

Process Flow Diagram of Kurrajong Hamlet Water Treatment Plant

Unit 1/10b Production Place, Penrith NSW 2750, Australia PO Box 7091, Leura NSW 2780, Australia P: +61 2 4721 0545 F: +61 2 4721 2761 www.aquacell.com.au

ABN 79 072 487 015

Bennett Real Estate

Environmental & Engineering Consultants

'On-site Wastewater Management Report'

For:

Lot 19 Vincent Rd., KURRAJONG, NSW

Report No.: REP-21408-A

3RD December 2009 Date:

Working in these NSW regions

- Greater Sydney
- Southern Highlands
- Shoalhaven - Hunter Valley

- Port Stephens

- Hawkesbury - Blue Mountains

- Illawarra

- Greater Newcastle

- Central Coast

PO Box 207, Penrith, NSW, 2750

Mobile: (0438) 461 499

Phone: 1300 888 324 (02) 4739 9232

Fax: (02) 4739 3394

Email: info@envirotech.com.au

Copyright © 2009

This report remains the property of EnviroTech Pty. Ltd. and the above-mentioned client. Under no circumstances can this report be used or copied either in part or in whole without the written permission of EnviroTech Pty. Ltd. Legal action will be taken against any breach of this copyright.

LIMITATIONS STATEMENT

EnviroTech Pty. Ltd. has undertaken the following report in accordance with the scope of works set out between EnviroTech Pty. Ltd. and the client.

EnviroTech Pty. Ltd. derived the data in this report primarily from the site and soil assessment conducted on the date of site inspection. The impacts of future events may require future investigation of the site and subsequent data analysis, together with a re-evaluation of the conclusions and recommendations of this report.

In preparing this report, EnviroTech Pty. Ltd has relied upon, and assumed accurate, certain site information provided by the client and other persons. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information.

EnviroTech Pty. Ltd. accepts no liability or responsibility whatsoever for or in respect to any use or reliance upon this report by any third party.

TABLE OF CONTENTS

	A
TABLE OF CONTENTS	5
INTRODUCTION	
Objective Scope of Works	4 4
DESKTOP INFORMATION	5
SITE ASSESSMENT	6
Site Assessment Discussion	7
SOIL ASSESSMENT	
Soil Assessment Discussion	
ON-SITE WASTEWATER MANAGEMENT SYSTEM DESIGN	
Nutrient Management	15
System Selection Site Modifications Recommended	
RECOMMENDATIONS	18

Appendix A:	Site Plans
Appendix B:	-Photos
Appendix C:	Nitrogen & Phosphorus Balance
Appendix D:	Water Balance
* Appendix E:	Irrigation Descriptions & Standard Drawings
* Appendix F:	Operation & Maintenance Guidelines
* Appendix G:	Water Conservation

* Not included with Council Copy report

INTRODUCTION

EnviroTech Pty. Ltd. has been engaged by the client to undertake an 'onsite wastewater management study' at the above mentioned site address. This report presents the results of that study.

Objective

The objective of the 'onsite wastewater management study' is to investigate the relevant site, soil, public health and economic factors that can impact on the selection, location and design of an on-site wastewater management system to determine:

- Whether or not the site is suitable for an on-site wastewater management system
- The best practical on-site wastewater management system for the specific site and proposed development.

This study has been prepared in accordance with:

- Australian Standard AS1547: 2000" On-site Domestic Wastewater Management"
- Dept. Local Government 1998, On-site Sewage Management for Single Households,
- Relevant Council Development Control Policies

Scope of Works

The scope of works undertaken for this site evaluation included:

- *Desktop Study* An initial investigation to collate relevant information about the site and proposed development prior to the site inspection.
- Site Assessment An on-site inspection by an engineer or scientist to record land surface, site features, identify potential site constraints and define the most appropriate land application area.
 - Soil Assessment A subsoil investigation by an engineer or scientist to record the soil profile and relevant soil properties within the land application area to determine potential soil limitations.
- On-site Wastewater Management System Design An evaluation of the expected wastewater flowrate, site and soil limitations to select, size and position a waste treatment unit and land application system that will provide the best practical option.
- Operation & Maintenance / Construction & Installation Guidelines

DESKTOP INFORMATION

Proposed Development:	New wastewater treatment system for proposed retirement village
Intended Water Supply Source:	Town water
Equivalent Population:	Up to 54 people (18 dwellings)
Design Wastewater Allowance:	110 L / person / day1
1: Households with "full water-reduction fac - Reduced flush 6/3 litre water clo - Front-load washing machines,	
Design Wastewater Flowrate	5940 L / day
Climate	

Rainfall: Source: Bureau of Meteorology - Richmond RAAF

- Median Annual Precipitation: 835.6mm
- Median Monthly Precipitation (mm):

							<i></i>				
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
75.6	78.4	74.8	45.3	29.4	32.7	24.4	21.2	30.5	53.0	61.8	56.2

Evaporation: Source: Bureau of Meteorology – Richmond RAAF

- Mean Daily Evaporation (Annual Value): 4.3mm
- Mean Daily Evaporation (Monthly Values):

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
6.3	5.4	4.4	3.3	2.1	1.8	2.0	3.1	4.3	5.4	5.9	7.0

SITE ASSESSMENT

This following relevant site features were recorded and given a rating in terms of their potential constraints to onsite wastewater management. The three ratings are minor limitation, moderate limitation or major limitation. Only those site features that are rated as being a major limitation to onsite wastewater management are further discussed in the 'Site Assessment Discussion'.

Landform Description

The landform is described by first dividing an area into landform elements of approximately 40-m diameter. A description of the slope, morphological type and relative inclination is then provided for each element. These landform elements define the boundaries of this site assessment.

A 1

Landform	Slope (%)	Morphological	Relative	Slope
Element		Туре	inclination	Instability
1	14	Mid hillslope	Linear planar	Low

Vegetation

The vegetation is described by dividing the study area into vegetation elements. Each vegetation element has a unique set of properties.

	Vegetation	Growth	Height	Cover /
	Element	Form	· · ·	Separation
	А	Closed Grassland	< 300 mm	Dense
	В	Open Woodland	< 10-m	Well separated
1				

Vegetation	Exposure	Existing Erosion		Landform
Element	G	State	Туре	Element (s)
А	Excellent	Stabilised	-	1
В	Good	Stabilised	-	1

Overland Flow

Run-on and run-off potential is largely determined by slope, surface cover and soil infiltration rate.

Landform element.	Run-on	Run-off
1	Slow +	Moderately Rapid

+ A run-on diversion drain already exists above the proposed effluent disposal area.

Soil Disturbance

The site assessor noted no areas of soil disturbance within the available land application envelope.

Rocky Outcrops

The site assessor noted no areas of rocky outcrops.

Soil / Water Status

No wet areas observed.

Setbacks

The following buffer distances are available between the proposed land application area and:

Permanent Watercourses:	> 100-m
Intermittent Watercourses /	Dams: > 40-m
Dwellings:	> 15-m
Paths & Walkways:	> 3-m
Property Boundaries:	
- Up-gradient: > 3-m	- Down gradient: > 6-m

Site Assessment Discussion

A range of site features that can commonly place limitations on on-site wastewater management have been assessed and classified. All features, except the following, have been shown to place <u>no major limitations</u> to on-site wastewater management.

Run-off

Run-off from the proposed land application area is classified as moderately rapid due to the landform elements within and surrounding the land application area being moderately inclined.

Treated wastewater run-off beyond the boundaries of the proposed land application area can pollute adjacent areas. In particular, discharge of additional organic matter, suspended solids, nitrogen and phosphorus to the on-site dam may promote the growth of oxygen demanding algae. Algal growth consequentially kills off other organisms in dams, creeks and rivers that rely on sufficient oxygen concentrations to survive.

Sub-surface irrigation removes the problem of treated wastewater run-off. It is therefore recommended that, because of the moderately inclined land application area, that sub-surface irrigation be installed. Lateral and vertical seepage will also provide further biological and physical treatment of the irrigation water

SOIL ASSESSMENT

The location of the borehole excavated during the site inspection is shown on the attached site plan. Physical and chemical soil properties were recorded on a soil profile log (see attached). On each property two boreholes are performed, the first analyses soil features listed below, and the second serves a confirmatory borehole. If soil properties found in the two boreholes on site differ, then both samples are taken for analysis.

The following properties were recorded for each soil horizon:

- Horizon depth and type Mottling Colour
- Structural stability Depth to groundwater Depth to bedrock
- Texture
- pH - Coarse Fragments Percentage
- Electrical Conductivity
- Phosphorus Sorption Capacity

Physical Properties

In summary, the soil profile is described below:

Soil Horizon	Depth	Colour	Mottles	Coarse	Texture
				Fragments %	
A2	400	Brown		< 10	Clay loam
B1	1500	Red Brown	_	< 10	Light clay

Excavation terminated at:

Reason:

Soil depth is minor limitation

Bedrock Depth:

> 1500-mm.

> 1500-mm

1500 mm

Water Table Depth:

Topsoil soil-water status:

Moderately moist

Surface Condition:

Firm

Chemical Properties

Soil samples were collected from each major soil horizon and the relevant chemical properties are presented below:

Borehole 1

Horizon	РН	Electrical Conductivity (µS/cm)
A2	5.54	45
B1	5.07	67

Phosphorus Adsorption Capacity (kg / ha): 18,270

Erodability / Erosion Hazard

Soil erodability is the susceptibility of the topsoil to detachment and transport of soil particles. It is a characteristic of the soil surface and varies with time, soil / water status and land use. Soil erodability classification is stated as low, moderate or high.

Erosion hazard is the susceptibility of an area of land to the prevailing agents of erosion. It is a function of climate, soil erodability, vegetation cover and topography.

· · ·	
00	Borehole 1
Erodability	Moderate
Erosion Hazard	Slight

Salinity

Salinity is the concentration of water-soluble salts contained within a soil. Increases in soil salinity (i.e. salinisation) can occur as a result of irrigation water raising the level of an already saline groundwater. Management of potential salinisation problems involve ensuring that salts introduced to the soil surface are removed (by crop uptake or subsoil leaching) and by ensuring the irrigation area provides adequate subsoil drainage to prevent raising of saline groundwaters into root zones.

Drainage is a statement describing the site and soil drainage that is likely to occur most of the year. It is influenced by soil permeability, water source, landform description, evapotranspiration, slope gradient and slope length.

The drainage of this site should be adequate for the leaching of salts and ensure the groundwater level does not reach the root zone.

A major adverse effect of high soil salinity is the restrictive effects on plant growth. However, for this site the soil salinity levels (as indicated by the

electrical conductivity values) are low enough that the adverse effects on plant growth will be minimal.

Soil Assessment Discussion

A range of soil properties that commonly place limitations on on-site wastewater management have been assessed and classified. In .ste .ste accordance with the Environmental and Health Protection Guidelines all soil properties have been shown to present no major limitations to on-site wastewater management.

ON-SITE WASTEWATER MANAGEMENT SYSTEM DESIGN

The design process adopted here involves an evaluation of the expected wastewater flow, site limitations and soil limitations, to select, size and position a waste treatment unit and land application system that will provide the best practical option.

A nutrient balance and water balance were modeled to determine the minimum land application area and wet weather storage requirements.

Nutrient Management

Nutrients commonly found in secondary treated wastewater (effluent) such as nitrogen and phosphorus are generally beneficial to plant growth and need not be removed from the effluent <u>if</u> it can be demonstrated that the land application area can sustain the additional nutrient loading in the short term and long term.

A 'Nutrient Mass Balance' (NMB) models the movement of nutrients in the land application area. The NMB allows us to predict the maximum nutrient application rate and can therefore limit the effluent application rate to a given area.

In a NMB, the amount of specific nutrient (nitrogen or phosphorus) assumed to be applied in a year is compared with the amount taken up by the biological, chemical and physical processes of the plant-soil system within the land application area.

Note: Preventing Nutrient Accumulation

Nutrients retained in a standing plant, detritus or residual humus must be regarded as potential sources of soluble nitrogen (or phosphorus) that can pollute surface and ground water. Therefore removal of the harvested plants from the site is required to prevent nutrient accumulation.

