOUT PLAN	A
J158 - 0101	PRESSURE SEWER SCHEME - DETAILED SHEET 1 OF 7	A
J158 - 0102	PRESSURE SEWER SCHEME - DETAILED SHEET 2 OF 7	A
J158 - 0103	PRESSURE SEWER SCHEME - DETAILED SHEET 3 OF 7	A
J158 - 0104	PRESSURE SEWER SCHEME - DETAILED SHEET 4 OF 7	A
J158 - 0105	PRESSURE SEWER SCHEME - DETAILED SHEET 5 OF 7	A
J158 - 0106	PRESSURE SEWER SCHEME - DETAILED SHEET 6 OF 7	A
J158 - 0107	PRESSURE SEWER SCHEME - DETAILED SHEET 7 OF 7	A
J158 - 0200	DRINKING WATER SCHEME - OVERALL LAYOUT PLAN	A
J158 - 0201	DRINKING WATER SCHEME - DETAILED SHEET 1 OF 7	A
J158 - 0202	DRINKING WATER SCHEME - DETAILED SHEET 2 OF 7	A
J158 - 0203	DRINKING WATER SCHEME - DETAILED SHEET 3 OF 7	A
J158 - 0204	DRINKING WATER SCHEME - DETAILED SHEET 4 OF 7	A
J158 -0205	DRINKING WATER SCHEME - DETAILED SHEET 5 OF 7	A
J158 - 0206	DRINKING WATER SCHEME - DETAILED SHEET 6 OF 7	A
J158 - 0207	DRINKING WATER SCHEME - DETAILED SHEET 7 OF 7	A
J158 - 0300	RECYCLED WATER SCHEME - OVERALL LAYOUT PLAN	A
J158 - 0301	RECYCLED WATER SCHEME - DETAILED SHEET 1 OF 7	A
J158 - 0302	RECYCLED WATER SCHEME - DETAILED SHEET 2 OF 7	A
J158 - 0303	RECYCLED WATER SCHEME - DETAILED SHEET 3 OF 7	A
J158 - 0304	RECYCLED WATER SCHEME - DETAILED SHEET 4 OF 7	A
J158 - 0305	RECYCLED WATER SCHEME - DETAILED SHEET 5 OF 7	A
J158 - 0306	RECYCLED WATER SCHEME - DETAILED SHEET 6 OF 7	A
J158 - 0307	RECYCLED WATER SCHEME - DETAILED SHEET 7 OF 7	A

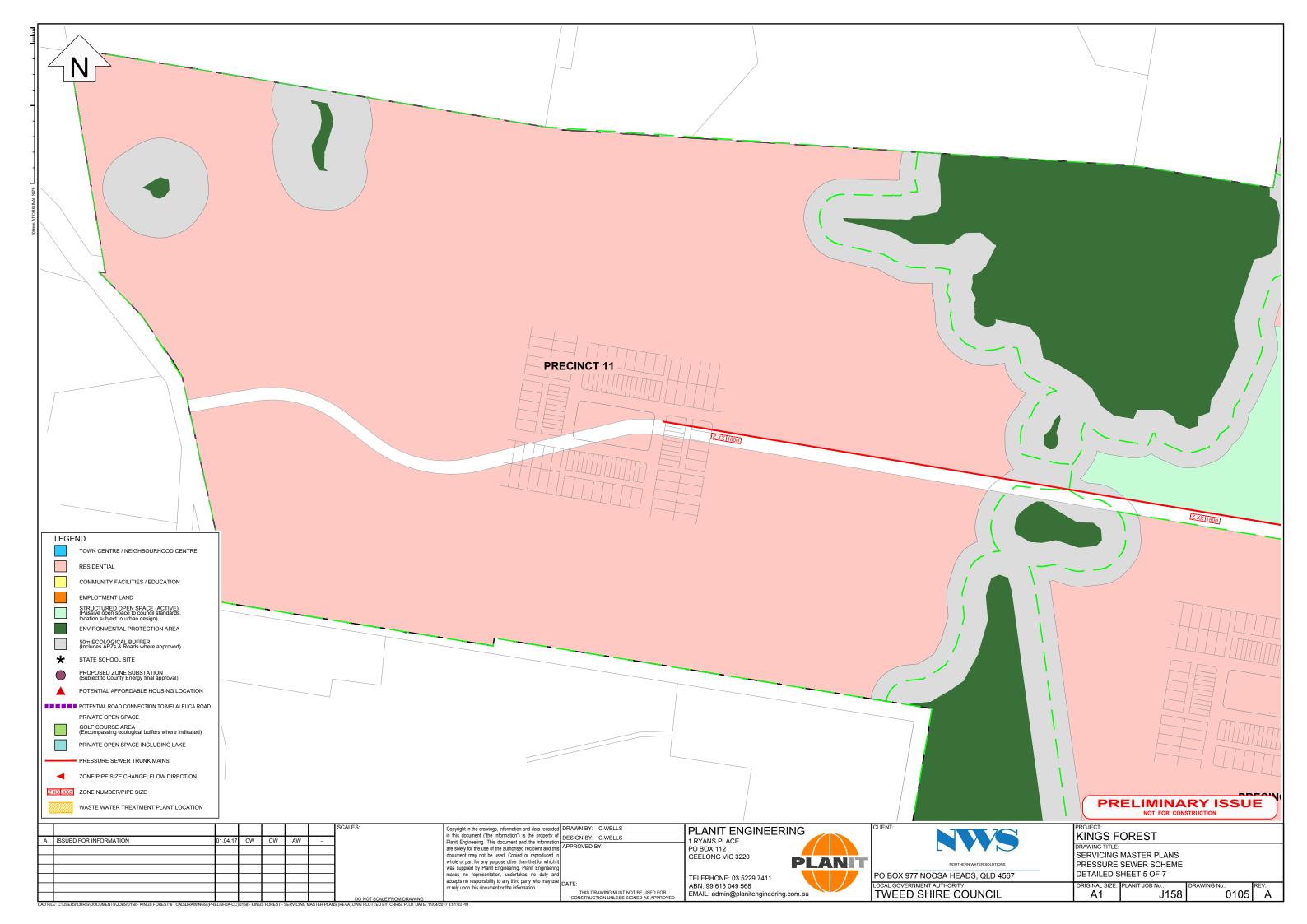
0					L/	11	<u> </u>
NO	ΤT	0	SC	CA	LE		

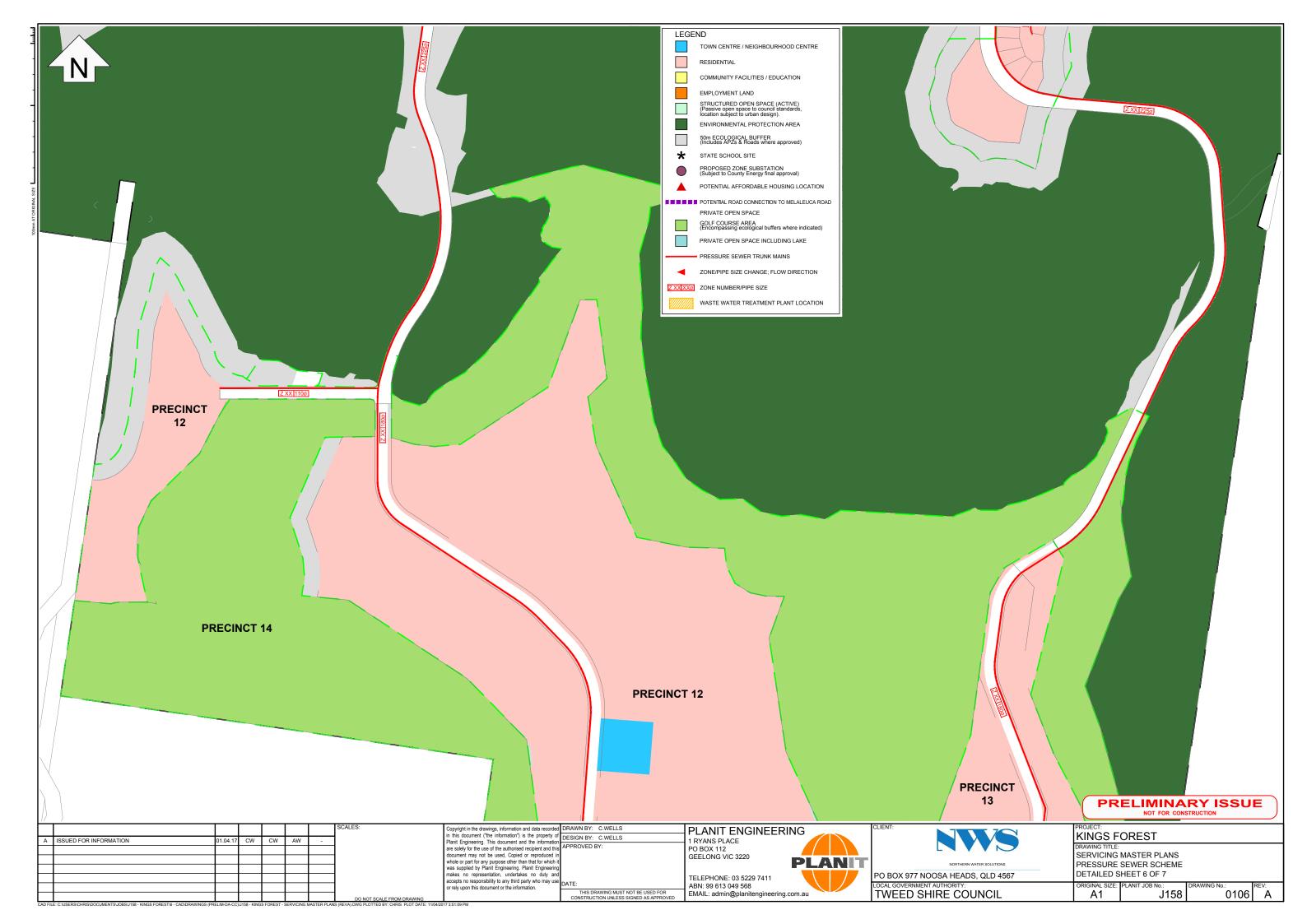

							SCALES:	Copyright in the drawings, information and data recorded in this document ("the information") is the property of Plant Engineering. This document and the information	DRAWN BY: C.WELLS	PLANIT ENGINEERING	CLIENT:	
┢	ISSUED FOR INFORMATION	01.04.17	CW	CW	AW	-	-	are solely for the use of the authorised recipient and this	APPROVED BY:	1 RYANS PLACE PO BOX 112		DRAWING TITLE:
F								document may not be used, Copied or reproduced in whole or part for any purpose other than that for which it was supplied by Planit Engineering. Planit Engineering		GEELONG VIC 3220 PLANIT	NORTHERN WATER SOLUTIONS	SERVICING MASTER PLANS COVER SHEET - LOCALITY AND INDEX PLAN
E								makes no representation, undertakes no duty and accepts no responsibility to any third party who may use		TELEPHONE: 03 5229 7411	PO BOX 977 NOOSA HEADS, QLD 4567	
F							DO NOT SCALE FROM DRAWING	or rely upon this document or the information.		ABN: 99 613 049 568 EMAIL: admin@planitengineering.com.au	LOCAL GOVERNMENT AUTHORITY: TWEED SHIRE COUNCIL	ORIGINAL SIZE: PLANIT JOB No.: DRAWING No.: REV: A1 J158 0001 A