Nitrogen

The chemical forms of nitrogen typically found in secondary treated wastewater (effluent) are:

•	Orga	nic	0% – 25%
•	Mine	ral:	
	-	Gaseous ammonia and ammonium,	25%
	-	Nitrate and nitrite.	50% – 75%

Note: The mineral forms of nitrogen are readily transformed into other mineral forms

Nitrate / Nitrite

- Most readily mobile nitrogen form,
- Most readily taken up by plants,
- Readily leached to groundwater,
- Unsuitable for stock and domestic water supplies in high concentrations,
- Can nourish unwanted plants and algae

Ammonia / Ammonium

- Lost to the atmosphere in gaseous form (ammonia)
- Conservative estimate of 20% of liquid ammonium volatilised to ammonia,

Organic Nitrogen

- Much slower interaction with plant growth / environment than mineral forms
- Converted over 5-years to mineral forms through a 'mineralisation' process,
- Remaining organic nitrogen retained as residual humus
- Humus slows decomposes, continuing to release mineral nitrogen forms

Nitrogen Mass Balance

A nitrogen mass balance in a plant-soil system is complex. It includes:

- 1) Additions to the system via:
 - Effluent
 - Fertiliser
 - Nitrogen fixation by plants
- 2) Losses from the system via:
 - Removal of harvestable plant matter,
 - Volatilisation of ammonia,
 - De-nitrification of nitrates / nitrites to nitrogen gas,
- 3) Transformations into other forms of nitrogen (for example 'mineralisation'),
- 4) Nitrogen storage in the system (for example as humus in the soil).

A simple, yet conservative approach to the nitrogen mass balance is to compare the total nitrogen usage of each harvested plant (calculated as average plant yield x % nitrogen in the plant) with the amount of total nitrogen available from the effluent (estimated as effluent total-nitrogen concentration). For a given design flowrate and plant type within an effluent irrigation area it is therefore possible to calculate a minimum irrigation area required to ensure nitrogen applied does not exceed the plant nitrogen-removal capacity.

Phosphorus

Phosphorus contained in effluent (usually expressed as just 'Total P') exists in several forms that include:

- Orthophosphates most readily available for reacting with the soilplant- water system
- Polyphosphates Slowly broken down to orthophosphates
- Organic phosphates More slowly broken down than polyphosphates,

Phosphorus Mass Balance

The three major phosphorus removal mechanisms are;

- Vegetation uptake,
- Chemical precipitation,
- Soil adsorption.

Similar to the nitrogen mass balance described previously, a simple approach to a phosphorus mass balance is to compare the total phosphorus usage of each harvested plant (calculated as average plant yield x % phosphorus in the plant) with the amount of total phosphorus available from the effluent (estimated as effluent total-phosphorus concentration).

P Sorption Capacity

Unlike a nitrogen mass balance, a phosphorus mass balance includes removal by soil adsorption. Soil adsorption of P (P sorption capacity) is an immobilisation reaction that renders phosphorus <u>unavailable</u> for plant uptake. A simple explanation of P sorption capacity is that the soil behaves like a phosphorus 'sink'. The phosphorus sink will in time reach a point when the soil is saturated with phosphorus ('the sink is full'). The recommended lifespan of a land application area is 50 years¹.

The phosphorus saturation point of most soils is probably reached between 0.25 and 0.5 of total sorption capacity (Kruger et al, 1995). We shall use a value of 0.33. Further phosphorus applications to the soil will result in phosphorus leaching to further below.

¹ NSW Dept Local Government, 1998. "On-site Sewage Management for Single Households".

For the soil on this site, the phosphorus sorption capacity was determined using a 90 percentile value from known soil data. The data set used to determine the 90 percentile included only those soils within a similar soil landscape, of same texture (particularly clay %) with similar pH and electrical conductivity values. This data was obtained from several "Soil Landscapes" texts published by the Soil Conservation Service of NSW.

Therefore a phosphorus mass balance compares the total phosphorus usage of each plant <u>plus</u> the phosphorus soil adsorption with the amount of total phosphorus available from the effluent.

For a given design flowrate, plant type <u>and</u> P sorption capacity within an effluent irrigation area it is therefore possible to calculate a minimum irrigation area required to ensure phosphorus applied does not exceed the plant phosphorus-removal capacity and soil P sorption capacity within 50 years.

Note: Plant Yield

29 JINC

Nutrient uptake by vegetation becomes inhibited when the vegetation is not experiencing an active growth period. Therefore to ensure year-round nutrient removal the vegetation grown should contain a species or mix of species such that at any given time of the year, within the land application area, there is vegetation experiencing active growth.

Mass Balance Minimum Ir		Minimum Irrigation Area (m ²)	
	Nitrogen	4752	
	Phosphorus	1960	
Limiting Nutrient	Nitrogen	4752	

Water Balance

The 'water balance' models the interactions between climate, soil, and topography. For a site where wastewater land application is proposed, the 'natural water balance' has to be modified to include the applied wastewater. The modified water balance becomes:

$$\mathsf{P} \,+\, \mathsf{T}\mathsf{W} \,=\, \mathsf{E}t \,+\, \mathsf{S}_\mathsf{L} \,+\, \mathsf{S}_\mathsf{V} \,+\, \Delta\mathsf{S}$$

Where:

Inputs: P = Precipitation Tw = Wastewater applied

∆S = Changes in the soil-water storage

Note:

Some regulatory authorities take the view that for a land application area to be sustainable it must be designed so that lateral seepage (S_L) and vertical seepage (S_V) of wastewater equal zero, thereby relying wholly on evapotranspiration to remove the applied wastewater plus precipitation.

From an environmental science point of view this is usually incorrect. On land where treated wastewater is stripped of its nutrients and microorganisms to a very high degree by treatment processes, in most cases there can be no objection to 'clean' water being removed by vertical seepage and lateral seepage.

OBJECTIVE

The objective of modeling the water balance for a site where wastewater land application is proposed is to calculate the minimum irrigation area size required for a given wastewater loading, or inversely, the maximum wastewater loading that can be applied to a given land application area. In calculating these values we must ensure the following requirement is satisfied:

"Sub-surface saturation shall not be caused by wastewater application."

COMPONENT DEFINITIONS

Precipitation (P)

Precipitation is the rainfall pattern over a historical period. Precipitation data is obtained from the Bureau of Meteorology (BOM). The weather station chosen as a source of precipitation data shall be relatively close to the site and have a substantial period of available historical data. One set of precipitation data is used in the water balance:

• Median monthly precipitation

Treated Wastewater Applied (Tw)

The amount of treated wastewater applied measured as a depth. This is calculated by dividing the average monthly wastewater flow by a nominated land application area.

Evapotranspiration (Et)

Monthly evapotranspiration is estimated by multiplying pan evaporation by a relevant crop factor. Pan evaporation data is obtained from the Bureau of Meteorology (BOM). The weather station chosen for pan evaporation data shall be relatively close to the site and have a sufficient period of available historical data.

Subsurface Seepage - Vertical (S_V) & Lateral (S_L)

Seepage velocity through a permeable medium is proportional to the permeability of the medium (saturated hydraulic conductivity – K_{sat}) and the hydraulic gradient.

- Lateral Seepage is estimated as the relevant Design Irrigation Rate (DIR) recommended in AS1547: 2000 for the conducting soil layer multiplied by the slope of the soil layer.
- Vertical Seepage is estimated as the relevant Design Irrigation Rate (DIR) recommended in AS1547: 2000 for the least permeable subsoil layer multiplied by a hydraulic gradient of 1.

Changes in Soil-Water Storage (ΔS)

Soil-water storage is the difference between water inputs (P + Tw) and water outputs (Et + S_L + S_V)]. Changes in soil-water storage are the difference in soil-water storage values between different model time steps.

GENERAL WATER BALANCE METHODOLOGY

1 - Nominate a Land Application Area Size

Nominate the minimum irrigation area requirement as from the nutrient balance. This value becomes the initial area value against which we will check that the water balance is satisfied.

2 - Check that:

"Sub-surface saturation shall not be caused by wastewater application."

To check that sub-surface saturation shall not be caused by wastewater application we will use a water balance model using the median precipitation event (refer to attached spreadsheet)

Water Balance Summary

The minimum irrigation area required based on the water balance was found to be $4752m^2$

System Selection

Treatment System: Aerated Wastewater Treatment System (AWTS)

• Reason:

High quality effluent produced suitable for irrigation purposes

Land Application System: Low-pressure Effluent Irrigation

Irrigation System Options

EnviroTech recommends the following method of irrigation is suitable for installation on this site.

Any irrigation system must be installed within the proposed irrigation shown on the site plan or within the 'available irrigation envelope' (if an envelope is shown on your site plan).

Option4: Subsurface Drip Irrigation

Subsurface drip irrigation includes fixed and buried drip irrigation lines generally laid in parallel at 1-m spacings. These systems require flush valves, vacuum breaker valves and effluent filters. The drippers should be pressure compensating to allow even discharge from all drippers along a drip line. Specialist design advice from irrigation system installers should be sought.

<u>Please refer to Appendix E for further detailed irrigation descriptions and standard drawings.</u>

Site Modifications Recommended

- Fit "full water-reduction facilities" to all water use outlets in the house:
 Reduced flush 6/3 litre water closets,
 Aerator faucets,
 - o Front-load washing machines, Shower-flow restrictors

RECOMMENDATIONS

- Installation of a NSW Health accredited Aerated Wastewater Treatment System (AWTS) with capacity to treat the design flowrate (5940 L/d) to a secondary treatment standard with disinfection.
- Installation of 4752 m² of a low-pressure effluent irrigation system.
- The proposed land application area is designated for effluent reuse only.
- EnviroTech recommends all of the following irrigation system types (presented as options) are suitable for installation on this site.
 - + Option1: Moveable Surface Irrigation
 - + Option2: Fixed / Semi-fixed Surface Spray Irrigation
 - + Option3: Surface Drip Irrigation
 - + Option4: Subsurface Drip Irrigation
- To provide the client with a better understanding of the suitable irrigation options for their property and also guidance on the construction / installation of such irrigation types, this wastewater report includes comprehensive irrigation descriptions and drawings.
- Further site-specific irrigation details (for example, accurate sprinkler and distribution line positioning within the proposed irrigation area), if required, may be determined in consultation with your plumber / irrigation installer.
- Each irrigation system must be installed within the proposed land application area shown on the site plan or within the 'available irrigation envelope' (if an envelope is shown on your site plan).
- Fit "full water-reduction facilities" to all water use outlets in the house:
 - Reduced flush 6/3 litre water closets, Aerator faucets,
 - Front-load washing machines, Shower-flow restrictors

Regards, ENVIROTECH PTY. LTD.

Daniel Mathew Senior Environmental Engineer

A0069 Appendix 4.3.3.1 - Location of Treatment Plant_OVERVIEW

A0069 Appendix 4.3.3.2 - Location of Treatment Plant_DETAIL

A0069 Appendix 4.3.3.3 - Proposed Subsurface Irrigation Layout-1

Β	Pump/filter station relocated	relocated	26/07/12
A	For Approval	oval	7/12/11
Issue	Description	on	Date
Project:	ct:		
Ber Kur	Bennett Hamlet Kurrajong Village	amlet Villag	Φ
Lar	Lang Irrigation Pty Ltd	tion P	ty Ltd
0419 469 P.O. Box	0419 469 365 P.O. Box Pichmond 2753		
Design	n C	Drawn	G
Drawin	Drawing No. 001	Scale 1:400	:400

Effluent Management Investigations

at

Vincent Road, Kurrajong

Prepared for

BENNETT PROPERTY

Woodlots and Wetlands Pty Ltd 220 Purchase Road Cherrybrook NSW 2126

Client **BENNETT PROPERTY** Woodlots & Wetlands Pty Ltd **Prepared By** 220 Purchase Road Cherrybrook NSW 2126 (02) 94842700 Telephone Mobile 0427905440 E mail woodlots3@bigpond.com **Date Issued** 15 November 2012 Kurrajong Hamlet Effluent Management Investigation **Document File name** V2Effluent Management Investigations at **Document Title** Vincent Road, Kurrajong **Document Registered By** Peter Bacon Principal Consultant

Document Registration

Copyright

This report has been prepared for the express benefit of Bennett Property in establishing a sustainable effluent management system at Vincent Road, Kurrajong. It is time and site specific and must not be used for any other purpose.

Acknowledgements

The technical assistance of Aquacell Pty Ltd is gratefully acknowledged.

Glossary

Abbreviation	Explanation
or acronym	
ADWF	Average Dry Weather Flow (cubic m/day)
BOD	Biological Oxygen Demand
С	Carbon
Са	Calcium
CANRI	Community Access Natural Resource Information
cfu	Colony Forming Units. A measure of microbial population. It is sometimes referred to as MPN (Most Probable Number)
cm	centimetres
DALY	Disability Adjusted Life Years. A World Health Organisation sponsored system of assessing the impact of accidents or disease on a population. DALYs for a disease or health condition are calculated as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for incident cases of the health condition (WHO web site, accessed May, 2012). The minimum tolerable health risk is typically 10 ⁻⁶ DALY (NRMMC/ EPHC/ AHMC (2006).
DEC	Department of Environment and Conservation (in 2012 it was part of Office of Environment and Heritage)
DIPNR	Department of Planning Infrastructure and Natural Resources
	in May 2012, the environmental components had been transferred to the Office of Water (NOW) and OEH)
DIR	Design Irrigation Rate as per AS/NZS 1547
dS/m	decisiemens/metre A measure of electrical conductivity
	(1 dS/m=1000 microsiemens/cm)
Effective risk management	The identification of all potential hazards, their sources and hazardous events, and an assessment of the level of risk presented by each.
Effluent	Treated wastewater from a sewage treatment plant (STP)
Ensiled	Storage of fodder as silage. Silage is the result of anaerobic fermentation process used to preserve green vegetation such as oaten hay or green pasture. The vegetation is and packed while at about 70-80% moisture and put into sealed holes in the ground.
ESCP	Erosion and Sediment Control Plan
Field capacity (water holding capacity)	The amount of water held in soil once gravitational water has drained from the profile. Typically it is reached approximately 48 hr. after saturation. It can be expressed as a variety of units. In the current report it is in mm of water stored in the plant root zone.

· ·	
Faecal coliforms	Bacteria that is indicative of faecal contamination.
comornis	
g	grams
К	Potassium
ha	hectare (1 ha=100m*100m)
HACCP	HACCP is the <u>Hazard Analysis and Critical Control Point system</u> . (That is: What can we do to reduce hazards)
Hazard	HAZARD=probability*consequences
	A hazard is a biological, chemical, physical or radiological agent that has the potential to cause harm.
	A hazardous event is an incident or situation that can lead to the presence of a hazard. (What can happen and how)?
HRT	Hydraulic Retention Time – the average travel time for water to pass through a system such as a wetland, maturation pond or reaction chamber.
kg	Kilograms
kL	Kilolitres (1000 L)
km	kilometres
L	litres
m	metres
mg	milligrams (10 ⁻³ g)
Mg	Magnesium
mL	millilitres (10 ⁻³ L)
ML	megalitres (10 ⁶ L)
MSDS	Material Safety Data Sheets
Na	Sodium
N	Nitrogen
EMP	Environmental Management Plan
Р	Phosphorus
PET	Potential Evapotranspiration: Rate of loss of water from plants and soil when there is an unlimited supply.
рН	A measure of acidity
Risk	The likelihood of identified hazards (see definition above) causing harm in exposed populations in a specified timeframe, including the severity of the consequences.

	(How likely is it to happen? How serious are the consequences?)
	Risk is maximum risk in the absence of preventive measures
	Residual risk is the risk after consideration of existing preventive measures.
SAR	Sodium Adsorption Ratio. A measure of the ratio of sodium to calcium plus magnesium. It is used in conjunction with salinity data to determine the stability of irrigation water.
Stormwater	Rainfall derived water arising from roof or ground surfaces.
STP	Sewage Treatment Plant
TWL	Top water level (m)

Executive summary

This investigation is concerned with providing a proposed development at Vincent Road Kurrajong with a sustainable system for managing its tertiary treated sewage.

According to the Australian Bureau of Statistics, the average number of residents per dwelling in the Kurrajong urban area is 2.7. Many of the 41 dwellings to be connected to a centralised sewerage treatment plant (STP) are within a retirement complex and the majority of these are occupied by single people. The dwellings have full water reduction features in them including twin flush toilets and flow reducers on the shower heads. According to AS 1547 the design sewage flow allowance per person is 110 L. Therefore the design sewage flow/day is

41*2.7*110= 12,177 L/day.

Effluent strength is classified as 'low' according to the EPA's criteria (DEC, 2004). Sub surface irrigation will minimise risk of contact.

A landform assessment showed that the site was suitable for effluent irrigation. The main concern was the slope which ranged from 5 to 20%, with an average grade of 11%. Subsurface irrigation is recommended to minimise the risk of effluent runoff.

A back hoe was used to excavate 4 soil inspection and sampling pits. The soils were sampled to a layer of rotted shale. The depth to this layer varied from 1.5 to 1.9m. The soils were sampled at 0-20, 20-40, 40-70, 70-100 and on top of the rotted shale layer. The soils all had moderate structure throughout the profile. The surface 40 cm was typically a clay loam while the 40 to 100 cm layer was a light-medium clay. Heavy clay occurred on top of the shale. This suggests imperfect drainage at depth.

The moderate pedality in the topsoil is not ideal for effluent irrigation. Organic matter is a key agent for soil structure. Increasing organic matter will increase surface soil stability. Permanent pasture is strongly recommended.

The chemistry of the soils varies across the site and within individual profiles. However some generalisations can be made:

- The soils are non-saline and non-sodic. They have good supplies of potassium, calcium and magnesium.
- Applying 1800 kg agricultural lime per ha prior to commencement of effluent irrigation will ensure that productivity is not limited by aluminium toxicity.
- The P sorption capacity of the soil is sufficient for approximately 375 years at moderate rates of effluent irrigation.
- Phosphorus availability is marginal. Addition of 120 kg/ha/year of single superphosphate is recommended for pastures.

All of these features make the soils suitable for effluent irrigation provided the application rate is light.

The irrigation area size needed was based on AS 1547 and the daily weather since 1970. A maximum of 10,150 msq is available. Sensitivity analysis was used to identify sustainability of the irrigation system at a range of rates. A 1 ha field was sufficient for up to 22 cubic m/day of tertiary treated effluent. This is over 80% higher than the anticipated flow of 12.2 cubic m/day.

The environmental risks from the proposed system are small and considered acceptable.

Table of Contents

1	B	BACKGROUND	3
	1.1	OBJECTIVES OF THE EFFLUENT MANAGEMENT ACTIVITIES	3
	1.2	ENVIRONMENTAL OBJECTIVES OF THE EFFLUENT MANAGEMENT PROJECT	3
	1.3	RELATIONSHIPS BETWEEN BENNETT PROPERTY'S COMMITMENT TO ESD NATIONAL AN	
		ATE GOVERNMENT POLICIES	
	R	tesource Utilisation	6
	Р	Protection of Lands	6
	Р	Protection of Surface Waters	6
	Р	Protection of Ground Waters	6
	С	Community Amenity	6
	1.4	Investigation requirements	7
	1.5	REFERENCE DOCUMENTS	
2	S	SITE ASSESSMENT	8
3	A	VAILABLE INFORMATION	9
	3.1	Sewage flows	9
	3.2	EFFLUENT ATTRIBUTES	
4	I	ANDFORM ASSESSMENT	.10
•	4.1	Site configuration	
	4.2	LANDFORM ASSESSMENT PROCEDURES	
	4.3	CONCLUSIONS FROM SITE ASSESSMENT	
5	S	OILS ASSESSMENT	.14
	5.1	INSITU SOIL ASSESSMENT	14
	F	ïeld texture	14
	S	oil strength	14
	Р	edality	14
	F	abric	14
	С	Colour	14
	В	oundaries	18
	Ν	10ttle %	18
	N	Jodule %	18
	R	loot number	18
	В	iological activity	18

	Ro	ock %		
	Со	onclusions and management recommendations		
5	5.2	SOIL CHEMISTRY		19
	рH	I (5 _{water} :1 _{soil})		19
	Sal	linity		19
	Са	tion exchange capacity		19
	Ex	cchangeable calcium (Ca)		21
	Ex	xchangeable magnesium (Mg)		
	Ex	xchangeable potassium (K)		
Exchangeable sodium (Na)		xchangeable sodium (Na)		21
	Ex	changeable aluminium (Al)		22
	Or	rganic carbon		22
	То	otal Nitrogen		22
	Br	ay No.1 Available phosphorus		
	Рs	sorption capacity		22
	Со	onclusions and recommendations		
6	SI	ZING OF IRRIGATION AREA.	•••••	25
(5.1	NET EFFLUENT PRODUCTION		
(5.2	IRRIGATION AREA REQUIREMENT		25
(5.3	IRRIGATION AREA AVAILABLE.		
7 IR		ROPOSED IRRIGATION STRATEGY AND OPTIMISATION		
-	7.1	Model inputs		27
	7.2	MODEL OUTPUT		
8	Μ	ANAGEMENT OF CONTAMINANT LOADS	•••••	30
8	3.1	NITROGEN		
	3.2	Phosphorus		
8	3.3	SALINITY		
8	3.4	Conclusions		
9	R	EFERENCES	•••••	32

1 BACKGROUND

This investigation is concerned with providing a sustainable effluent management for tertiary treated effluent from 41 dwellings on Vincent Road Kurrajong.

The development comprises a mix of 23 retirement villas and 18 'normal' suburban type allotments. Figure 1.1 shows the locality of the development.

Lands to the immediate east of the retirement villas are available for irrigation. Figure 1.2 shows the irrigation area in detail.

This current report assesses the suitability of these lands. It also determines suitable size and configuration of the irrigation area.

1.1 Objectives of the effluent management activities

The aims of the scheme include:

- 1. Minimising risks to human and environmental health
- 2. Maximising effluent reuse opportunities

Bennett Property is committed to ensuring that the effluent management scheme is consistent with the principles of ESD. Additionally it aims to ensure there are no adverse impacts on human and environmental health due to implementation of the effluent management scheme.

1.2 Environmental objectives of the effluent management project

The environmental objectives of the project can be summarised as:

- To ensure environmental and public health safeguards are implemented correctly;
- To comply with the requirements of all relevant Local regulations and NSW and Australian legislation;
- To ensure that the establishment and operational phases of the project are managed to minimise adverse impacts on the environment and on human health.

Effluent Management Investigations, Vincent Road Kurrajong

Figure 1.2. Detail of irrigation area (Source :Envirotech, 2012). NOTES:

- 1 The proposed irrigation area is 10,150 msq
- 2. The irrigation area is 40m upslope from an existing farm dam
- 3. The irrigation area does not drain to the dam to the immediate south of the site.

1.3 Relationships between Bennett Property's commitment to ESD¹ National and State Government Policies

'The EPA's wastewater management policy is to encourage the utilisation of effluent where it is safe and practicable to do so and where it provides the best environmental outcome. The EPA especially encourages the substitution of treated effluent for fresh/potable water wherever potable water is being used for non-potable purposes e.g. irrigation of crops and pastures.' (EPA, 1995).

The key objectives of the *EPA's wastewater management policy* are listed in the draft document '*The utilisation of treated effluent by irrigation*' (EPA, 1995). Each objective is discussed below.

Resource Utilisation

Effluent and its constituents such as water, and nutrients should be evaluated for their usefulness. The agronomic systems for effective utilisation of these constituents should be implemented.

Protection of Lands

The management of the system must be in accordance with ESD principles. In particular it should maintain the productive capacity of the land. No deterioration of land quality through soil structural degradation, salinisation, waterlogging, chemical contamination or erosion should occur.

Protection of Surface Waters

Irrigation areas should be sited, designed, constructed and operated so that surface water does not become contaminated by either the effluent or any effluent contaminated runoff from the irrigation scheme.

Protection of Ground Waters

Irrigation areas should be sited, designed, constructed and operated so that useable subsurface water does not become contaminated by either the effluent or effluent runoff from the irrigation scheme.

Community Amenity

The scheme should be sited, designed, constructed and operated so that it does not cause unreasonable interference with any commercial activity or comfortable enjoyment of life and property off site. Where possible it should add to the amenity.

In NSW the principles of ESD as stated in the Protection of the Environment (Administration) Act 1991 are: **'The precautionary principle**-if there are threats of serious or irreversible environmental damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation; **Intergenerational equity** – the present generation should ensure that the health, diversity and productivity of the environment is maintained and enhanced for the benefit of future generations;

Conservation of biological diversity and ecological integrity, and; Improved valuation and pricing of environmental resources.

¹ Ecological Sustainable Development principle involves

^{&#}x27;Using, conserving and enhancing the community's resources so that ecological processes, on which life depends, are maintained, and the total quality of life, now and in the future can be increased.' (Commonwealth of Australia, 1992).

1.4 Investigation requirements

The investigation brief requires a series of tasks to be undertaken in order to provide evidence that the development will be consistent with ESD principles. These requirements are listed below:

- \Rightarrow Site inspection
- \Rightarrow Review of available information
- \Rightarrow Review of regulatory requirements
- ⇒ Risk assessment
- \Rightarrow Reclaimed water quality
- \Rightarrow Reclaimed water volumes
- \Rightarrow Identification of potential reuse areas
- \Rightarrow Soil and topographical assessment
- \Rightarrow Water and groundwater investigations
- \Rightarrow Soil chemical analysis
- \Rightarrow Identification of potential reuse options
- \Rightarrow Identification of preferred irrigation system
- \Rightarrow Water, salt and nutrient budgets
- \Rightarrow Recommendations

The current report addresses each of these requirements.