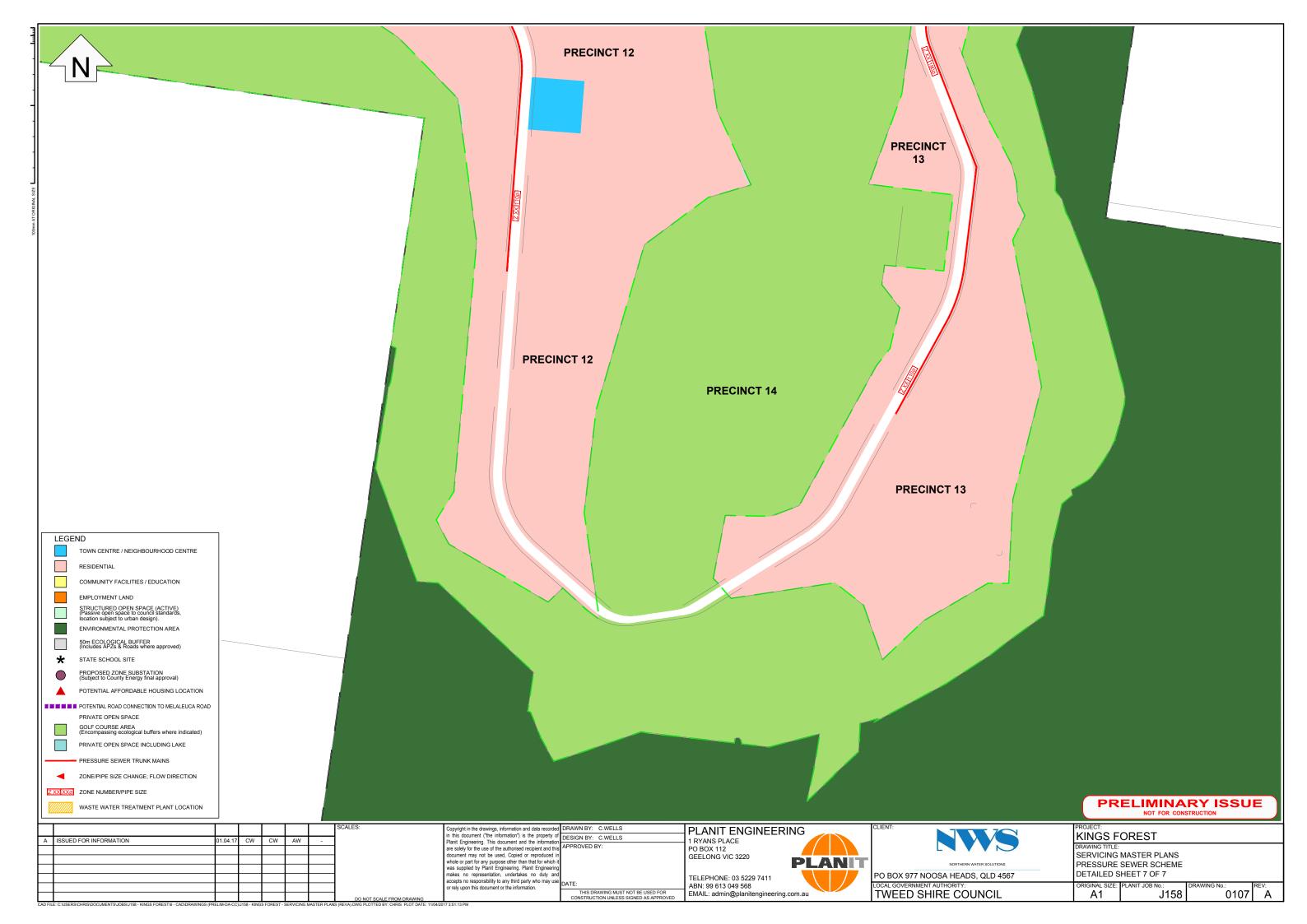

(PRELIMINARY ISSUE	
	NOT FOR CONSTRUCTION	_

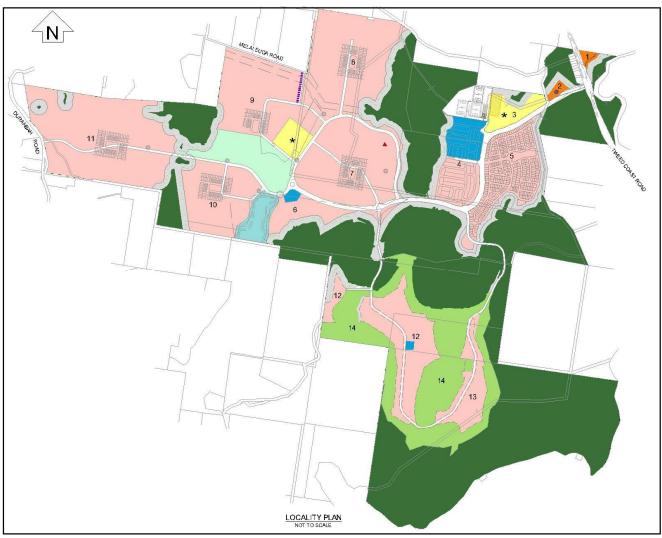



R SOLUTIONS	DRAWING TITLE: SERVICING MASTER PLANS OVERALL LAYOUT PLAN								
QLD 4567									
ICIL	ORIGINAL SIZE:	PLANIT JOB No.: J158	DRAWING No.: 0100	REV: A					


NOT FOR CONSTRUCTION







Kings Forest Development, Tweed Heads Waste Water Boundary Conditions Report

For Northern Water Solutions Pty Ltd Developer: Project 28 Pty Ltd Planit Engineering Date: January 2017 Document No. J158 - RPT002 – Rev03

Document Status

Version	Document type	Reviewed by	Checked by	Date Issued
Rev 01	Report	SR	AW	19 December 2016
Rev 02	Draft	WW	AW	31st December 2016
Rev 03	Draft	WW	AW	20 th April 2017

Project Details

Project Name:	Kings Forest Estate – Waste Water Discharge Boundary Conditions Report
Client	Northern Water Solutions Pty Ltd
Client CEO/ Project Manager	Wayne Williamson
Authors	Andrew Wells
Planit Reference:	J158-RPT002

Copyright

Planit has produced this document in accordance with instructions from Northern Water Solutions for its use only. The concepts and information contained in this document are copyright of Planit.

Use or copying of this document in whole or in part without written permission of Planit constitutes an infringement of copyright.

Planit does not warrant this document is definitive and free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

Planit

ABN 99 613 049 568 Suite 9a, 80-84 Ballina Street Lennox Head NSW 2478 (PO Box 161, Lennox Head NSW 2478) Telephone – 02 6687 4666 admin@planitengineering.com.au