1.5 Reference documents

There are a variety of technical documents, guidelines and policy statements that provide instruction on sewage and stormwater management. The list below has been consulted during this investigation.

Asano, T. (1998). Wastewater Reclamation and Reuse. Technomic Publ. Co. Lancaster PA.

DEC (2004). Environmental Guidelines: Use of Effluent by Irrigation. Dept. Env. and Con. Sydney, NSW.

NRMMC/ EPHC/ AHMC (2006). Australian Guidelines for Water Recycling: Managing health and Environmental Risk (Phase 1). NWQMS No. 21. Natural Resource Management Ministerial Council/ Environment Protection and Heritage Council/ Australian Health Ministers Conference. Canberra ACT.

NCST (2009). Australian Soil and Land Survey Field Handbook. The National Committee on Soil and Terrain. Third Edition. CSIRO, Collingwood. Vic.

NSW Agriculture (1997). The NSW Feedlot Manual. NSW Agriculture, Orange, NSW.

QDNR (1998). MEDLI Technical Manual. T. Gardner and R. Davis Eds. Indooroopilly, Qld.

Standards Australia (2000). AS/NZS 1547:2000. On-site domestic wastewater management. Sydney, NSW.

Water Services Australia (2002). Sewerage Code of Australia WSA 03- Version 2.3.

2 SITE ASSESSMENT

The site was inspected by Dr Peter Bacon of Woodlots and Wetlands in October 2012. The inspection activities included the soil and landscape assessment reported below.

The location and issues associated with irrigating the lands to the east were assessed.

The approach has been to identify the likely sewage volume generated from the STP, assess the site to determine the design irrigation rate (DIR) as per AS/NZS 1547, and then determine the irrigation area requirements for sustainable irrigation of this volume. Because the exact sewage flows and number of occupants are unknown a range of possible flows were assessed.

The study also provides an assessment of the risks to human and environmental health from the scheme, and then identifies options to minimise these risks.
3 AVAILABLE INFORMATION

3.1 Sewage flows

Sewage flows are based on AS1547 APPENDIX 4.2D. According to the Australian Bureau of Statistics 2011 census data, the average number of presidents per dwelling in the Kurrajong Urban Area is 2.7. Many of the 41 dwellings to be connected to the sewerage treatment plant (STP) are within a retirement villa complex, and the majority of these are occupied by single people, so the 2.7 persons/ dwelling is likely to be an overestimate. The dwellings have full water reduction features in them including twin flush toilets and flow reducers on the shower heads. According to AS/NZS 1547 the design sewage flow allowance per person in dwellings with full flow reduction devices is 110 L/day. Therefore the design sewage flow/day is

41*2.7*110= 12,177 L/day.

Sensitivity analysis was undertaken to assess the effect of a range of flow rates. The following variables were tested:

- 2.7 persons/dwelling
- 3.7 persons/dwelling
- 4.7 persons/dwelling and
- 110 L/person/day (the anticipated sewage flow assuming full flow reduction fixtures)
- 145 L/person/day (the sewage flow if there are limited flow reduction fixtures in the dwellings (from AS/NZS 1547)

Table 3.1. Effect of varying number of resident/dwelling and average flow/ resident on total effluent volume/day

Assumed 41 dwellings	Persons/ dwelling	2.7	3.7	4.7
Flow/person	110	12.2	16.7	21.2
Flow/person	145	16.1	22.0	27.9

The sensitivity analysis in table 3.1 shows that increasing the flow rate per person and increasing the average number of people in residence more than doubles the anticipated flow rate.

3.2 Effluent attributes

The proposed STP is an Aquacell membrane bioreactor. The anticipated effluent characteristics are shown below.

Table 3.2. Anticipated characteristics of the effluent and criteria for determining low strength effluent (Source: DEC, 2004).

Constituent	Anticipated effluent characteristics	Low strength effluent characteristics
Total Nitrogen (mg/L)	<15	<50
Total Phosphorus (mg/L)	<10	<10
Biochemical Oxygen Demand (mg/L)	<15	<40
Total Suspended Solids (mg/L)	<5	Not given
E coli (CFU/100mL)	<10	Not given

4 LANDFORM ASSESSMENT

4.1 Site configuration

Figure 1.2 shows the site. The proposed irrigation area is on an eastern facing slope, below the development area. Figure 1.2 also shows that the subject site is currently surrounded by grazing lands. The nearest downslope waterbody is over 40m south of the subsurface irrigation area.

The soil landscape map (Bannerman and Hazelton, 1989) shows that the site is on the Luddenham Soil Landscape. Gymea Soil Landscape occurs downslope of the site. Typical attributes are summarised in table 5.1.

Table 5.1 typical attributes of the Luddenham and Gymea Soil Landscapes (Source: Bannerman and Hazelton, 1998).

Attribute	Luddenham Soil Landscape	Gymea Soil Landscape
Geology	Wianamatta Shales	Hawkesbury Sandstone
Topography	Low rolling to steep hills	Undulating to rolling low hills
Slopes	5-20%	10-25%
Erosion hazard	High	High
Soils classification b	Red (upper slope) to yellow (lower slope) podsolics	Yellow earths, earthy sands yellow podsolics
Fertility	Moderate fertility	Very low fertility

4.2 Landform assessment procedures

A total of four localities within the proposed irrigation area were assessed for landform and soil characteristics.

Table 4.2 summarises the results of the landform assessment.

Table 4.2. Site attributes and their likely impact on site suitability of effluent irrigation at the	
site.	

Attribute	Rationale	Comment
Grid ref	Permanent record of assessment position	
Aspect	Influences solar radiation intensity on lands with more than 10% slope	Slopes towards the east. It will get full morning sun, but little late afternoon sun. There will be reduced exposure to dry westerly winds.
Exposure	Exposed areas have higher evapotranspiration demand	The trees shown in figure 1.1 and 1.2 have been removed. All areas are now exposed, with no tree cover. Therefore OK.
Slope %,	Impacts on the erosion and runoff potential	Ranges from 5 to 20%. Therefore use subsurface irrigation
Slope length	Impacts on the erosion and runoff potential	Maximum of 120m
Landscape position	Impacts on the extent on run-on from upper slopes. Impacts on local drainage.	Mid slope. Drainage to the north and east of the development site. A minimum of 40m between the proposed irrigation area and the farm dam line.
Local Relief	Indicates the extent of steep slopes	Undulating low hills. Subsurface irrigation will minimise risk of effluent runoff.
Landform element	Identifies drainage issues, e.g. floodplains	Convex, divergent slope, so ideal
Drainage line distance (m)	Indicates risk of stream contamination via runoff. Used in DEC (2004) as a buffer distance guide.	Minimum of 40m to a farm dam This is in excess of the 40m distance where Office of Water involvement occurs under the Water Management Act (2000).
Flow patterns	Indicates stream networks and the risk of contamination	No apparent drainage network within the site. There is an opportunity to capture and convey stormwater runoff around the topside of the irrigation area. This will minimise run-on
Run-on/ runoff potential	Identify management needed to minimise excess inflow or losses from the site.	A contour bank will intercept flow above the irrigation area.
Surface water bodies- dams, ponds, springs DS or US of site	Used in DEC (2004) table 4.9 as a buffer distance guide.	No springs or other surface water bodies were evident within the irrigation area. Use of tertiary treatment of the effluent and subsurface irrigation at the AS/NZS 1547 design irrigation rate(DIR) will minimise risk
Storm water	Risk of external flooding, especially with contaminated water.	A contour bank will intercept flow above the irrigation area.
Salt	Salinisation can limit plants' ability to utilise the effluent. It can indicate poor	The profiles seem reasonably well drained. There is no evidence of

Attribute	Rationale	Comment
	drainage and the need salt tolerant plants. Salinisation can destroy soil structure	salinisation.
	leading to increased risk of effluent runoff.	
Erosion potential+/- cult	Erosion potential is used to adjust the cropping/ pasture regime to minimise risk	Low erosion potential once permanent grass cover is established and maintained.
Rock out crops %	Rocky soil can reduce plant growth, make cultivation difficult and increase runoff.	None
Depth to hard rock	Soil less than 1m deep can have poor root development and inadequate ability to retain nutrients. They can also become waterlogged.	All except location 4 have over 1.5m of soil. Location 3 has decomposed rock at 1.5m
Water table, depth	Depth to water table is critical in determining the most suitable vegetation. A shallow water table will preclude irrigation in parts of the year.	None evident.
Groundwater	Distance between the irrigation area and groundwater bores used for domestic purposes is a critical issue in risk assessment	The site itself has a bore on it. However it is not used anymore as town water is now available.
Flood risk	Frequent flooding can destroy infrastructure, prevent irrigation and damage crops.	Not an issue
Land use	The most suitable land uses should be the ones that result in acceptable minimum risks to human and environmental health. At the same time the landuse must be suitable for the site and not be too expensive to establish or operate. A range of permanent pastures and cropping will be considered.	Improved pasture. Therefore OK. The lack of trees makes it simpler to install subsurface irrigation.
Land use history	Past land use activities such as sheep dips and landfills can result in contaminated lands. These lands are normally unsuited for effluent irrigation because the irrigation will increase the risk of off-site contamination.	Long term, low intensity woodlot and pastures. Therefore OK.
Landuse zoning	The proposed landuse must be consistent with current / proposed land zoning.	A new LEP has been placed on public display. It is assumed that the STP and associated irrigation area will be consistent with this LEP.
Distance to public roads houses, etc.	Buffer distances will be a function of the likely contaminant load and the likely level of exposure to the effluent.	A minimum of 80m to the nearest public road. This is well beyond the 25 to 30m recommended in the National Guidelines.
Fire hazard	Fire hazard can be significant for landuses such as woodlots. Fire can destroy both vegetation and equipment.	Not considered an issue

4.3 Conclusions from site assessment

The land slopes relatively steeply to the east. Run-on and run-off are likely to be moderate because of the relatively steep slope. Therefore subsurface irrigation is proposed. Additionally a contour bank immediately upslope of the irrigation area will divert run-on. Permanent pasture cover is also essential to reduce erosion rate.

There is a farm dam near the eastern boundary of the site but this is over 40m from the likely irrigation area.

Other site attributes create minimal risk. On this basis the site appears suitable for application of effluent, especially in view of the relatively low level of contamination in the effluent as shown in table 3.2.

5 SOILS ASSESSMENT

5.1 Insitu soil assessment

A back hoe was used to excavate 4 pits. The sampling depths used to assess the profiles were based on DEC (2004). DEC (2004) suggest 4 sampling depths in the surface 100 cm. A total of 5 depths were used. Four of these were in the top metre and a fifth sample at least 2m or at refusal. The surface depth aimed to define soil surface conditions such as structural stability. The deepest sample was used to assess phosphorus sorption capacity of the entire profile.

The results of the field assessment are shown in table 5.1.

Field texture

Field texture typically changed gradually from clay loams to medium to heavy clay at approximately 1m depth.

The presence of clay loam on the soil surface means that the irrigation application rate needs to be relatively light.

The clay dominant subsoil means that the soil can store adequate supplies of water. However the profile can also become saturated and poorly drained. Overwatering must be avoided.

Soil strength

Soil strength varied from very strong at the surface of sites 1, to very weak at depth in profile 4. The very strong conditions in the surface soil reflect dry conditions and compaction.

A combination of long term pasture and cropping using reduced tillage is recommended.

Pedality

The pedality is moderate in almost all samples. Organic matter accumulation under pasture will assist in maintaining soil structural stability.

Moderate pedality is preferred in the subsoil as weak pedality can indicate structural degradation. Strong pedality can mean that the effluent passes through the soil too quickly.

Fabric

Earthy or rough pedal fabric is preferred. All the samples had earthy fabric.

Colour

Soil colour is derived from organic matter, clay mineralogy, and drainage conditions. Pale greys, yellow and whites indicate poor drainage. Dark browns are indicative of organic matter accumulation, while bright reds and oranges are indicative of good drainage. The topsoils are typically brown or reddish brown, indicating organic matter accumulation and moderate drainage. The increasing grey colour with increasing depth indicated imperfect drainage.

Table 5.1. Insitu soil conditions.

Few soil fauna evident, no water repellency or hard setting evident but no obvious hard pan or bleaching. The fabric was earthy at all depths. There was no hard pan or bleaching at depth.

Site No.	Depth (cm)	Field texture	Consistency	Moisture	Pedality	Colour	Boundaries	Mottles %	Nodules %	Root No.	Biological activity	Texture change	Hard setting	% rock
KH1	0 to 20	clay loam	very strong	dry	weak	dark reddish brown	diffuse	none	none	common	none	gradual	hard setting	none
	20 to 40	clay loam	firm	moderately moist	moderate	dark reddish brown	diffuse	none	none	common	none	gradual		none
	40 to 70	light medium clay	weak	moderately moist	moderate	very dark gray	diffuse	none	none	common	none	gradual		15%
	70 to 100	medium clay	weak	moderately moist	moderate	dark grayish brown	diffuse	20% yellow	none	common	none	gradual		10%
	160 to 180	heavy clay	weak	moist	moderate	grayish brown	diffuse	10% yellow	none	common	none	gradual		60% (shale)
KH2	0 to 20	clay Ioam	firm	moderately moist	moderate	very dark gray	diffuse	none	none	common	common	gradual	hard setting	none
	20 to 40	clay loam	firm	moderately moist	moderate	dark brown	diffuse	none	none	abundant	none	gradual		none

Depth (cm)	Field texture	Consistency	Moisture	Pedality	Colour	Boundaries	Mottles %	Nodules %	Root No.	Biological activity	Texture change	Hard setting	% rock
40 to 70	clay loam	weak	moderately moist	moderate	reddish gray	diffuse	10% red	none	common	none	gradual		20%
70 to 100	medium clay	weak	moderately moist	moderate	reddish brown	diffuse	25% red	none	common	none	gradual		40%
165 to 175	heavy clay	weak	moist	moderate	gray	diffuse	20% orange	none	rare	none	gradual		80%
0 to 20	clay Ioam	firm	moderately moist	moderate	dark brown	diffuse	none	none	common	rare	gradual	compacted	none
20 to 40	clay Ioam	firm	moderately moist	moderate	dark brown	diffuse	none	none	common	none	gradual		none
40 to 70	clay loam	weak	moderately moist	moderate	dark grayish red	diffuse	none	none	rare	none	gradual		none
70 to 100	medium clay	weak	moderately moist	moderate	reddish gray	diffuse	20% red	none	rare	none	gradual		none
180 to 190	heavy clay	firm	moist	moderate	light gray	diffuse	30% red	none	none	none	gradual		none
	(cm) 40 to 70 to 100 165 to 175 0 to 20 to 40 40 to 70 100 180 to 180 to	(cm)texture40 to 70clay loam70 to 100medium clay165 to 175heavy clay clay0 to 20 to 40clay loam20 to 40clay loam40 to 70clay loam70 to 100medium clay70 to 100medium clay180 toheavy clay	(cm)texture40 to 70clay loamweak70 to 100medium clayweak165 to 175heavy clayweak0 to 20clay loamfirm20 to 40clay loamfirm20 to 70clay loamfirm70 to 100clay loamfirm40 to 70clay loamweak70 to 100medium clayweak180 to clayheavy clayfirm	(cm)texturemoderately moist40 to 70clay loamweakmoderately moist70 to 100medium clayweakmoderately moist165 to 175heavy clayweakmoderately moist0 20to claykweakmoist0 20to loamfirmmoderately moist20 40to loamfirmmoderately moist40 100clay loamfirmmoderately moist70 100clay loamweakmoderately moist70 100clay loamweakmoderately moist180 to clayheavy clayfirmmoist	(cm)texturemoderately moistmoderately moistmoderately moist40 to 70 loamclay loamweakmoderately moistmoderately moistmoderately moist70 to 100medium clayweakmoderately moistmoderately moistmoderate165 to 175heavy clayweakmoistmoderate0 20to loamclay firmmoderately moistmoderate20 40clay loamfirmmoderately moistmoderate40 70clay loamfirmmoderately moistmoderate70 100clay loamweakmoderately moistmoderate70 100clay loamweakmoderately moistmoderate70 100clay loamweakmoderately moistmoderate70 100clay clayfirmmoderately moistmoderate180 toheavy clayfirmmoistmoderate	(cm)texturemoderatemoderately moistmoderatereddish gray40 to 70clay loamweakmoderately moistmoderatereddish gray70 to 100medium clayweakmoderately moistmoderatereddish brown165 to 175heavy clayweakmoistmoderategray165 to 175heavy clayweakmoistmoderategray0 20to loamfirmmoderately moistmoderatedark brown20 40to loamfirmmoderately moistmoderatedark brown40 100clay loamweakmoderately moistmoderate dark browndark grayish red70 100medium clayweakmoderately moistmoderate grayish reddark grayish red70 180 toheavy clayfirmmoistmoderate grayight gray	(cm)textureImage: sector of the sector	(cm)texturemoderatelymoderatelymoderatereddishdiffuse10%40 toclayweakmoderatelymoderatelymoderatereddishdiffuse10%70 tomediumweakmoderatelymoderatereddishdiffuse25%100clayweakmoderatelymoderategraydiffuse25%165heavyweakmoistmoderategraydiffuse20%175clayweakmoistmoderategraydiffuse20%0toclayfirmmoderatelymoderatedarkdiffusenone0toclayfirmmoderatelymoderatedarkdiffusenone20toclayfirmmoderatelymoderatedarkdiffusenone20toclayfirmmoderatelymoderatedarkdiffusenone40toclayweakmoderatelymoderatedarkdiffusenone70toclayweakmoderatelymoderategraydiffuse20%70tomediumweakmoderatelymoderategraydiffuse20%70tomediumweakmoderatelymoderategraydiffuse20%70tomediumweakmoderatelymoderategraydiffuse20%70tomedium <td< td=""><td>(cm)texturemoderately moistmoderately moistmoderate reddish graydiffuse10% rednone40 to 70clay loamweakmoderately moistmoderate reddish browndiffuse10% rednone70 to 100medium clayweakmoderately moistmoderate reddish browndiffuse25% rednone165 to 175heavy clayweakmoistmoderate moistgraydiffuse20% orangenone0 to 20clay loamfirmmoderately moistmoderate moderatedark browndiffusenonenone20 to 40clay loamfirmmoderately moistmoderate dark browndiffusenonenone20 to 40clay loamfirmmoderately moistmoderate dark browndiffusenonenone40 to 70clay loamweakmoderately moistmoderate dark browndiffusenonenone40 to 70clay loamweakmoderately moistmoderate dark grayish reddiffusenonenone70 to 100medium clayweakmoderately moistmoderate graydiffuse20% claynone70 to 100medium clayweakmoderately moistmoderate grayidiffuse20% claynone70 to 100medium clayweakmoderately</td><td>(cm)texturemodermoderately moistmoderately redmoderately graydiffuse10% rednonecommon70 to 100mmedium clayweakmoderately moistmoderatel reddishreddish browndiffuse25% rednonecommon70 to 100medium clayweakmoderately moistmoderatel reddishreddish browndiffuse25% rednonecommon165 to 175heavy clayweakmoistmoderatel moistgraydiffuse20% orangenonerare0 0 0 0 10amfirmmoderately moistmoderatel moderatelydiffusenonenonecommon20 0 0 10amfirmmoderately moistmoderate moderatelydiffusenonenonecommon20 10amfirmmoderately moistmoderate moistdark browndiffusenonenonecommon20 10amfirmmoderately moistmoderate moistdark graydiffusenonenonecommon20 10amfirmmoderately moistmoderate moderatedark graydiffusenonenonerare20 10amfirmmoderately moistmoderate moderatedark graydiffusenonenonerare20 10amclay loamweakmoderately moistmoderate graydark graydiffuse<td>(cm)texturemoderatelymoderatelymoderatelymoderatelygraydiffuse10%nonecommonnone70loamweakmoderatelymoderatelymoderatelreddishdiffuse10%nonecommonnone70tomediumweakmoderatelymoderatereddishdiffuse25%nonecommonnone70tomediumweakmoderatelymoderatereddishdiffuse25%nonecommonnone100clayweakmoistmoderategraydiffuse20%nonerarenonenone175heavyweakmoistmoderatedarkdiffuse20%nonenonerarenone20clayfirmmoderatelymoderatedarkdiffusenonenonecommonrare20toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnone20toclayfirmmoderatelymoderatedarkdiffusenonenonenonenone20toclayfirmmoderatelymoderatedarkdiffusenonenonenonenone20toclayfirmmoderatelymoderategrayishdiffusenonenonenonenone20toclayweakmoderatelymoderate<td>(cm)texturereadmoderately moistmoderate reddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish browndiffuse25% rednonecommonnonegradual165 to 175heavy clayweakmoistmoderategraydiffuse20% orangenonerarenonegradual105 to 20clayfirmmoderately moistmoderategraydiffuse20% orangenonerarenonegradual0 20clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark gray grayishdiffusenonenonecommonnonegradual40 40clay loamfirmmoderately moistmoderatedark grayish reddiffusenonenonerarenonegradual40 40clay loamwe</td><td>(cm)texturereadread%%activitychangesetting40 toclayweakmoderatelymoderatereddishdiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatereddishbirowndiffuse25%nonecommonnonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual100clayfirmmoderatelymoderatedarkdiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcommon20 toclayfirmmoderatelymoderate<!--</td--></td></td></td></td<>	(cm)texturemoderately moistmoderately moistmoderate reddish graydiffuse10% rednone40 to 70clay loamweakmoderately moistmoderate reddish browndiffuse10% rednone70 to 100medium clayweakmoderately moistmoderate reddish browndiffuse25% rednone165 to 175heavy clayweakmoistmoderate moistgraydiffuse20% orangenone0 to 20clay loamfirmmoderately moistmoderate moderatedark browndiffusenonenone20 to 40clay loamfirmmoderately moistmoderate dark browndiffusenonenone20 to 40clay loamfirmmoderately moistmoderate dark browndiffusenonenone40 to 70clay loamweakmoderately moistmoderate dark browndiffusenonenone40 to 70clay loamweakmoderately moistmoderate dark grayish reddiffusenonenone70 to 100medium clayweakmoderately moistmoderate graydiffuse20% claynone70 to 100medium clayweakmoderately moistmoderate grayidiffuse20% claynone70 to 100medium clayweakmoderately	(cm)texturemodermoderately moistmoderately redmoderately graydiffuse10% rednonecommon70 to 100mmedium clayweakmoderately moistmoderatel reddishreddish browndiffuse25% rednonecommon70 to 100medium clayweakmoderately moistmoderatel reddishreddish browndiffuse25% rednonecommon165 to 175heavy clayweakmoistmoderatel moistgraydiffuse20% orangenonerare0 0 0 0 10amfirmmoderately moistmoderatel moderatelydiffusenonenonecommon20 0 0 10amfirmmoderately moistmoderate moderatelydiffusenonenonecommon20 10amfirmmoderately moistmoderate moistdark browndiffusenonenonecommon20 10amfirmmoderately moistmoderate moistdark graydiffusenonenonecommon20 10amfirmmoderately moistmoderate moderatedark graydiffusenonenonerare20 10amfirmmoderately moistmoderate moderatedark graydiffusenonenonerare20 10amclay loamweakmoderately moistmoderate graydark graydiffuse <td>(cm)texturemoderatelymoderatelymoderatelymoderatelygraydiffuse10%nonecommonnone70loamweakmoderatelymoderatelymoderatelreddishdiffuse10%nonecommonnone70tomediumweakmoderatelymoderatereddishdiffuse25%nonecommonnone70tomediumweakmoderatelymoderatereddishdiffuse25%nonecommonnone100clayweakmoistmoderategraydiffuse20%nonerarenonenone175heavyweakmoistmoderatedarkdiffuse20%nonenonerarenone20clayfirmmoderatelymoderatedarkdiffusenonenonecommonrare20toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnone20toclayfirmmoderatelymoderatedarkdiffusenonenonenonenone20toclayfirmmoderatelymoderatedarkdiffusenonenonenonenone20toclayfirmmoderatelymoderategrayishdiffusenonenonenonenone20toclayweakmoderatelymoderate<td>(cm)texturereadmoderately moistmoderate reddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish browndiffuse25% rednonecommonnonegradual165 to 175heavy clayweakmoistmoderategraydiffuse20% orangenonerarenonegradual105 to 20clayfirmmoderately moistmoderategraydiffuse20% orangenonerarenonegradual0 20clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark gray grayishdiffusenonenonecommonnonegradual40 40clay loamfirmmoderately moistmoderatedark grayish reddiffusenonenonerarenonegradual40 40clay loamwe</td><td>(cm)texturereadread%%activitychangesetting40 toclayweakmoderatelymoderatereddishdiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatereddishbirowndiffuse25%nonecommonnonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual100clayfirmmoderatelymoderatedarkdiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcommon20 toclayfirmmoderatelymoderate<!--</td--></td></td>	(cm)texturemoderatelymoderatelymoderatelymoderatelygraydiffuse10%nonecommonnone70loamweakmoderatelymoderatelymoderatelreddishdiffuse10%nonecommonnone70tomediumweakmoderatelymoderatereddishdiffuse25%nonecommonnone70tomediumweakmoderatelymoderatereddishdiffuse25%nonecommonnone100clayweakmoistmoderategraydiffuse20%nonerarenonenone175heavyweakmoistmoderatedarkdiffuse20%nonenonerarenone20clayfirmmoderatelymoderatedarkdiffusenonenonecommonrare20toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnone20toclayfirmmoderatelymoderatedarkdiffusenonenonenonenone20toclayfirmmoderatelymoderatedarkdiffusenonenonenonenone20toclayfirmmoderatelymoderategrayishdiffusenonenonenonenone20toclayweakmoderatelymoderate <td>(cm)texturereadmoderately moistmoderate reddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish browndiffuse25% rednonecommonnonegradual165 to 175heavy clayweakmoistmoderategraydiffuse20% orangenonerarenonegradual105 to 20clayfirmmoderately moistmoderategraydiffuse20% orangenonerarenonegradual0 20clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark gray grayishdiffusenonenonecommonnonegradual40 40clay loamfirmmoderately moistmoderatedark grayish reddiffusenonenonerarenonegradual40 40clay loamwe</td> <td>(cm)texturereadread%%activitychangesetting40 toclayweakmoderatelymoderatereddishdiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatereddishbirowndiffuse25%nonecommonnonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual100clayfirmmoderatelymoderatedarkdiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcommon20 toclayfirmmoderatelymoderate<!--</td--></td>	(cm)texturereadmoderately moistmoderate reddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish graydiffuse10% rednonecommonnonegradual70 to loammedium clayweakmoderately moistmoderatereddish browndiffuse25% rednonecommonnonegradual165 to 175heavy clayweakmoistmoderategraydiffuse20% orangenonerarenonegradual105 to 20clayfirmmoderately moistmoderategraydiffuse20% orangenonerarenonegradual0 20clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark browndiffusenonenonecommonnonegradual20 40clay loamfirmmoderately moistmoderatedark gray grayishdiffusenonenonecommonnonegradual40 40clay loamfirmmoderately moistmoderatedark grayish reddiffusenonenonerarenonegradual40 40clay loamwe	(cm)texturereadread%%activitychangesetting40 toclayweakmoderatelymoderatereddishdiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatereddishbirowndiffuse25%nonecommonnonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual165clayweakmoistmoderategraydiffuse20%nonerarenonegradual100clayfirmmoderatelymoderatedarkdiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcommon20 toclayfirmmoderatelymoderate </td