Contents

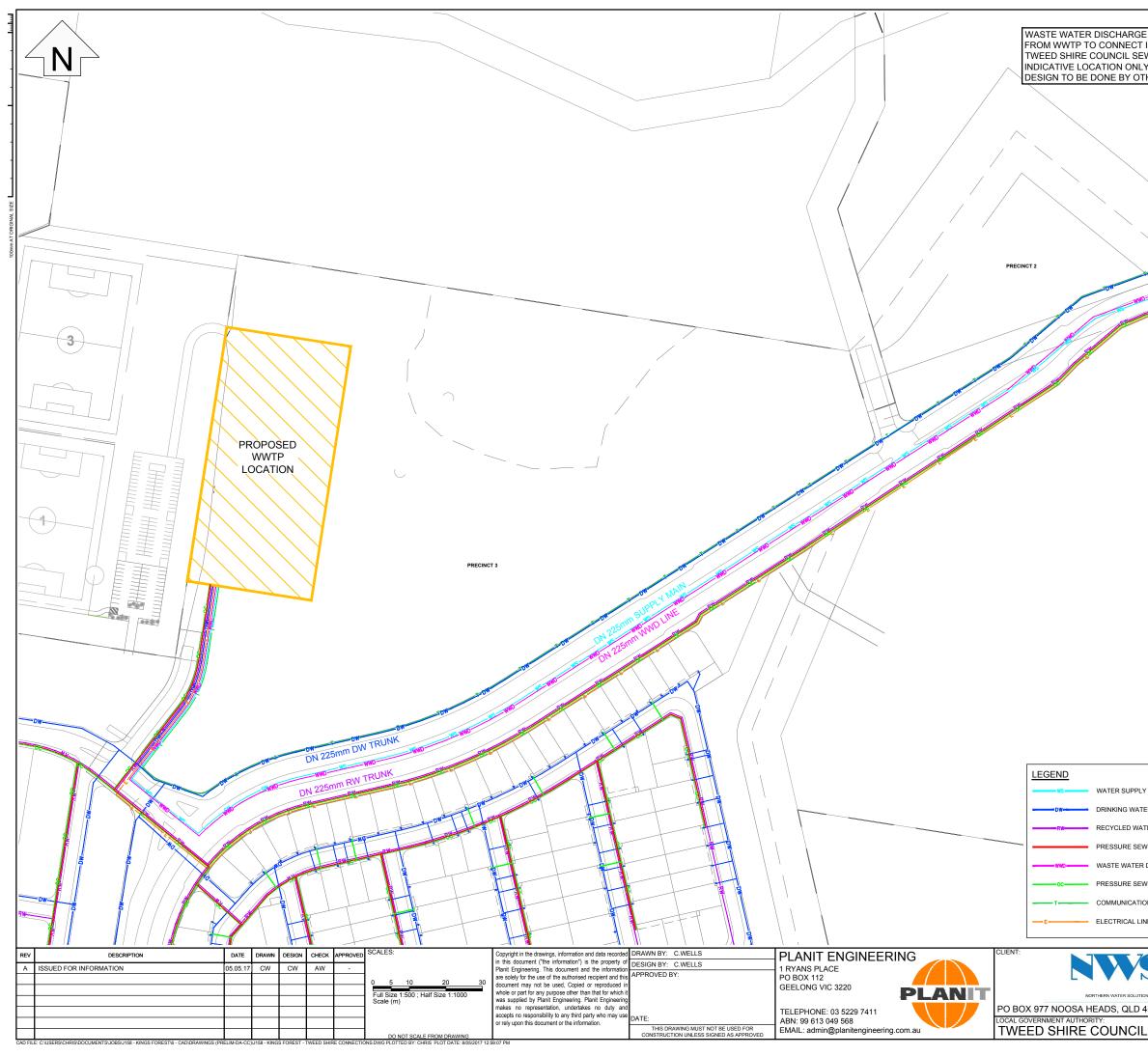

1	Introduction	4
	1.1 The Stakeholders	4
	1.2 Roles and Responsibilities	5
2	Background	7
	2.1 The Stakeholders	7
	2.2 The Referenced Documents	7
	2.3 The Kings Forest Estate Development Site	7
	2.4 Land Use Areas	8
	Table 1 – Land Use Areas	8
3	Kings Forest Estate Pressure Sewer Servicing Strategy	9
	3.1 The Owner and Operator	9
	3.2 Collection System	9
	3.3 Kings Forest Sewage Generation Quantity and Flow Rates	10
	3.3.1 Wastewater Generation per Equivalent Tenement	10
	Table 2 – Average Daily Wastewater Generation per Equivalent Tenement	10
	3.3.2 Ultimate Flow per Lot	10
	Table 3 – Ultimate Flow per Lot	11
	3.3.3 The Total Waste Water Flow for the Kings Forest Estate Development	11
	Table 4 – Total Flow at Full Development	11
	3.4 Wastewater Quality Parameters	11
	Table 5 – Waste Water Quality	11
	3.5 Recycled Water Reuse	12
	3.5.1 Recycled Water Excess Daily Discharge Rates	12
	Table 6 – Summary of Daily External Recycled Water Reuse Not Required on Wet Days	12
	3.5.2 Total Annual Recycled/Wastewater Excess	12
	Table 7 – Tweed Shire Council Equivalent ET Demand	12
	3.6 WWTP	12
	3.7 The new Sewerage Pumping Station and Rising Main	13
	3.7.1 Design flows	13
	3.8 Metered Discharge Rising Main	13
	3.9 The Kings Forest DRM Connection Location, SPS and Discharge Rising Main Parameters	13
	3.10 Kings Forest Monitoring and Control System	13
	3.10.1 Aspects to Be Monitored	14
	3.11 Odour Control	14
	3.11.1 DRM	14
4	Discharge Agreement Requirements 1	5
	Table 8 – Water Quality for Domestic Re-use Class A+	15

	Table	9 – MBR Treated Effluent Permeate Class A	15	
5	Reg	ulatory Requirements	16	
6	Eme	ergency Provision	16	
	6.1	After an Electricity Interruption	16	I
7	Terr	n Sheet	17	
8	Dra	ft Terms	18	
9	Role	es and Responsibilities	19	
	9.1 parties	The Draft Scope of works required by each stakeholder to be included in a agree s are: but not limited to,		,
	9.2	Demarcation lines of responsibility to be included in the draft agreements		
	9.3	Draft Fees and Charges	21	
	9.4	Regulatory Requirements	21	
A	opendi	x A – Waste Water Discharge PFD	i	
A	opendi	x B – Kings Forest Connection Location Plans	ii	

List of Figures

Figure 1 – Kings Forest Integrated Water Scheme Average Daily Demand	.6
Figure 2 – Kings Forest Service Area	.8

K	1//////////////////////////////////////		1	
RGE				
ONLY. OTHERS.			/ /	
$\langle \rangle$	I			
H				
\vdash				
、		T V C		
\sim /				
\sim				$\left(\right)$
	OWNER			
011				
	All and a second se			
MAD RANGE			\mathcal{H}	
			$\langle \rangle \rangle \langle \rangle$	
			Ŝ \ 	
		,	// \' /	
WATER SUPPLY (CONNECTION		TWIEED COAS	
FROM TWEED SH WATER MAIN.			-+'2	\backslash
INDICATIVE LOCA			THE A	
DESIGN TO BE DO	ONE BY OTHE	RS.	日	
			C C	
			5	Ŋ \
			\ `	R
			\ \	Q
			\	0
				$\setminus \setminus$
				\sim
IPPLY LINE				
OWATER MAIN				
ESEWER MAIN				
ATER DISCHARGE LINE				
E SEWER - OPTIC FIBRE CABLE				
CATIONS LINE TO WWTP				
AL LINE TO WWTP	PR			E)
	PROJECT:	NOT FOR CONS		
	KINGS F			
		RE COUNCIL SEWE	ER AND WATER	
LD 4567	CONNECTIC	ONS SCHEMATIC		
			DRAWING No.:	REV:
CIL	A1	J158	0001	A

Council Reference: Kings Forest Development Your Reference:

20 March 2017

Customer Service | 1300 292 872 | (02) 6670 2400

tsc@tweed.nsw.gov.au www.tweed.nsw.gov.au

Fax (02) 6670 2429 PO Box 816 Murwillumbah NSW 2484

Please address all communications to the General Manager

ABN: 90 178 732 496

Wayne Williamson Northern Water Solutions PO Box 977 NOOSA QLD 4567

Sent via email: <u>wayne@northernwatersolution.com</u>

Dear Wayne

Provision of Water and Sewerage Services to Kings Forest

Northern Water Solutions (NWS) has requested a letter from Council indicating that it was feasible for Council to provide bulk water and receive treated wastewater from an operator, licensed under the Water Industry Competition Act 2006, of water and sewerage infrastructure at the Kings Forest development.

On 16 March 2017 Council resolved to issue a letter to NWS advising NWS that it is technically feasible for Council to provide bulk water and receive treated wastewater from NWS for the Kings Forest development subject to:

- 1. Determining the impact on Council's infrastructure
- 2. Developing an agreement which ensures Council is not disadvantaged, and
- 3. A further resolution of Council approving the negotiated agreement

It should be noted that to enable this to occur there is a need for additional Council infrastructure to supply the bulk water and accept the treated wastewater from the development.

The intent of this letter, as requested by Northern Water Solutions, is to inform the Independent Pricing and Regulatory Tribunal that it is technically feasible for Council to provide bulk water to and receive bulk wastewater from a licenced operator at the Kings Forest development. The letter is not a commitment to do so as any such commitment would require a resolution of Council after consideration of a proposed agreement between Northern Water Solutions and Tweed Shire Council.

If you have any enquiries in respect to this matter please contact Rob Siebert at Tweed Shire Council at rsiebert@tweed.nsw.gov.au

Yours faithfully

David Oxenham DIRECTOR ENGINEERING

Project: Kings Forest Development Client: Project 28 Pty Ltd Title: Kings Forest Sewerage Preliminary Risk Assessment Date (Revision): 22/02/2017 As not Tables 2, 2, 5, 2, 5, 2, 27; Australian Cuidelings for Matter Base

				<u> </u>							(0 0 0 0)	
Ac nor I	ahlac 7 h '	ノドメウノ	· Nuctralian	(_ udalinas to	r Mator Poc	velina. Me	anaaina Hoa	alth and Envi	ronmental Risks	nhaco 1	(2006)	
	avies 2.0. 2	2.002.7	. Ausuallall	Ouldellines io		VUIIIIU. IVIO	anaunnu nec	1111 4114 611911	Uninternal i visks		120007	

Scheme				Unmitigated Risk						Mitigated Risk				
Component	Hazard	Hazardous Event	Impact	L	.ikelihood	Co	nsequence	Risk	Control Strategy	L	ikelihood.	Co	onsequence	Risk
Wastewater generation	Excessive wastewater generation		Build-up of raw wastewater in the inlet balance tanks, PSUs. Potential overflow to the environment	С	Possible	2	Minor	Moderate	 Water demand management strategy including minimum 3-star rated water efficient fixtures and appliances as required by BASIX. Education, encouragement and empowerment of customers to move towards best practice water efficiency with 5-star fixtures and appliances and smart water metering. Pressure sewerage collection system on all new lots to minimize infiltration of groundwater and storm water. Continuous online monitoring of pump starts and run hours on each Pressure Sewer Unit (PSU) to allow abnormal flows to be detected by the SCADA control system. Trade waste agreements and waste minimization plans will be required for non- residential customers. All non-residential customers will have their own dedicated PSU to enable direct monitoring of trade waste discharges through the SCADA control system. New customer contracts and access agreements that outline the responsibilities of the customer with regard to appropriate water usage and waste disposal practices. Ongoing awareness and communication with existing customers through additional information provided at each billing cycle & the Cobaki website. MBR has approximately 30-40% spare capacity during dry weather flows for treatment of peak flows. Road tanker pump out from individual PSUs and inlet Redundancy tanks if required. 	В	Unlikely	1	Insignificant	Low
	Trace contaminants in domestic wastewater	Poor household chemical use and disposal practices resulting in excessive contaminant levels in waste water	Potential environmental impacts on irrigation areas if not processed out by AWTP processes	С	Possible	2	Minor	Moderate	 Customer supply contracts and recycled water use agreement will be developed with each customer and will include obligations and education regarding substances that should not to be disposed of too the sewerage network that should be avoided. Ongoing customer awareness campaigns & information provided with each water bill & through the Kings Forest website. Ability to install online water quality monitoring probes (e.g. TDS, pH, TOC etc.) into pressure sewer pump wells to detect suspected inappropriate trade waste practices. 	В	Unlikely	2	Minor	Low
	Trace contaminants in commercial wastewater	Poor trade waste management practices resulting in excessive contaminant levels in recycled water	Potential environmental impacts on effluent irrigation areas	D	Likely	2	Minor	Moderate	 Predominately residential sewerage catchment with non-residential customer's account for 10% of all wastewater generated. Trade waste agreement will be developed with each non-residential customers to ensure wastewater is pre- treated to domestic standards before discharge into the sewerage system. Each non-residential customer in the pressure sewer catchment will have its own low pressure sewage pump station to enable monitoring of customer specific compliance with trade waste agreements. Ability to install online water quality monitoring probes (e.g. TDS, pH, TOC etc.) into pressure sewer pump wells to detect suspected inappropriate trade waste practices. 	В	Unlikely	2	Minor	Low