Site No.	Depth (cm)	Field texture	Consistency	Moisture	Pedality	Colour	Boundaries	Mottles %	Nodules %	Root No.	Biological activity	Texture change	Hard setting	% rock
KH4	0 to 20	clay loam	firm	moderately moist	moderate	reddish brown	diffuse	none	none	common	common	gradual	compacted	none
	20 to 40	clay loam	weak	moderately moist	moderate	brown	diffuse	10% orange	none	abundant	none	gradual		none
	40 to 70	light medium clay	weak	moderately moist	moderate	grayish brown	diffuse	20% orange	none	common	none	gradual		10%
	70 to 100	medium clay	very weak	moderately moist	moderate	olive yellow	diffuse	30% orange	none	common	none	gradual		15%
	135 to 145	heavy clay	very weak	moist	moderate	olive	diffuse	20% orange	none	rare	none	gradual		5%

Boundaries

The sharpness of the boundaries between the soil layers generally indicates the extent of soil development (Isbell, 1996). There is a gradual increase in clay content with depth: clay loam topsoils grade into medium then to heavy clay subsoils.

Mottle %

Mottles can indicate imperfect drainage. Mottles become evident from 40 to 70 cm. The mottles are typically red, suggesting reasonable drainage. Yellow mottles at depth in site KH 1 suggest poorer drainage at this site.

Nodule %

There were few if any nodules evident.

Root number

Root number is typically common to abundant in the surface 40cm and common in the 40-70 cm layers. They were common to rare in the 70-100cm layer and common to absent in the lowest horizon.

There was no evidence of impedance. It is expected that the root frequency will be maintained under permanent pasture. The widespread presence of roots at 70cm suggests adequate physical conditions throughout the normal rooting depth.

Biological activity

Biological activity indicators include the presence of ants, earthworms, millipedes and insect holes in the ground. The activity was rare to absent. The acidic conditions can reduce soil biota numbers.

Liming and planting of long term pasture will increase soil biodiversity, thereby ensuring longevity of the effluent irrigation system.

Rock %

More than 10% rock in the surface horizon can increase risk of machinery damage. None of the soils have rock in the surface 40cm.

Profile HK 2 has a significant volume of rocks below 70cm. This can interfere with water movement through the profile in this area.

Conclusions and management recommendations

The ideal soil for effluent irrigation has sand dominant topsoil overlying moderately structured clay subsoil. The subject site has relatively little sand in it. Therefore the irrigation application rate needs to be relatively light to minimise the risk of runoff.

The moderate pedality in the topsoil is not ideal for effluent irrigation. Organic matter is a key agent for soil structure. Increasing organic matter will increase surface soil stability. Consequently, the establishment of long term is strongly recommended for the area.

Soil colour indicates that the subsoils have imperfect internal drainage. The irrigation rate needs to be relatively light in order to avoid effluent accumulation in the subsoil.

The soils have good root penetration into the subsoil. This suggests that the soils are suitable for effluent irrigation.

Rocks are not an issue.

It is concluded that the soils appear suited to effluent irrigation, however the application rate should be low to avoid waterlogging at depth.

A good cover of vegetation, either as crops or long term pasture, is critical.

The proposed use of subsoil irrigation is ideal for this site as there is clay loam extending 40 to 70cm below the surface.

5.2 Soil chemistry

The soil analysis aims to quantify the soil attributes that influence the ability of the site to sustainably utilise the effluent. Two soil profiles were analysed in detail. Table 5.2 sets out the major soil attributes.

pH (5_{water}:1_{soil})

The pH in the surface 20 cm is ideally between 5.8 and 7 (Slattery, et al, 1999). Profile 1 is too acidic, while profile 4 is in the 'ideal' range. However table 5.2 shows that profile 4 becomes more acidic with depth.

Both profiles would have improved fertility if the pH were higher.

Liming is considered essential.

Salinity

Salinity is expressed as electrical conductivity (EC) in saturated paste equivalent. The units are dS/m. Soils with $EC_{sat paste}$ less than 4 are non-saline (Richards, 1954). Table 5.2 shows that none of the soils are saline. This is an important result as it means that salinity will not limit the site's usefulness for effluent irrigation.

Cation exchange capacity

Cation exchange capacity (CEC) is a measure of the soil's ability to retain nutrients. Ideally the CEC should be at least 5, and preferably greater than 12 cmol(+)/kg (Metson, 1961). Table 5.2 shows that both sites have slightly low CEC.

Attribute	KH1 0-20 cm	KH1 20-40 cm	KH1 40-70 cm	KH4 0-20 cm	KH4 20-40 cm	KH4 40-70 cm
pH (5:1) water: soil	5.37	5.18	5.27	6.05	5.3	5.07
pH (CaCl2)	4.38	4.17	4.35	5.06	4.20	4.01
Salinity (dS/m sat paste)	0.70	0.39	0.32	0.49	0.39	0.41
Exch Ca (cmol+/kg)	2.65	2.66	2.12	5.08	2.42	1.19
Exch Ca as % of CEC	27	22	27	58	23	9
Exch Mg (cmol+/kg)	2.74	2.67	1.34	2.33	2.31	2.15
Exch Mg as % of CEC	28	22	17	27	21	16
Exch K (cmol+/kg)	0.45	0.45	0.61	0.72	0.49	0.43
Exch K as % of CEC	5	4	8	8	5	3
Exch Na (cmol+/kg)	0.43	0.24	0.09	0.30	0.24	0.26
Exch Na as % of CEC	4	2	1	3	2	2
Exch Al (cmol+/kg)	2.13	3.98	2.31	0.13	3.55	6.61
Exch Al as % of CEC	22	33	29	2	33	49
Organic carbon (%)	2.73	2.09	2.86	2.44	0.57	0.45
Total nitrogen (%)	0.17	0.15	0.17	0.14	0.09	0.08
C:N ratio	16.0	14.1	17.0	17.7	6.2	5.7
Available phosphorus (Bray No 1, mg/kg)	5.2	6.5	4.2	3.9	9.0	9.5

Table 5.2. Results of laboratory analysis.

Exchangeable calcium (Ca)

Ideally soils should contain over 10 cmol(+) /kg of exchangeable Ca (Metson, 1961). However soils with 5 to 10 cmol(+) /kg of exchangeable Ca are considered to have moderate concentrations. Thus both soil profiles have low exchangeable Ca as table 5.2 shows.

Adding good quality agricultural lime will remove Ca deficiency and increase production of acid sensitive plants such as clover.

According to Abbott (1989) Ca should make up 65 to 80 % of the sum of cations. Both profiles are deficient in Exch Ca as a % of the CEC. This can result in structural instability.

Addition of lime prior to commencement of irrigation is essential to correct this. The soil should be retested after 3 years.

Exchangeable magnesium (Mg)

Soils should contain at least 1, and up to 3 cmol(+) of exchangeable Mg (Metson, 1961). The data in table 5.2 show that the soils have sufficient Mg.

Dolomite is not required.

According to Abbott (1989) Mg should make up 10 to 15 % of the sum of cations. Both profiles have excessive Exch Mg as a % of the CEC. The ratio of Exch Ca : Exch Mg should be at least 2:1. The Kurrajong soils are typically 1:1. This can result in structural instability. Liming is essential.

Exchangeable potassium (K)

Potassium is an essential nutrient and topsoils should have at least 0.3 cmol(+)/kg. Table 5.2 shows that all soils have an abundant supply of potassium.

Exchangeable sodium (Na)

Exchangeable Na in soil is important because excessive Na can cause structural instability. This is especially critical in the topsoil, where cultivation or heavy rainfall can make the soil susceptible to structural degradation. Generally the potential impact is expressed as Exch Na as a percentage of the sum of cations:

Exch Na*100

Exchangeable (Na+K+Ca+Mg+Al)

Less than 5% exchangeable Na is preferred.

All surface soils have less than 5% Exchangeable Na. The surface soils are therefore non-sodic. Sodicity is also low at depth. Sodicity is not an issue in these soils.

Any soil structural problems, such as crusting on the soil surface, are likely to be due to excessive Mg, over-cultivation and the consequent loss of organic matter. Strategies to increase and maintain organic matter near the soil surface are important for this site.

Exchangeable aluminium (Al)

Exchangeable AI is a potentially toxic ion. Ideally its concentration is below detection. It can stunt growth of susceptible plants such as clovers when more than 5% of the total exchangeable cations are AI. Some of the soil samples have over 4 times more than this percentage.

Agricultural lime addition will reduce this percentage to nontoxic values.

Assuming that the typical Exchangeable AI concentration in the surface 20 cm is 2 cmol+/kg, and the bulk density is 1.2 MT/cubic m, then 1800 kg/ha of lime is needed to minimise exchangeable AI.

It is essential that the lime be incorporated into the soil.

Organic carbon

Soils with less than 1% organic carbon (OC) are likely to have poor structure and low structural stability (Charman and Roper, 2000). Clay loams similar to the Kurrajong topsoils typically should have around 2.5% OC. Table 5.2 shows that on the subject site the soils are near or slightly above this concentration. Ideally the effluent irrigation will be used to produce permanent pasture as this will result in a gradual increase in soil organic carbon concentration.

Total Nitrogen

Soil total nitrogen concentrations less than 0.15% are considered low (Bruce and Rayment (1982). The nitrogen concentrations of the soils are close to this value. Nitrogen addition via effluent irrigation should increase site nutritional status.

C : N ratio

The C : N ratio in typical soils is 10 to 12. The higher values in the current soils suggest that there is accumulation of carbon rich residues. This may be due to the acidic conditions inhibiting bacterial activity. Liming will assist in normalising carbon transformations.

Bray No.1 Available phosphorus

Available phosphorus concentration is a measure of the current adequacy of supply of this nutrient. According to Moody and Bolland (1999), a concentration of 10 to 12 mg/kg in the surface 7.5 cm is sufficient for 90% potential yield of pastures. Table 5.2 shows that the soils have less than 1/2 of this concentration.