Project: Kings Forest Development Client: Project 28 Pty Ltd Title: Kings Forest Sewerage Preliminary Risk Assessment Date (Revision): 22/02/2017 As per Tables 2.5.2.6 & 2.7: Australian Guidelines for Water Recycli

Date (Revision): 22/02/2017 As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks-phase 1 (2006)

	Shock load of chemical or other contaminants		Potential biomass die off and reduction in MBR effluent quality Chemicals may also be an OHS hazard Impact on reuse potential	С	Possible	3	Moderate	High	 Continuous online monitoring of MLSS, DO, pH, TDS and other process parameters to detect potential impacts on the treatment process. If contaminants detected, an investigation will be undertaken into the source of contamination. This may involve review of Pressure Sewer Unit (PSU) operational data, water usage data, trade waste agreements etc. Additional online water quality monitoring probes can be installed into suspect PSUs for tracing persistent sources of contamination if required. Road tanker pump out of contaminated water from the WWTP inlet balance tank if required. 	В	Unlikely	3	Moderate	Moderate
	Gross pollutants in raw wastewate	Poor solid waste management practices r resulting in sewer blockage and overflow	Potential sewer blockage and overflow	E	Almost certain	2	Minor	Moderate	 Low pressure sewerage system with grinder pumps will macerate sewage prior to entering the pipe network. Appropriately designed gravity network designed to achieve self-cleansing velocities. Sewer/pump blockage Emergency Response Plan will be developed for the scheme and will include steps for identification of route cause and preventative actions. Where multiple blockages have occurred at the same location, specific customer awareness/education will be implemented or compliance notices issued. Flushing and maintenance regime will be developed for the pressure sewer network. Cleaning and maintenance regime will be developed for the gravity sewer network. Local contractors will be on call with equipment for clearing blockages. Gravity catchment flows are macerated prior to entering the WWTP inlet Redundancy tank. 	С	Possible	2	Minor	Moderate
Low Pressure Sewerage Collection System	Inflow and infiltration to the pressure sewer network	Inflow and infiltration into the pressure sewer network	Potential overflow from PSU or inlet Redundancy tank if combined inflows exceed capacity of MBR	D	Likely	2	Minor	Moderate	 Low pressure sewerage system constructed with PE100, PN16 HDPE with welded joints and fittings. Contractor induction and education. ITPS inspections and quality assurance sign off during construction. Flow and level monitoring at each PSU to detect sources of inflow. PSU pump operation centrally controlled by the SCADA Control System. PSUs with high water level are given pumping priority. WWTP Inlet Redundancy tanks (in concrete bund area) provides buffer during peak times and emergency storage. More than 24 hours storage capacity in each PSU. Road tanker pump out from individual pump units if required. Bund emergency road tanker pump out from inlet Redundancy tanks. 		Possible	2	Minor	Moderate
	Inflow and infiltration upstream of Pressure Sewer Unit (PSU)		Potential overflow from PSU	E	Almost certain	2	Minor	Moderate	 Plumbing inspection of all household plumbing installation prior to connection of each lot gravity sub sewer. Induction and awareness training for all domestic plumbing contractors working in the scheme. Flow and level monitoring at each PSU to identify sources of inflow. Customer education and rectification notices will be provided if required. Solvent welded joints in gravity sub sewers. 		Possible	2	Minor	Moderate

	Blockages upstream of Pressure Sewer Unit (PSU)	Potential overflow from PSU	E	Almost certain	2	Minor	Moderate	 Plumbing inspection of all household plumbing installation prior to connection. Induction and awareness training for all domestic plumbing contractors working in the scheme. 	С	Possible	2	Minor	Moderat
Sewer Unit (PSU)								 Upstream pipes designed and constructed to AS3500 plumbing code with 1:60 grade for self-cleaning. 					
								4. Flow and level monitoring at each PSU to identify sources of blockages. Customer education and rectification notices will be provided if required.					
								5. Local contractors will be on call with cleaning equipment for removing blockages.					
High peak diurnal flows	Excessive peak inflows	Potential overflow from PSU or inlet balance	с	Possible	2	Minor	Moderate	 Inlet Redundancy tanks at the WWTP provides buffer storage for diurnal flows. Storage capacity in each PSU provides buffer storage for diurnal flows. 	А	Rare	2	Minor	Low
		tank if combined inflows						3. PSU pump operation centrally controlled by the SCADA Control System. PSUs with					
		exceed capacity of MBR						high water level are given pumping priority in the control system.					
								4. Emergency road tanker pump out from inlet balance tank if required.					
Pressure sewer main	Pressure main failure or breakage due to	Discharge of raw sewage to the	с	Possible	3	Moderate	High	1. All mains constructed with PE100, PN16 HDPE pipe with welded joints and fittings.	в	Unlikely	2	Minor	Low
oreak	unapproved excavation	•						 All mains are pressure tested and certified during construction. Pressure sewer mains are generally located at the bottom of a common services trench, 					
	activity							hence other pipes will be damaged from poor excavation practices before the pressure sewer.					
								4. Signage and identification tape to be installed above all pressure mains.					
								5. All sewer pipe locations registered with dial before you dig service.					
								6. Flow monitoring at the WWTP will identify major variations in daily flow.					
								 Customer Service Centre and fault reporting with maximum response times for operations staff. 					
								8. Sewer spill Emergency Response Plan and clean-up procedures will be developed.					
								9. Pressure and flow monitoring in the pressure sewer network.					
-	Failure of PSU wet well	-	с	Possible	2	Minor	Moderate	1. Clean water static pressure test of each wet well during construction.	в	Unlikely	2	Minor	Lov
PSU wet well	resulting in subsurface leakage	sewage to groundwater						 Wet well designed to include allowances for all structural loads including hydrostatic and soil pressures. 					
								3. Timber bollards or fencing around all PSUs to prevent vehicle access in trafficked areas.					
								4. Water level and flow monitoring at each PSU.					
-	Pump failure by power	-	D	Likely	3	Moderate	High	1. All pumps in the scheme are monitored by the SCADA control system and an alarm	в	Unlikely	3	Moderate	Mode
	surge, blockage, loss of suction etc.	raw sewage to the environment						raised if any abnormality is detected. Monitoring includes: wet well water level, pump fault detection, power system fault detection, number of starts and run hours for both					
		environment						the duty and standby pumps, current draw in operation and during start up and energy consumption.					
								2. Duty and standby pumps in each PSU in the Kings Forest pressure sewer catchment.					
								3. Fail safe in electrical system so pump can operate during control system failure.					
								4. High quality robust pumps with long design life.					

Project: Kings Forest Development Client: Project 28 Pty Ltd Title: Kings Forest Sewerage Preliminary Risk Assessment Date (Revision): 22/02/2017 As per Tables 2.5.2.6 & 2.7: Australian Guidelines for Water Recycling: Ma

·		7 4 4 11 0 1		D "				(0000)
ac nor I ania	コマント ンドスツ	/· Australian (-iu	dalinas tar Wata	ar Rocyclina [.]	Manaaina He	alth and Environi	mental Risks-phase 1	1 (2006)
	-3 Z.J, Z.U & Z	. 1 . Australian Our			ivialiayiliy lib	aiui aiiu Liivii0iii		(2000)

	Power failure	Extended power failure across pressure sewer network	-	E	Almost certain	3	Moderate	High	 24 hours emergency storage is provided in all PSUs. Low pressure sewer network start up and recovery process is included in Direct Digital Control System logic to avoid excessive simultaneous pump operation. Road tanker pump out from individual PSUs if required. Inlet Redundancy tanks provides storage for peak inflows should a control system failure and power failure occur simultaneously. 	В	Unlikely	2	Minor	Low
Low Pressure	Blockages upstream of SPS	Blockages upstream of SPS	Potential overflow from SPS or inlet balance tank if combined inflows exceed capacity of MBR		Almost certain	2	Minor	Moderate	 Upstream pipes designed and constructed to WSAA code to achieve self-cleaning. Local contractors on call with cleaning equipment for removing blockages. Maintenance access designed into the sewerage network. Customer Service Centre and fault reporting with maximum response times for operations staff. Sewer spill Emergency Response Plan and clean-up procedures will be developed. Operation and maintenance plan for gravity main cleaning. 	С	Possible	2	Minor	Moderate
Sewerage Collection System	High peak diurnal flows	Excessive peak inflows	Potential overflow from inlet Redundancy tank if combined inflows exceed capacity of MBR		Possible	2	Minor	Moderate	 Inlet Redundancy tanks at the WWTP provides buffer storage for diurnal flows. Storage capacity in PSU tanks, upstream reticulation network and below ground storage provides buffer storage for diurnal flows. PSU pump operation is centrally controlled by the SCADA Control System. Emergency bund truck pump out from Redundancy tanks if required. Approximately 40% spare capacity in the MBR during dry weather flows for treatment of peak flows. 	A	Rare	2	Minor	Low
	Gravity sub sewer break	Gravity sewer failure or breakage due to unapproved excavation activity	Discharge of raw sewage to the environment	С	Possible	3	Moderate	High	 Signage and identification tape to be installed above all gravity mains. All sewer pipe locations registered with dial before you dig service. Flow monitoring at the WWTP will identify major variations in daily flow. Customer Service Centre and fault reporting with maximum response times for operations staff. Sewer spill Emergency Response Plan and clean-up procedures will be developed. 	В	Unlikely	2	Minor	Low
Wastewater Treatment - Redundancy Balance Tank, Membrane Bioreactor + UV Disinfection	Power failure	Extended power failure at PSUs	Potential discharge of raw sewage to the environment	E	Almost certain	3	Moderate	High	 WWTP Redundancy balance tank provides storage for peak inflows that could occur if a control system failure and power failure occur simultaneously. Emergency bund road tanker pump out from Redundancy balance tank if required. Standby power generator is provided at the WWTP. 	B	Unlikely	2	Minor	Low

As per Tables 2.5, 2.6 & 2.7: Australian Guideline	as for Water Recycling. Managing Health and Envi	ronmantal Ricks_nhasa 1 (2006)
$A_{3} p_{C} = a_{3} c_{3} c_{3} c_{3} c_{3} c_{4} c_{2} c_{4} c_{2} c_{1} c_{3} c_{4} c_$	c_{3} ioi vvaloi necvoling. Managing nealth and c_{1}	

Failure of	Tank failure	Discharge of process	С	Possible	4	Major	Very high	1.316 stainless steel panel tank construction to minimize corrosion potential.					
WWTP Redundancy balance tank		water to environment						2. Inlet structure to enable the rising mains to discharge into the bottom of the Redundancy tank below the bottom water level to minimize release of gases which could cause corrosion inside the tank.					
								3. If odor and/or corrosion issues are observed in operation, the incoming rising mains will be injected with metal salts to minimize the release of hydrogen sulphide and formation of acid inside the tank.					
								4. Benched tank floor and mechanical jet mixers inside the tank to minimize sedimentation of solids inside the tank and minimize volume at bottom water level.					
								5. Sealed tank with ventilation of gases through a McBerns activated carbon filters with extraction fan.					
								6. Well washer system to enable automatic cleaning of the tank following a high level event.					
								 Tank is to be located in a concrete lined and bund area. Bund storage volume equivalent to >100% of the tank volume. 					
								8. Concrete bund truck loading area, with quick coupling valves and start/stop controls for filling road tankers.					
								9. Designed to minimize/avoid human access.					
Structural	Tank failure	Discharge of process	с	Possible	3	Moderate	High	1. Stainless steel tanks with appropriately designed footings.	А	Rare	3	Moderate	Low
failures of process tanks and pipes		water to environment						2. Quality assurance during tank manufacture and installation.					
Process tank	Blockage or fault	Discharge of process	С	Possible	2	Minor	Moderate	1. All process tanks gravity overflow back to MBR inlet tanks.	в	Unlikely	2	Minor	Low
overflows	causing overflow of process tanks	water to environment						2. Screening system on inlet to MBR tank is to remove gross solids and avoid blockages.					
	Failure of mechanical	Non-compliant recycled	E	Almost	3	Moderate	High	1. Fault detection on all critical mechanical electrical components.	С	Possible	2	Minor	Moder
electrical items	electrical items	water		certain				2. Continuous online water quality monitoring of critical process parameters, e.g. DO, pH, MLSS, transmembrane pressure, turbidity, UV intensity.					
Power blackouts	Extended power blackout	Loss of treatment capacity	E	Almost certain	3	Moderate	High	1. No sewage inflow to MBR during power blackout as pressure sewer system will also be down	с	Possible	2	Minor	Modera
								2. Wastewater will Build-up in 24 hours emergency storage at each PSU.					
								3. Road tanker pump out from each PSU if required.					
								4. Electrical connection point for mobile power generator to power MBR if required.					
								5. Battery backup of SCADA control systems.					
•	• •	Carryover of solids to	С	Possible	2	Minor	Moderate	1. Only macerated sewage will enter the plant.	в	Unlikely	2	Minor	Low
unit	unit caused by excessive solids in raw	MBR with reduced treatment performance						2. Water level monitoring and high level alarm in screening unit.					
	wastewater	and increased risk of membrane failure						3. If screening blockage occurs undertake investigation into source of gross solids and implement preventative actions.					

Project: Kings Forest Development Client: Project 28 Pty Ltd Title: Kings Forest Sewerage Preliminary Risk Assessment Date (Revision): 22/02/2017 As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks-phase 1 (2006)

Waste

sludge

activated

Inadequate sludge

wastage rates

High MLSS in MBR,

fouling

decline in effluent quality

& increased membrane

Vastewater Freatment -	Hydraulic overload	Excessive sewerage flows	Build-up of raw wastewater in the inlet	С	Possible	2	Minor	Moderate	1. WWTP Inlet Redundancy tanks have a minimum of 660 kL storage capacity probuffer storage for diurnal flows.
nlet Balance Fank,	during diurnal peak		balance tank and PSUs. Potential overflow to the						2. Integrated into the design of each MBR train is 80 kL of buffer storage provide inlet tank, anaerobic tank and anoxic tank.
Membrane Bioreactor + JV	flows		environment						3. MBR has approximately 30-40% spare capacity during dry weather flows for tr peak flows.
Disinfection									4. 24 hour storage capacity in each PSU can also provide buffer storage in extre
									5. Total available emergency storage in the scheme exceeds 36 hours storage a
									6. PSU pump operation centrally controlled by the SCADA Control System. PSU high water level are given pumping priority through the control system logic.
									7. Road tanker pump out from individual PSUs if required during operation.
									8. Emergency road tanker pump out if required from WWTP Inlet Redundancy tar concrete bund area.
	Hydraulic overload	Excessive sewerage flows caused by	Build-up of raw wastewater in the inlet	с	Possible	3	Moderate	High	1. Total available emergency storage in the system exceeds 36 hours storage at (see control strategies on previous point).
	during wet	extreme rain events	balance tank and PSUs.						2. MBR has approximately 30-40% spare capacity during dry weather flows for tr
	weather events		Potential overflow to the environment						peak flows.
									3. During wet weather the following level monitoring and actions will be undertak (Note: These level set points will be adjustable in operation)
									4. As a further safeguard the WWTP inlet Redundancy tanks is located in a conc area with a minimum storage capacity of 660 kL that will be utilized in the unlike that the WWTP inlet Redundancy tanks overflow.
	Pollutant	Excessive BOD or	Non-compliant recycled	с	Possible	3	Moderate	High	1. Continuous online monitoring of MBR process DO, MLSS, pH with alarms.
	overload	ammonia load	water						2. Variable speed drive aeration system to match air supply with inflow and DO s point. Reserve capacity is designed into the aeration system.
									3. If process impacts due to high pollutant loads are observed a source control investigation will be undertaken using raw wastewater, trade waste data and presewer pump data.
	Membrane CIP waste	Return of chemical laden CIP waste through MBR	Potential upset of treatment process and biomass die off	D	Likely	3	Moderate	High	1. The MBR CIP waste will be trucked off site to nearest approved facility.
	Process	Spillage of process	Potential release of	с	Possible	3	Moderate	High	1. Appropriate bund and separation of chemicals in chemical storage and deliver
	chemicals	chemicals	chemicals to the environment Potential OH&S impacts						2. Standard operating procedures for the transport, receipt and use of chemicals

3

Moderate

High

Almost

certain

			-		
1. WWTP Inlet Redundancy tanks have a minimum of 660 kL storage capacity providing buffer storage for diurnal flows.	В	Unlikely	2	Minor	Low
2. Integrated into the design of each MBR train is 80 kL of buffer storage provided in the inlet tank, anaerobic tank and anoxic tank.					
 MBR has approximately 30-40% spare capacity during dry weather flows for treatment of peak flows. 					
4.24 hour storage capacity in each PSU can also provide buffer storage in extreme events.					
5. Total available emergency storage in the scheme exceeds 36 hours storage at ADWF.					
6. PSU pump operation centrally controlled by the SCADA Control System. PSUs with high water level are given pumping priority through the control system logic.					
7. Road tanker pump out from individual PSUs if required during operation.					
 Emergency road tanker pump out if required from WWTP Inlet Redundancy tanks in a concrete bund area. 					
1. Total available emergency storage in the system exceeds 36 hours storage at ADWF (see control strategies on previous point).	в	Unlikely	2	Minor	Low
 MBR has approximately 30-40% spare capacity during dry weather flows for treatment of peak flows. 					
 During wet weather the following level monitoring and actions will be undertaken. (Note: These level set points will be adjustable in operation) 					
4. As a further safeguard the WWTP inlet Redundancy tanks is located in a concrete bund area with a minimum storage capacity of 660 kL that will be utilized in the unlikely event that the WWTP inlet Redundancy tanks overflow.					
1. Continuous online monitoring of MBR process DO, MLSS, pH with alarms.	В	Unlikely	3	Moderate	Moderate
 Variable speed drive aeration system to match air supply with inflow and DO set point. Reserve capacity is designed into the aeration system. 					
3. If process impacts due to high pollutant loads are observed a source control investigation will be undertaken using raw wastewater, trade waste data and pressure sewer pump data.					
1. The MBR CIP waste will be trucked off site to nearest approved facility.	в	Unlikely	3	Moderate	Moderate
 Appropriate bund and separation of chemicals in chemical storage and delivery area. Standard operating procedures for the transport, receipt and use of chemicals. 	A	Rare	2	Minor	Low
 Continuous online monitoring of MLSS, DO and TMP with alarms. When MLSS reaches maximum set point sludge is pumped from the bottom of the MBR tank to a sludge holding tank before offsite disposal to approved facility. 	в	Unlikely	3	Moderate	Moderate

Project: Kings Forest Development Client: Project 28 Pty Ltd Title: Kings Forest Sewerage Preliminary Risk Assessment Date (Revision): 22/02/2017 As per Tables 2.5.2.6.8.2.7: Australian Guidelines for Water Recyclin

· · ·			<u> </u>				<pre> / D' / / / /</pre>	(0 0 0 0)
Ac nor lar	10075768	$2.7.7.\Delta ustralian$	Guidelines for W	ator Rocyclino	• Manaqinq Hos	alth and Environmer	ntal Ricks_nhasa 1	(2006)
AS por ruc	1032.0, 2.00	x Z. I . Ausu anan			. Managing 1100			(2000)

	Membrane failure	Membrane failure resulting in carryover of human pathogens	Non-compliant permeate [feed water	D	Likely	4	Major	Very high	 Continuous online monitoring of membrane permeate turbidity and transmembrane pressure. If event occurs, identify and isolate failed membrane module and if required replace failed membrane module. Shut off irrigation supply pump and undertake monitoring of pond water quality to ensure compliance. An Emergency Response Plan will be developed for MBR membrane failure. 	Ł	Unlikely	4	Major	High
Wastewater Treatment - Inlet Redundancy Tank, Membrane Bioreactor +	UV failure	Inadequate UV dose due to lamp failure, reactor fouling, high flow or high turbidity	Non-compliant permeate E feed water	E	Almost certain	3	Moderate	High	 Continuous online monitoring UV intensity, flow, upstream permeate turbidity and lamp failure. If Low UV dose is recorded investigate and rectify. An Emergency Response Plan will be developed for UV lamp failure. Auto cleaning UV unit. 	С	Possible	3	Moderate	High
UV Disinfection	Sabotage/ vandalism	Sabotage/vandalism	Potential loss of treatment function	CF	Possible	4	Major	Very high	 Lockable site with 2.4m secure fencing. Lockable shed for all treatment equipment. Remotely accessible CCTV system at WWTP site. Community awareness and involvement in the local water scheme. 	В	Unlikely	3	Moderate	Moderate
	Noise	Excessive noise generation	Noise complaints for nearby residents	CF	Possible	2	Minor	Moderate	 A 80 meter buffer from the WWTP to the nearest residential dwelling. WWTP building located adjacent rural lands. The MBR and AWTP are located inside the WWTP building. Specific "noisy" equipment items like aeration blowers etc will be housed inside custom noise enclosures. Equipment specifications and design of custom noise enclosures will be undertaken to ensure compliance with the NSW Industrial Noise Policy of background noise plus 5 dBA at nearest residential dwelling. All planned construction and routine maintenance works will be undertaken during standard permissible hours. All emergency works will be undertaken to minimize noise impacts on residents. 	A	Rare	2	Minor	Low