The soils would benefit from the phosphorus in the effluent. So effluent irrigation will increase pasture yield, partly at least by increasing phosphorus supply.

P sorption capacity

Table 5.3 shows the P sorption capacity expressed in kg/ha for each horizon. The P sorption capacity is a measure of the soils' ability to retain phosphorus. It is a function of the P sorption capacity expressed as mg/kg of soil and the mass of soil.

The storage capacity in the surface 20 cm is relatively small and the bulk of the storage occurs at depth.

Profile/ depth	P sorption (mg/kg)	P sorption (kg/ha)
KH1 0-20 cm	815	1939
KH1 20-40 cm	824	2059
KH1 40-70 cm	801	3125
KH1 70-100 cm	737	2983
KH1 1.6-1.8 m	624	6552
Tota	I P sorption	16658
KH4 0-20 cm	702	1671
KH4 20-40 cm	809	2023
KH4 40-70 cm	834	3251
KH4 70-100 cm	710	2876
KH4 1.4 m	602	3612
Tota	I P sorption	13432
	·	

Table 5.3.	Phosphorus	sorption	capacity	(kg/ha).
				(·····································

The average capacity over the two profiles is 15 t/ha. Assuming the effluent has 10 mg/L of P and 4 ML/year were applied, it would take approximately 375 years before the profiles would become saturated with phosphorus, even if there was no removal of phosphorus in cut or grazed pasture. It is reasonable to conclude that addition of P via effluent will not reduce site sustainability.

Conclusions and recommendations

The soils varied across the site and within individual profiles. However some generalisations can be made:

- The soils are non-saline and non-sodic. They have good supplies of potassium and magnesium.
- The soils are deficient in calcium. Applying and incorporating 1800 kg agricultural lime per ha prior to commencement of effluent irrigation will ensure that productivity is not limited by aluminium toxicity.
- The P sorption capacity of the soil is sufficient for approximately 375 to 500 years at moderate rates of effluent irrigation.
- Phosphorus availability is marginal. Addition of 120 kg/ha of single superphosphate is recommended for pastures at establishment. After this the effluent will supply sufficient phosphorus.

All of these features would make the soils suitable for effluent irrigation.

The key recommendations:

- Install runoff diversion banks upslope of the irrigation area
- Apply and incorporate 1.8 t/ha of agricultural lime
- Install subsurface irrigation
- Apply 120 kg/ha of single superphosphate at pasture establishment
- Plant pasture as soon as possible after the irrigation system is installed and operational.
- The pasture should include a mix of perennial temperate grasses such as perennial ryegrass.
- Facilitate accumulation of soil organic carbon by combinations of long term pasture and reduced tillage cropping.
- Retest the soil for nutrients, pH, organic carbon and stability after 3 years of effluent irrigation.

6 SIZING OF IRRIGATION AREA.

6.1 Net effluent production

Net effluent production was based on AS/NZS 1547 (2000). According to this standard, wastewater flow allowance for dual flush toilets, front loading washing machines, shower flow restrictors and aerated faucets is $110L/EP/day^2$. According to the 2011 census data (Australian Bureau of Statistics for the 2011 census), the average dwelling in the Kurrajong area has 2.7 persons in residence. There will be 41 dwellings at the full development stage. So the design sewage flow is 110*2.7*41= 12.2 cubic m/day.

In practice the flow is likely to be less as many of the dwellings are within a retirement section and the majority of dwellings will have 1 person in them.

Table 3.1, reproduced below as table 6.1, shows the range of design effluent flow rate depending on number of people/dwelling and flow per person.

Table 6.1. Effect of varying number of resident/dwelling and average flow/ resident on total effluent volume in cubic m/day.

Assume 41 dwellings	Persons/dwelling	2.7	3.7	4.7
Flow/person (L/day)	110	12.2	16.7	21.2
Flow/person (L/day)	145	16.1	22.0	27.9

The flow ranged from 12.2 cubic to 27.9 cubic m/day.

6.2 Irrigation area requirement

AS/NZS 1547 table 4.2A4 shows the recommended design irrigation rate (DIR) for irrigation systems over a range of soil textures. This information is combined with the range of estimated flow rates to assess the irrigation area requirement.

Table 6.2. Effect of varying the design flow rate and design irrigation rate (DIR) for different soil textures on irrigation land requirement.

Design flow rate (cubic m/day)	DIR for clay loams: (25mm/week)	DIR for light clay: (20mm/week)	DIR for medium to heavy clay: (15mm/week)
12.2	3416	4270	5693
16.7	4676	5845	7793
21.2	5936	7420	9893
16.1	4508	5635	7513
22	6160	7700	10267
27.9	7812	9765	13020

 2 EP = equivalent person

Table 6.2 shows that even with the higher flow rate/person and over 4 people per retirement unit, less than 1 ha of irrigation would be needed for clay loam and light clay soils.

Table 5.1 shows that the typical soil profile has clay loam to between 40 and 70 cm and light to medium clay to at least 1 metre. This observation indicates that a 1 ha subsurface irrigation, as shown in figure 1.2, would be sufficient even for conservatively estimated design flows.

6.3 Irrigation area available.

The proposed irrigation area lies to the immediate north of the STP. The maximum proposed irrigation area is 10150 msq.

Based on AS/NZS 1547 this area is sufficient.

7 PROPOSED IRRIGATION STRATEGY AND OPTIMISATION OF THE IRRIGATION AREA

7.1 Model inputs

Table 7.1 itemises the inputs used to model the site water balance.

Table 7.1. Components used to model irrigation demand. Daily data over the 42 years between Jan 1970 and October 2012 was used. (Climate data from BoM).

Component	units	Average/y
Effluent production (12.2 cubic m/day)	cubic m	4448
Rainfall	mm	1040
Pan evaporation	mm	1387
Potential evapotranspiration (PET)	mm	1186
Runoff	mm	129
Run-on to irrigation area	mm	zero
Effective root zone	500 mm	
Plant available water in root zone at field capacity	92 mm	

Table 7.2. Effect of effluent irrigation onto 1 ha of land at 1.2 mm/day since 1970.

Water balance component (all mm/y)	No irrigation	With irrigation	Comment
Rainfall infiltration	911	911	
Irrigation	0	438	Daily at 1.2 mm.
Total water available	911	1349	
Actual evapotranspiration ¹	737	1004	
Percolation	175	345	An additional 14mm/month of percolation.

¹ Plant evapotranspiration is assumed to occur at Potential Evapotranspiration (PET) until 46 mm moisture deficit, then a linear fall to zero at permanent wilting point.

Woodlots &	Wetlands
------------	----------

7.2 Model output

In the period 1970-2012, the average annual rainfall was 1040 mm. Of this 911 mm infiltrated the soil while 129 mm ran off the site. Some 175 mm of the infiltrated rainfall moved below the 500 mm deep root zone.

Pan evaporation averaged 1387 mm while potential evapotranspiration (PET) averages 1186 mm. The PET has a strong annual cycle varying from over 6 mm/day in summer to 1 mm/day in winter. Figure 7.1 shows that the rainfall pattern is more varied and can occur throughout the year.

Figure 7.2 shows the effect of applying 1.2mm/day irrigation on the soil water balance.

The main effect of the irrigation is to increase the mid-range soil water content. During prolonged dry periods the irrigation impact is relatively minor. During periods of heavy rainfall, the 1.2 mm/day is small compared with the more than 20mm of rainfall during the same day.

The non-irrigated soil has moisture content in excess of field capacity (92mm in the top 500 mm) in 3% of days whilst the soil receiving 1.2 mm/day irrigation has moisture content exceeding field capacity in 8% of days. The result is increased percolation on the irrigated soil, but this only occurs during heavy rainfall.

It is concluded at the proposed irrigation rate will not increase runoff from the subsurface irrigation area. There will be increased deep percolation, but this will only occur during heavy rainfall events.

8 MANAGEMENT OF CONTAMINANT LOADS

8.1 Nitrogen

The indicative nitrogen concentration in the effluent is <15 mg/L.

Table 8.1 shows the nitrogen loading rate for a range of irrigation areas and nitrogen concentrations.

Table 8.1.	Effect of	varying	irrigation	area on	the nit	trogen and
phosphorus	loading ra	ites (kg/ha	/y). The a	ssumed f	low was	; 12.2 cubic
m/day						

Irrigation area	0.8 ha	1 ha	1.2 ha
mm of irrigation/year	454	406	365
Assumed nitrogen concentration in irrigated effluent (mg/L)	15	15	15
Nitrogen application rate (kg N/ha/y)	68	61	55
Assumed phosphorus concentration in irrigated effluent (mg/L)	10	10	10
Phosphorus application rate (kg P/ha/y)	45	41	37

According to NSW Agriculture (1997), a typical 12 dry t/ha crop of perennial pasture will have a nitrogen concentration of 2.4 to 3.5% nitrogen. That is, the crop will accumulate 290 to 420 kg/ha/year of nitrogen, provided the crop is harvested. This is more than 4 times the nitrogen application rate in the effluent as shown in table 8.1.

If the pasture is not forage harvested then the nutrient removal rate is dependent on grazing intensity. Plant growth and nutrient uptake are similar, but a proportion of the ingested nutrients is returned in urine and faeces. As an example, a 500 kg cow grazing low quality pasture will excrete approximately 35 kg/year of nitrogen and 14 kg/year of phosphorus (QDNR, 1998). Depending on its initial weight and calf management it will 'accumulate' over 100 kg of N /year. That is, provided the site is either cut and baled or grazed the potential nitrogen export could exceed the nitrogen being supplied in the effluent.

8.2 Phosphorus

Raw sewage contains 10 to 25 mg/L of phosphorus (DLG, 1998). Precipitation and other processes within the STP results in the effluent usually having less than 10 mg/L of phosphorus.

Assuming 10 mg/L of phosphorus, the phosphorus application rate will range from 37 to 45 kg P/ha/y depending on the irrigation rate. Phosphorus concentration in the pasture will be approximately 0.3%, so 12 dry t /ha of pasture will contain 36 kg of phosphorus. This is virtually the anticipated phosphorus application rate.

Section 5.2 shows that the soil profile contains some 15 t/ha of P sorption capacity. That is, even if there was an excess of phosphorus being applied with the effluent, it will take centuries for the soil's sorption capacity to become saturated. (If there were zero net uptake the site would last 369 years prior to saturation).

8.3 Salinity

Salinity increases by some 0.3 dS/m as water passes through a domestic sewerage system.

The current proposal is to subsurface irrigate the water over 1.0 ha on lands that are over 40m from any drainage line. The soils are not saline. Finally the proposed irrigation rate of 400 mm/year is adequate but not excessive, so there will be minimal risk of waterlogging or salinisation.

Salinity is not an issue at this site.

8.4 Conclusions

The anticipated nitrogen application rate via effluent irrigation is 2 to 4 times less than the potential uptake by the pasture. Consequently nitrogen leaching to below the root zone is unlikely to be significant.

Phosphorus application rate is similar to the anticipated accumulation rate by plants. This, plus a large sorption capacity in the soil profile, means that the system can be considered sustainable: Profile saturation with P is unlikely for at least 3.5 centuries.

9 REFERENCES

Abbott, T. S. (1989). Soil testing service- methods and interpretation. NSW Agriculture, Rydalmere NSW.

Asano, T. (1998). Wastewater Reclamation and Reuse. Technomic Publ. Co. Landcaster PA.

Bannerman, S., and Hazelton, P. A., (1989). Soil Landscapes of the 100,000 Penrith Sheet. NSW SCS. Sydney, NSW

Bruce, R. C., and Rayment, G. E. (1982). Analytical methods and interpretations used by the Agricultural Chemistry Branch for Soil and Land Use surveys. QDPI Bull QB8 (2004). Indooroopilly, Qld.

Charman, P. E. V. and Roper, M. M. (2000). Soil Organic Matter. IN: Soils-their properties and management. 3 rd edition. P. E. V. Charman and B. W. Murphy Editors. pp 276-285. OUP Melbourne.

DEC (2004). Environmental Guidelines: Use of Effluent by Irrigation. Dept Env. and Con. Sydney, NSW.

Decker, R. S., and Dunnigan, L. P. (1977). Development and Use of Soil Conservation Service dispersion test. ASTM STP 623.

Department of Water and Energy (2007). Interim NSW Guidelines for Management of Private Recycled Water Schemes. DWE, Sydney, NSW.

EPA (1995). Draft Environmental guidelines for Industry-The Utilisation of Treated Effluent by Irrigation (EPA, unpublished).