As per Tables 2.5, 2.6 & 2.7: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks-phase 1 (2006)

	Odor	Excessive odor generation	Odor complaints by nearby residents	С	Possible	2	Minor	Moderate	 Ventilation stacks provided on all house connections to ensure gravity sewers are well ventilated. All gravity sewers designed to achieve self-cleansing velocity to avoid accumulation and breakdown of solids in the network. 	A	Rare	2	Minor	Low
									3. Minimum of 80 m buffer between the WWTP site and residential dwellings.					
									4. Passively ventilated McBerns activated carbon filters will be used on all air valves in the pressure sewer network					
									5. Inlet structure to enable the rising mains to discharge into the bottom of the WWTP inlet Redundancy tanks below the bottom water level to minimize release of gases inside the tank.					
									6. Actively ventilated McBerns activated carbon filter on the WWTP inlet Redundancy tanks.					
									7. All other treatment tanks are located inside the WWTP building.					
									8. All treatment tanks are sealed with passive ventilation through McBerns activated carbon filters located on the roof of the WWTP building.					
									9. The MBR room in the WWTP building has automatic indoor air quality monitoring for temperature, oxygen, hydrogen sulphide and methane, with automatic operation of an evaporative air conditioning unit to maintain ventilation and air quality.					
									10. WWTP building includes deodorizing sprayers for use if required.					
									11. The Kings Forest has a 24 hour customer service call center for fielding all odor and other complaints. All complaints are recorded, reviewed and acted upon as outlined in the Onsite WWMP.					
Wastewater Treatment -	Aesthetics	Excessive visual impacts	Complaints from nearby residents	С	Possible	2	Minor	Moderate	1. All pressure sewer units (PSU) are located below ground. The only visible infrastructure is the lid and power turret for each PSU.	А	Rare	2	Minor	Low
Inlet Balance Tank, Membrane									2. There will be approximately 4 lots connected to each PSU, which results in a lower visual impact compared to a standard pressure sewer model where there is one PSU for every lot.					
Bioreactor + UV									3. Minimum of 80m buffer between the WWTP site and residential dwellings.					
Disinfection									4. All MBR and AWTP assets are located inside the WWTP building.					
									5. The WWTP building is located in a rural zoned area with buildings of similar construction and visual appearance.					
									6. The scheme uses onsite recycled water storage with variable speed drive booster pump sets, hence there is no need to construct an elevated reservoir on a hill near the site to provide service pressures to the scheme.					
	Indoor air quality inside MBR building modules	Contamination of indoor air with harmful sewer gases	OH&S impacts	В	Unlikely	4	Major	High	 All treatment tanks are sealed and externally ventilated. Continuous online monitoring of indoor air quality for oxygen, hydrogen sulphide and methane gas inside the WWTP building, with automated air conditioner/ventilation system operation and alarm systems. 	В	Unlikely	3	Moderate	Moderate

SEWERAGE QUALITATIVE ENVIRONMENTAL AND PUBLIC HEALTH RISK ASSESSMENT CRITERIA

From Tables 2.5, 2.6 and 2.7 on Page 39 of the Australian Guidelines for Water Recycling Managing Health & Environmental Risks Phase 1 (2006)

Qualitative Measures of Likelihood

Level	Descriptor	Example Description from AGWR		
A	Rare	May occur only in exceptional circumstances. May occur once in 100 years		
В	Unlikely	Could occur within 20 years or in unusual circumstances		
С	Possible	Might occur or should be expected to occur within a 5- to 10- year period		
D	Likely	Will probably occur within a 1- to 5- year period		
E	Almost certain	Is expected to occur with a probability of multiple occurrences within a year		

Qualitative Measures of Consequence or Impact

Level	Descriptor	Example Description from AGWR
1	Rare	Insignificant impact or not detectable
2	Minor	Health — Minor impact for small population
3	Moderate	Health — Minor impact for large population
4	Major	Health — Major impact for small population
5	Catastrophic	Health — Major impact for large population
		Environment — Potentially lethal to regional ecosystem or threatened species; widespread on- site and off- site impacts

Qualitative Risk Analysis Matrix: Level of Risk

				Consequences		
		1	2	3	4	5
LIK	elihood	Insignificant	Minor	Moderate	Major	Catastrophic
Α	Rare	Low	Low	Low	High	High
В	Unlikely	Low	Low	Moderate	High	Very high
С	Possible	Low	Moderate	High	Very high	Very high
D	Likely	Low	Moderate	High	Very high	Very high
Е	Almost	Low	Moderate	High	Very high	Very high

Kings Forest Development Tweed Heads, NSW

Infrastructure Operating Plan

February 2017

Appendix 4.3.10A

Table of Contents

1 Int	roduction Plan Framework	
	rastructure Description	
2.1	Overview	
2.2	Kings Forest Scheme	
3 Th	e Pressure Sewer Collection Network	6
4 Wa	astewater Treatment	
4.1	Membrane Bioreactor Stages A, C & D	8
4.2	The MBR WWTP Process Description	8
4.2		
4.3	Stage B - The Advanced Water Treatment Plant	
4.4	The Class A+ Recycled Water Quality, Uses and Log Reduction Targets	
4.5	Waste Products generated by the processes at the Kings Forest WWTP S	
	MBR Screenings	
4.5		
	0.3 UF Filtration Back Wash	
4.6		
	age A – up to the first 500 ET	
κ.ir	ngs Forest Scheme – Offsite Discharge	15
5 Le	vels of Service	16
6 Cc	prporate Asset Management Systems	17
6 Co	Asset Management Systems	
		17
6.1	Asset Management System Software	17 17
6.1 6.2	Asset Management System Software Finance System	17 17 17
6.1 6.2 6.3	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management	17 17 17 17 18
6.1 6.2 6.3 6.4	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre	17 17 17 17 18
6.1 6.2 6.3 6.4 6.5 6.6	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre	17 17 17 17 18 19
6.1 6.2 6.3 6.4 6.5 6.6	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management	17 17 17 17 18 19 20
6.1 6.2 6.3 6.4 6.5 6.6	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets	17 17 17 18 19 20 22
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets .1 Routine Operation & Preventative Maintenance Systems	17 17 17 18 19 20 22 22
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets	17 17 17 18 19 20 22 22 23
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance	 17 17 17 18 19 20 22 22 23 24
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.2	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment	 17 17 17 18 19 20 22 22 23 24 28
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.2 7.3	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets .1 Routine Operation & Preventative Maintenance Systems .2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans	 17 17 17 18 19 20 22 23 24 28 31
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.2 7.3 7.4 7.5	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement	 17 17 17 18 19 20 22 23 24 28 31 31
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.2 7.3 7.4 7.5	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal	17 17 17 18 19 20 22 23 24 28 31 31 31 32
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.1 7.2 7.3 7.4 7.5 8 Fi	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal Financial Summary Financial Overview	17 17 17 18 19 20 22 23 24 28 31 31 31 32 32
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal Financial Summary Financial Overview	17 17 17 18 19 22 23 24 28 31 31 31 32 32 32
6.1 6.2 6.3 6.4 6.5 6.6 7 Ri 7.1 7.1 7.1 7.1 7.1 7.2 7.3 7.4 7.5 8 Fin 8.1 8.1 8.1	Asset Management System Software Finance System Geographical Information System Customer Service/Operations Centre Risk Management Customer Service/Operations Centre sk Management Operation and Maintenance of Assets 1 Routine Operation & Preventative Maintenance Systems 2 Call Out Maintenance Asset Condition Assessment Contingency Planning and Emergency Response Plans Asset Renewal and Replacement Asset Disposal Financial Summary Financial Overview 1 Capital Funding	17 17 17 18 19 22 23 24 28 31 31 32 32 32 32 32

9	Re	view and Continuous Improvement	33
		Infrastructure Operating Plan Review	
9	.2	Improvement & Implementation Plan	33

Tables

Table 1	Description of the MBR WWTP Process	8
Table 2	Typical effluent quality from the MBR	9
Table 3	Recycled Water Quality for Domestic Re-use Class A+	10
Table 4	Pathogen Log Reduction Target and Credits Being Claimed for the AWTP	11
Table 5	Recycled Water Storage Tank Operation	14
Table 6	Overview of Operation and Maintenance Plan & Procedures	23
Table 7	Infrastructure Monitoring and Condition Assessment Methodology	25
Table 8	Contingency planning and Emergency Response Plans	29

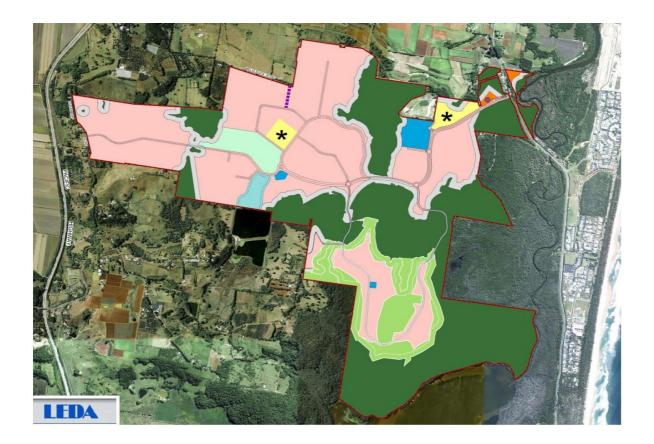

Figures

Figure 1	Kings Forest Integrated Water Scheme Average Daily Demand	2
Figure 2	Kings Forest Staging Plan	2
Figure 3	PSU & Control Pillar	6

Appendices

Appendix A	Drinking Water,	Recycled Water 8	Sewer Preliminary R	isk Assessments1
	,		· • • • • • • • • • • • • • • • • • • •	

Kings Forest Tweed Heads NSW

MBR Operations and Maintenance Manual

February 201

Table of Contents

1 Int	roduction	1
1.1	Water Treatment Unit Overview	2
1.2	Contact Information	3
2 Sa	fety	4
2.1	Emergency Shutdown	
2.2	Installation	
2.3	Operational Hazards	
2.3	•	
2.3		
2.3		
2.4		
2.4	•	
2.4	5	
2.4		
2.4		
-	eration Instructions	
3.1	System Operating Parameters	
3.2	Feed Requirements	
3.3	Operation Limitations	
3.4	Daily Record Data	
3.4		
	.2 Record Data	
3.5	Sludge Disposal Procedure	
3.6	Valve Sequencing	. 14
4 Eq	uipment Description	.15
4.1	Primary Treatment	. 15
4.2	Membrane Bioreactor	. 15
4.3	Aerobic Tank	. 17
4.4	MBR Module	. 17
4.4	.1 Blower	. 17
4.4	.2 Permeate Pump	. 18
4.4	.3 Sludge Pump and Settling Tank	. 18
4.5	Valve Summary	
4.6	Electrical System	. 19
4.7	Control Logic	. 19
5 Un	it Installation	.21
5.1	Membrane Placement	
5.2	Interface Piping and Valving	
5.3	Electrical Connections	
5.4	Chemical Storage	
-		
	art Up and Shut Down Procedures	
6.1	Manual Valve Positioning	
6.2	Emergency Shut-down	. 23

6.3 Initial Start-up or Start-up After Maintenance	23
6.3.1 Preliminary Checks	
6.3.2 Initial Startup Sequence	
6.4 Post Initial Start-up	
6.5 Shut-down for Long Term	
7 Maintenance and Repair	26
7.1 Maintenance Requirements	
7.1.1 Weekly Maintenance Checks	
7.1.2 Monthly Maintenance Checks	
7.1.3 Quarterly Maintenance Checks	
7.1.4 Yearly Maintenance Checks	
7.2 Maintenance Procedures	
7.3 System Cleaning	
7.3.1 Cleaning of Air Distributors using Air	
7.3.2 Membrane Clean in Place	
7.3.3 In-Line Acid Cleaning	
7.3.4 Caustic/Hypochlorite Cleaning	
8 Troubleshooting	31
8.1 Alarms and Problems	
8.2 Troubleshooting Guide	

Tables

Table 3-1: MBR Design Summary	9
Table 3-2: System Power Specifications	9
Table 3-3: MBR System Nominal Setpoints	10
Table 3-4: MBR Operating Limitations	11
Table 3-5: Critical Alarms	14
Table 3-6: Local Alarms	14
Table 4-1: MBR Equipment and Instruments	16
Table 4-2: MBR Membrane Module Data	17
Table 4-3: Manual Valves	18
Table 6-1: Manual Valve Operating Positions	22
Table 8-1: Index to Critical Alarms	32
Table 8-2: Index to Advisory Alarms	32
Table 8-3: Index to Non-Alarm Problems	32
Table 8-4: Critical Alarm Light ON	33
Table 8-5: Troubleshooting Emergency Stop Alarms	33
Table 8-6: Troubleshooting High Permeate Pump Suctions Pressure Alarm	34
Table 8-7: Troubleshooting Air Scour Alarm	345

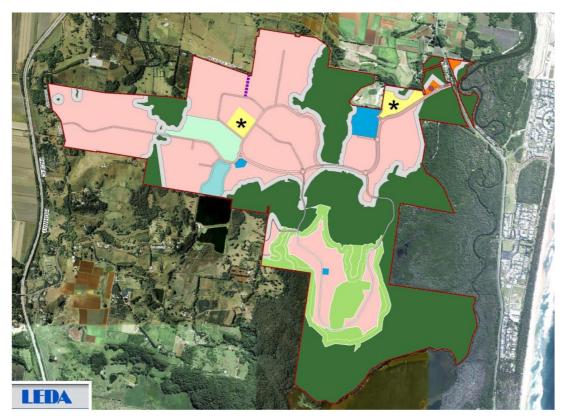


Table 8-8: Troubleshooting Pump or Blower Failures	35
Table 8-9: Troubleshooting Dissolved Oxygen Low Alarm	35
Table 8-10: Troubleshooting Tank Level High Alarms	36
Table 8-11: Troubleshooting Tank Level Low Alarms	36
Table 8-12: Troubleshooting Instrumentation Problems	36

Figures

Figure 3-1: MBR Daily Record Log W.W.T.P	Figure 3-1: MBR Daily Record Log W.W.T.P	13
--	--	----

Kings Forest Tweed Heads NSW

Water and Waste Water Plants Functional Specification

Stages A, B, C and D

February 2017

Table of Contents

	Exec	utive Summary	1
	Gloss	sary of Terms	7
	1	Process Control Requirements	9
1.1	Introd	uction	
1.2		ss and Instrumentation Diagram Drawings	
1.3		onal Operation Description	
	1.3.1	The MBR WWTP Stage-A Sequence which is the same as for Stages C & D	
	1.3.1	The Primary Screening Units (SCR-2000) to be installed in Stages A, C & D	
	1.3.2	The Inlet Screen (SCR-2000) Sequence	
	1.3.3	The Inlet Screen (SCR-2000) Control	16
	1.3.4	The IRGA Valve (VLV-2000a) and Press Zone Wash Valve (VLV-2000b)	20
	1.3.5	The Influent Tank (2001) to be installed in Stages A, C & D	21
	1.3.6	The Anaerobic Feed Sump Pumps (PMP-2001 & PMP-3001) in the Influent Tank (TNK-2001)	21
	1.3.7	The Anaerobic Tanks (TNK-2002 & TNK-3002) to be installed in Stages A, C & D	
	1.3.8	The Anoxic Feed Sump Pumps (PMP-2002 & PMP-3002) in the Anaerobic Tanks (TNK-2002 & TNK-3002)	23
	1.3.9	Control Mode Selection: Standard VSD (VSD-2002 & VSD-3002)	
	1.3.10	The Anoxic Tanks (TNK-2003 & TNK-3003) to be installed in Stages A, C & D	
	1.3.11	The Aeration Feed Sump Pump (PMP-2003 & PMP-3003) in the Anoxic Tanks	20
	1.0.11	(TNK-2003 & TNK-3003)	24
	1.3.12	The Anoxic Mixing Pumps (MIX-2003 & MIX-3003) in the Anoxic Tanks	
		(TNK-2003 & TNK-3003)	
		The Aeration Tanks (TNK-2004 & TNK-3004) to be installed in Stages A, C & D	25
	1.3.14	MBR Feed Sump Pumps (PMP-2004 & PMP-3004) in Aeration Tanks	00
	4 0 45	(TNK-2004 & TNK-3004) to be installed in Stages A, C & D	26
	1.3.15	The MBR Tanks (TNK-2005 & TNK-3005) & Permeate Pumps (PMP-2009 & PMP-3009) to be installed in Stages A, C & D	27
	1 2 1 6	The Permeate Pumps (PMP-2009 & PMP-3009)	
	1.3.10		
	1.3.17	(TNK-2005 & TNK-3005) to be installed in Stages A, C & D	20
	1 2 1 0	MBR Tank Well Washing (VLV-2007 & VLV-3007) to be installed in Stages A, C & D	
	1.3.19		
	1.5.19	Stages A, C & D	31
	1 3 20	MBR Membrane Diffuser Header Flushing Valves (VLV-2006 & VLV-3006)	
	1.5.20	to be installed in Stages A, C & D	31
	1.3.21	MBR Flushing Valve (VLV-2006 & VLV-3006) Operation	
	1.3.22		
	1.3.23		
		Evaporative Coolers (EVC-2001 & EVC-2002) Operation	
		Gas Level Monitoring (Oxygen ASH-2000c), (Hydrogen Sulphide ASH-2000b) and	
	1.0.20	(Methane ASH-2000a) to be installed in Stages A, C & D	.34
	1.3.26	· · · ·	
		Smoke Detectors WWTP Building during Stages A, B, C & D	

1.3.28	Security Access and Surveillance Cameras Stages A, B, C & D	35
1.3.29	Chemical Exhaust Fan (EXF-3000) to be mounted on the roof of the chemical	
	dosing areas in Stages A, C & D	36
1.3.30	WWTP Maintenance Area AC Unit (AC-1) to be installed during Stage A	36
1.3.31	MBR Metal Salts (PALC) Addition Pump for Phosphorous Control (PMP-3111)	
	to be installed in Stages A, C & D	36
1.3.32	MBR Caustic Soda PH Correction Addition Pump (PMP-3211) to be installed in	
	Stages A, C & D	37
1.3.33	MBR Acetic Dosing for Carbon Control Addition Pump (PMP-3011) to be	
	installed in Stages A, C & D	38
1.3.34	(Hypo) Recycled Water & Potable Water Addition Dosing Pump (PMP-3311)	
	to be installed in Stage A	39
1.3.35	MBR Tank Caustic Dosing Pump Annual Membrane Soak (PMP-3315) to be	
	installed in Stages A, C & D	
1.3.36	MBR Tank Chlorine (Hypo) Dosing Pump Annual Membrane Soak (PMP-3314) to be inst	
	in Stages A, C & D	41
1.3.37	MBR Tank Recycled Water Pump & Inline Mixer Annual Membrane Soak (PMP-3316)	
	to be installed in Stages A, C & D	41
1.3.38	Drinking Water 2ML Storage Tanks (TNK-4000) and Drinking Water Inlet Flow	
	(VLV-4010) to be installed in Stages A, C & D Total 8ML	
1.3.39	Drinking Water Tank (TNK-4000) Fill Valve (VLV-4010)	
1.3.40	Drinking Water 2ML Tank – Monitoring (TNK-4000)	43
1.3.41	Stage-A: 1 x 2ML Recycled Water Tank (TNK-3000) & 1 x 2ML (TNK-5000)	
	to be installed in Stage C with Potable Water Top up / Back up Total 4ML	
1.3.42	Recycled Water Tank Stage-C – Monitoring (TNK-3000)	
1.3.43		45
1.3.44	Recycled Water Pump Station (PMP-3001, PMP-3002, PMP-3003 & PMP-3004)	
	Operation	46
1.3.45	Potable Water Pump Station (PMP-4000) and Chemical Monitoring to be	
	installed in Stages A & C	
	Potable Water Pump Station (PMP-4001, PMP-4002, PMP-4003 & PMP-4004) Operation	า47
1.3.47	MBR Tanks (TNK-2005 & TNK-3005) De-Sludge Discharge Pumps	
	(PMP-2007 & PMP-3007) to be installed in Stages A, C & D	
1.3.48	2ML Class A Permeate Tank (TNK-5000) to be installed in Stage A	
1.3.49	Irrigation Transfer/Discharge Pumps (PMP-5002) & (PMP-5003)	
1.3.50	Emergency Back Up Generator (EG-1) Stage A	
1.3.51	Blowers Duty/Standby (BLW-2014 & BLW-3014) Operation Stages A, C & D	
1.3.52		
1.3.53	MBR Tanks (2005 & 3005) Air Scouring inlet Valves (VLV-2005 & VLV-3005)	
	UV Units with Wipers (ULV-2009 & ULV-3009) Stages A, C & D	
	Redundancy Tank (TNK-1001 & 1002) Operation Stage A & C	
	The UF Advanced Water Treatment Plant (AWTP) to be installed in Stage B	
1.3.57	The Class A+ Recycled Water Quality, Uses and Log Reduction Targets nentation	
SCAE	OA and HMI Configurations	72

1.4 **2**

Tables

Table 1	Proposed Equivalent Tenement Yield
Table 3	MBR Module Operating Limitations in Stages A, C & D
Table 4	Pathogen Log Reduction Target and Credits Being Claimed for the AWTP60
Table 5	Overview of AWTP Unit Processes6

Appendices

Appendix A	Kings Forest Scheme PFD's
Appendix B	P & ID Diagrams
Appendix C	Equipment Schedule (Tag Nos, Drives, Valves, Instrumentation & Alarms)
Appendix D	Precinct Layout Plan with the Staging Plan Table
Appendix E	Kings Forest WWTP Layout & Staging Plans

Executive Summary

The Kings Forest Residential Development is located at Tweed Coast Road, Tweeds Heads and is adjacent to the Salt Residential development.

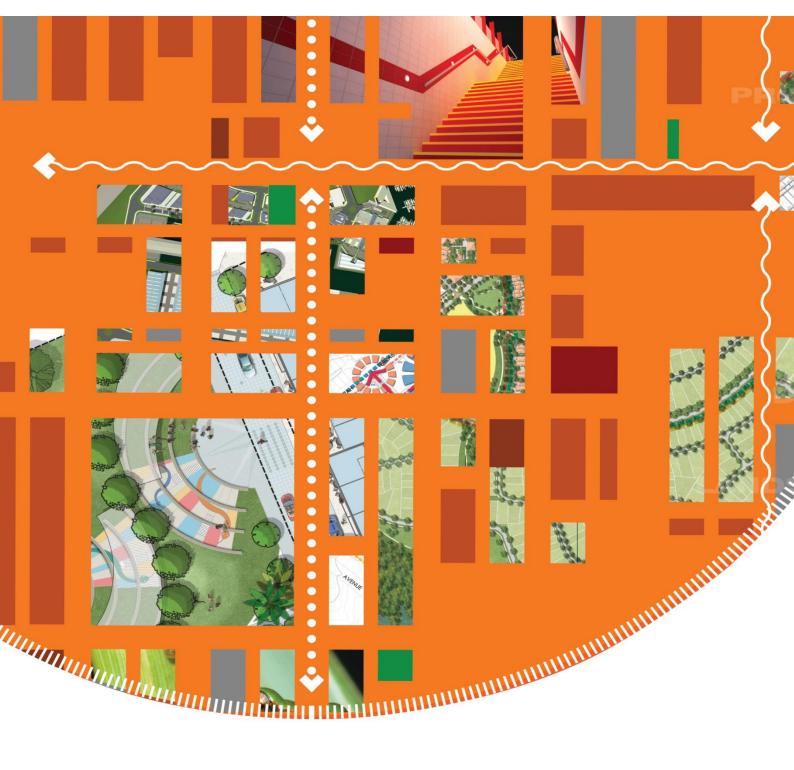

The development will incorporate the following:

Table 1

The Kings Forest development Water & Waste Water services will be provided by Northern Water Solutions Pty Ltd (NWS) a Private Water Utility Licensed under the WIC Act (2006) NSW Network Operator & Retail Licenses. The WWTP and Ancillary Systems have been staged to coincide with the build out program.

The following Water and Waste Water Treatment Plant stages will be required to be built when the development reaches certain levels of maturity listed below, (For staging details refer to Appendix A PFD's-for water, recycled water & sewerage services).

There will be no Waste Water or Excess Recycled Water discharged to Land or Water Ways from the Kings Forest development. All waste water generated from the site will be treated on the site by the new WWTP. Excess treated effluent permeate (Class A) mainly during wet weather events will be discharged to the existing Tweed Shire Council (TSC) sewer via a new Sewerage Pump Station (SPS) to be built at the vicinity of the Tweed Coast Road and the Kings forest Parkway roundabout to be owned and operated by TSC under a trade waste agreement between the TSC & NWS.

KINGS FOREST – Waste Water Treatment Plant Hazards Analyses and Risk Assessment

Northern Water Solutions Pty Ltd

PLANIT ENGINEERING PTY LTD

Date: April 2017

Document No.: J158-RA01

Document Status

Version	Document type	Reviewed by	Checked by	Date Issued

Project Details

Project Name:	Kings Forest – Waste Water Treatment Hazards Analyses and Risk Assessment Report
Client	Northern Water Solutions Pty Ltd
Client Project Manager	Wayne Williamson
Authors	Wayne Franklin
Planit Reference:	J158

Copyright

Planit Engineering has produced this document in accordance with instructions from Northern Water Solutions Pty Ltd for its use only. The concepts and information contained in this document are copyright of Planit Engineering Pty Ltd.

Use or copying of this document in whole or in part without written permission of Planit Engineering constitutes an infringement of copyright.

Planit Engineering does not warrant this document is definitive and free from error and does not accept liability for any loss caused, or arising from, reliance upon the information provided herein.

PLANIT ENGINEERING PTY LTD

ABN 99 613 049 568 Suite 9a, 80-84 Ballina Street Lennox Head NSW 2478 (PO Box 161, Lennox Head NSW 2478) Telephone – 02 6687 4666 admin@planitengineering.com.au

Contents

1	EXE	CUTIVE	SUMMARY	. 1
2	HAZ	ZARD AN	ID RISK ASSESSMENT: STEPS AND CONTENT	. 2
	2.1	Hazard	Identification (HAZID) Session Checklist	. 2
	2.2	WWTP	Hazard Identification and Risk Assessment Workshop	. 2
	2.3	Prelimi	nary Public Health and Environment HAZOP minute Sheet	. 2
	2.4	Critical	Control Points Schedule	. 2
3	REC		NDATIONS	. 3
A	PPEND	IX A –	HAZARD IDENTIFICATION (HAZID) SESSION CHECKLIST	. 1
A	PPEND	IX B –	WWTP HAZID AND RISK ASSESSMENT WORKSHOP	. 2
A	PPEND	IX C –	PRELIMINARY PUBLIC HEALTH AND ENVIRONMENT HAZOP MINUTES SHEETS	. 3
A	PPEND	IX D –	CRITICAL CONTROL POINT SCHEDULE	. 4
A	PPEND	IX E –	PFDs; P&IDs WWTP LAYOUT DRAWINGS	. 5

Our Ref 9528gs-final.10

Contact GARY SAMUELS

7 April 2011

Mr Steve Twohill Project 28 Pty Ltd

E: stwohill@ledaholdings.com.au

Cardno Bowler Pty Ltd ABN 74 128 806 735

5/10 Jay Gee Court Nerang QLD 4211 Australia

PO Box 2789 Nerang QLD 4211 Australia

Phone:61 7 5596 4995Fax:61 7 5596 4841

www.cardnobowler.com.au cardnobowlergc@cardno.com.au

Dear Steve

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL SUBDIVISION DEPOT ROAD, KINGS FOREST

Please find attached a copy of our final geotechnical investigation report for the above project. Further to our draft report ref: 9528gs.10 dated 20 August 2010.

If you have any further queries, please contact the undersigned on 5596 4995 or 0415 380 313.

Yours faithfully

GARY SAMUELS PRINCIPAL for Cardno Bowler

Cc: Kevin Fox kevinf@urbansolutions.net.au

 Queensland • Hillcrest • Cairns • Townsville • Mackay • Moranbah
 Rockhampton • Bundaberg

 Sunshine Coast • Geebung • Ipswich
 Gold Coast New South Wales • Sydney • Newcastle

 Victoria • Bendigo • Dandenong • Tullamarine • Geelong

Geotechnical Investigation Proposed Residential Subdivision Depot Road, Kings Forest

Job Number9528gs.10Prepared forProject 28 P/LDate of Report7 April 2011

ABN 74 128 806 735

Cardno Bowler Pty Ltd ABN 74 128 806 735

> 5/10 Jay Gee Court Nerang QLD 4211 Australia

PO Box 2789 Nerang QLD 4211 Australia

 Phone:
 61 7 5596 4995

 Fax:
 61 7 5596 4841

www.cardnobowler.com.au cardnobowlergc@cardno.com.au

Document Control

Version	Date	Author		Reviewer	
Draft	20 August 2010	Gary Samuels	11	David Bowler	DB.
1	7 April 2011	Gary Samuels	Jul 1	David Bowler	DB.
			00		

[&]quot;© 2010 Cardno Bowler Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to Cardno Bowler Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of Cardno Bowler Pty Ltd."

Table of Contents

1	INT	RODUCTION	I			
2	SIT	E DESCRIPTION	2			
3	INVESTIGATION WORK					
	3.1	Fieldwork	5			
	3.2	Laboratory Testing	5			
4	SUI	SURFACE CONDITIONS	6			
	4.1	Subsurface Strata	3			
	4.2	Laboratory Test Results	9			
5	GE	DTECHNICAL ASSESSMENT10	D			
	5.1	Earthworks10)			
	5.2	Batter Slopes1	1			
	5.3	Building Footings	2			
	5.4	Settlement	3			
	5.5	Proposed Lake	7			
	5.6	Existing Drains	3			
	5.7	Slope Stability Assessment	3			
6	CO	NSTRUCTION INSPECTIONS	D			
7	CO	NCLUSIONS AND RECOMMENDATIONS	1			
Li	st of	Tables				
Та	ble 1:	Summary of Subsurface Strata	3			
Та	ble 2:	Classification and Vane Shear Test Results	9			
Та	ble 3:	Maximum Unprotected Batter Slopes1	1			
Та	ble 4:	Allowable Bearing Capacities Strip/Pad footings12	2			
Та	ble 5:	Geotechnical Parameters for Bored Piles14	1			
Та	ble 6:	Nominal Screw Pile Sizes1	5			
Та	ble 7:	Indicative Pile Sizes and Capacities1	5			
Та	ble 8:	Cast – Insitu (Enlarged Base) Driven Pile Capacities16	3			
Та	ble 9:	Estimated Consolidation Rates for Various Marine Clay Thicknesses	7			