Holford, I., Doyle, A., D. (1992). Yield Responses and Nitrogen Fertilizer Requirements of Wheat in Relation to Soil Nitrate levels at various Depths. Soil Testing for Phosphorus. AJSR 30: 683-694

Isbell, R. F. (1996). The Australian Soil Classification. CSIRO publ. Collingwood. Vic.

Kovac, M., Lawrie, J., and Murphy, B. W. (1990). Soil Landscapes of the 250,000 Bathurst Sheet. NSW SCS. Sydney, NSW

McKenzie, N., Coughlan, K. and Cresswell, H. (2002). Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO, Collingwood. Vic.

Metson, A. J. (1961). Methods of chemical analysis for soil survey samples. Soil bureau Bull No. 12. NZ DSIR.

Moody, P. W., and Bolland, M. D. A. (1999). Phosphorus. IN Soil Analysis. K. I. Peverill , L. A. Sparrow and D. J. Reuter. Editors. Chapter 12. CSIRO Collingwood, Vic.

NRMMC/ EPHC/ AHMC (2006). Australian Guidelines for Water Recycling: Managing health and Environmental Risk (Phase 1). NWQMS No. 21. Natural Resource Management Ministerial Council/ Environment Protection and Heritage Council/ Australian Health Ministers Conference. Canberra ACT.

NCST. (2009). Australian Soil and Land Survey Field Handbook. The National Committee on Soil and Terrain Third Edition. CSIRO, Collingwood. Vic.

NSW Agric. (1997). The NSW Feedlot Manual. NSW Agric Orange, NSW.

Woodlots & Wetlands

QDNR (1998). MEDLI Technical Manual. T. Gardner and R. Davis Eds. Indooroopilly, Qld.

Richards, L. A. (Editor). Diagnosis and improvement of saline and alkaline soils. USDA Handbook No. 60. Washington, DC.

Slattery, W. J., Conyers, M. K., and Aitken, R. L. (1999). Soil pH, Aluminium, Manganese and Lime Requirement. IN Soil Analysis. K. I. Peverill , L. A. Sparrow and D. J. Reuter. Editors. Chapter 7. CSIRO Collingwood, Vic.

Williams, J. (1983). Soil Hydrology. IN: Soils: An Australian Viewpoint. Div. of Soils CSIRO, Academic Press, Melbourne.

Responses to questions and comments from IPART.

Prepared by Dr Peter Bacon who prepared the original site evaluation and effluent management scheme.

Potential for elevating groundwater levels within and near the effluent irrigation areas.

Groundwater accumulation will occur when the rainfall + effluent irrigation exceeds Evapotranspiration + runoff + infiltration capacity.

The proposed system was designed using AS/NZS1547 (2012). The calculated volume of effluent produced per day was used in conjunction with the soil evaluation to determine the design irrigation (mm/day) as per AS/NZS 1547(2012) table M1 (page 160).

The soil evaluation indicated that the soil was a clay loam for the surface 40 to 70 cm, overlying a light to medium clay subsoil. The subsurface irrigation will be some 10 to 15 cm below the surface and installed into the clay loam horizon.

According to AS 1547/NS (2012) the Design Irrigation Rate (DIR) for clay loams is 3.5mm/day while the DIR for light clays is 3mm/day, and that for medium to heavy clays is 2mm/day.

The soils had moderate pedality, so the permeability range for the clay loams, light clays and medium to heavy clays is 500 to 1500mm/day for clay loams, 60 to 120mm/day for light clays and 60 to 500mm/day for medium to heavy clays (AS/NZS1547: 2012). That is, the DIR is maximum of 1/30 of the permeability of the soil.

Put simply the design irrigation rate is a small fraction of the soil's ability to transmit the effluent. Elevation of groundwater due to application of 2 to 3.5 mm/day of effluent is highly unlikely.

Bores in the vicinity of the effluent irrigation

The only bore within the 250m recommended separation distance for domestic use water supplies (DEC, 2004) is a disused one some 120m uphill to the NW of the irrigation area. Apparently the bore was used before the Sydney Water Corporation installed reticulated water in the area. The bore number is GW104396. The main water zone is between 156 and 160 m.

There are no other bores within 250m of the irrigation area. This reflects the local preference for farm dams rather than trying to tap into the deep and potentially poor quality groundwater resources in the area.

It is concluded that the bore data suggests that the regional water table is extremely deep. It is highly unlikely that the proposed irrigation in an area of less than a hectare in an area without other irrigation is likely to have any impact on the water table.

During the site investigation holes up to 3m or to rock if less than this depth were excavated. There was no evidence of a shallow water table.

It is highly unlikely that the relatively low design application rate would create a shallow water table.

There is a farm dam downslope of the irrigation area. The application rate is so low that runoff is highly unlikely, however if there was downslope flow of water through the soil then it should become evident in the existing dam.

It is RECOMMENDED that the dam be tested before the irrigation commences and then annually to detect and 'leakage'.

This approach is preferred to testing groundwater because there is no evidence of a shallow water table, so the monitoring well would be dry. Conversely, the dam is expected to contain a permanent body of water and the quality of this water should reflect any impacts of the effluent irrigation.

Thus, there is no need for a groundwater monitoring program. A surface water monitoring program is recommended.

Figure 1. Regional context of the development area and the proposed irrigation site. The location of the bore is also shown (Image: Google Earth 11.2012)

Figure 2. Location of bore and proposed monitoring dam in relation to subsurface irrigation area.

Impact of rainfall on irrigation

The irrigation can be turned off and then back on by a 'Mini Clik' system. This is shown below. It is marketed by Hunter Irrigation.

Figure 3. The Mini Clik system is used to ensure that irrigation will not occur during rain events greater than 10mm. This is during rain events that could cause runoff.

Hunter's Mini Clik rain sensor provides the simplest, most effective way to prevent surface or subsurface irrigation from running during or after any level of rainfall. It easily installs on any automatic irrigation system. The Mini-Clik stops scheduled irrigation when it detects a pre-set level of rain has fallen. This automatic process ensures landscapes aren't watered during a storm. Once the storm passes, the Mini-Clik allows the controller to resume normal irrigation. This occurs once the water container in the Mini-clik dries out. Thus there is a delay of 1 to 2 days before the irrigation commences.

Wet weather storage

Large scale wet weather storage is not needed. The reason for this is that the system relies on subsurface irrigation so mixing with rainfall runoff and moving off site in combined flow does not occur. Secondly, the Mini-clik system ensures that irrigation does not occur once a predetermined rain event happens. In these circumstances a 5 day storage is sufficient to allow for the Mini-clik system to dry out sufficiently to allow irrigation to resume. A 5 day rather than a 2 day storage is recommended because it provides for longer periods of intense rainfall.

Health and Environmental Risk and Impact assessment

This assessment is discussed in relation to the quality of the effluent being reliably produced by the Aquacell STP.

The system produces effluent with less than 1 cfu/100mL of E.Coli. This means that the effluent is virtually sterile. The extremely low microbial load, plus the subsurface application system means that the NRMMC/ EPHC/ AHMC (2006). Australian Guidelines for Water Recycling: Managing Health and Environmental Risk requirements are met.

The minimum of 40m distance to the farm dam is not an issue because the water is virtually sterile and is applied via subsurface irrigation (DEC, 2004).

References

DEC (2004). Environmental Guidelines: Use of Effluent by Irrigation. Dept Env. and Con. Sydney, NSW.

NRMMC/ EPHC/ AHMC (2006). Australian Guidelines for Water Recycling: Managing health and Environmental Risk (Phase 1). NWQMS No. 21. Natural Resource Management Ministerial Council/ Environment Protection and Heritage Council/ Australian Health Ministers Conference. Canberra ACT.

Risk

		Consequences									
		1	2	3	4	5					
	1	Low	Low	Low	Moderate	High					
ро	2	Low	Low	Moderate	High	Very High					
lihood	3	Low	Moderate	High	Very High	Very High					
Likeli	4	Low	Moderate	High	Very High	Very High					
÷.	5	Low	Moderate	High	Very High	Very High					

Qualitative measures of likelihood

Level	Descriptor	Example of Description	
1	Rare	May occur only in exceptional circumstances	very rarely > annual
2	Unlikely	Could occur in unusual circumstances	chance of annual occurence
3	Possible	Might occur or should be expected to occur under certain circumstances	chance of monthly occurence
4	Likely	Will probably occur	chance of weekly occurence
5	Almost Certain	Is expected to occur	chance of daily occurrence

Qualitative measures of consequence

Level	Descriptor	Example of Description
1	Insignificant	Insignificant impact or not detectable
2	Minor	Health - Minor impact on contact population, first aid treatment
		Environment - Minimal and short term harm to the environment
3	Moderate	Health - Moderate impact on contact population, medical treatment required
		Environment - Significant harm to the local environment for a short period
4	Major	Health - Major impact on contact population, extensive injuries
	-	Environment - significant harm to the environment
5	Catastrophic	Health - Potentially lethal on on contact population, death
	•	Environment - significant, widespread harm outside local area

Decision Tree

HACCP Checklist

Project Name:	Kurrajong		HACCP	Workshop Attendees	hop Attendees Revision 1 Attendees		Revision 2 Attendees (December 19th 2011)			Revision 3	Revisions
Project Engineer: Date of Assessment:	Technical Manager				W. Johnson						
Date of Assessment:	14-Jan-16				J. Taylor						
Revision:	Revision 1										
Approved By and Date:	W. Johnson	To be approved by the Technical Manager		see RWQMP section 4 for compar	ny affiliations						

DESIGN /	Before Mitigation After Mitigation																	
	Potential Hazard	Preventative Measure		Consequence					Uncertainty	Uncertainty Decision Tree CCP		ainty Decision Tree CCP Critical Levels Monitoring			Correct	ve Action	Records	
							ence	Risk										
Process unit	Physical, chemical, biological, other		1 to 5	1 to 5	D + E	1 to 5	1 to 5	D + E		1	Y or N			Target Action	How	What	How	Where
1. Source water	biological, other Physical contact with wastewater	Covers on tanks, locks where appropriate, trained operators to access site, signage, difficult to	1	2	3	1	2	3	± 1	N N	1		No					
(sewage influent, collection lines,	wastewater	access site, signage, difficult to																
pump stations)		access. Training of services personnel.																
		personner.																
	Biological Hazard. Faecal matter in influent above	Membrane UF treatment. On-line monitoring. Verification monitoring.	1	2	3	1	2	3	± 1	N N	4		No					
	specification Additional	Actual nathogen removal likely to be																
	pathogen load to treatment	higher than operational target. Ongoing monitoring program includes biological																
	plant resulting in out of spec treated water	monitoring program includes biological parameters. Turbidity meter indicates																
	created water	membrane breach.																
	Physical hazard.	Exclude the public from the plant and	2	2	4	1	1	2	± 1	Y N	I N	-	No					
		irrigation area. Use correct PPE.																
	Chemical Hazard	Buffer tank pH is monitored	3	2	5	3	1	4	± 1	Y N	I N		No					
	Blockage or break in	Properly designed sewer. Graviy flow	2	1	3	2	1	3	±1	Y N	I N	+	No					
	sewerage network.	system (no pump stations). Network is		1						ΙĒ	- Ľ							1
		comparatively small.																
2. Screen	Chemical hazard. Non-	Buffer tank pH is monitored. Buffer tank	2	2	4	2	2	4	± 1	N N	١T	Τ	No			1	1	1
1	compliant trade waste discharge up stream.	pumps don't transfer if pH is out of range.		1				1	1			1	1			1	1	1
				1				1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
			L	1									1					1
	Residnets disposing of chemicals down the drain	Education of resident . pH monitoring of the influent, any out of range feed not	2	2	4	2	1	3	± 1	Y N	I N	1	No					
	chemicals down the drain	accepted. Dilution of feed by other																
		residents																
	Screen may block or fail.	Routine maintenance inspections. Level alarms.	2	1	3	2	1	3	± 1	Y N	I N		No					
		alarms.																
	Screenings and grit need to	Ensure appropriately experienced and	2	2	4	1	2	3	± 1	Y N	I N	-	No					
	be removed from site and accidental discharge to	licensed contractors are used for maintenance of systems. Contractors																
	accidental discharge to environment may result with	use adequate PPE to mitigate against																
	potential public contact to	use adequate PPE to mitigate against ingestion, skin contact and inhalation. Remediate spills immediately and																
	contact the contaminants via	exclude public from the spill point until																
	the skin or inhalation	rectified.																
				2	4					N N								
3. MBR (Aerators, Mixed Liquor,	Chemical hazard - pH sensitive	High MLSS will reduce effects of shock loads. pH exclusion in pre-treatment	2	2	4	2	1	3	± 1	NN	·		NO					
Membranes)	Shock loads	prevents delivery of non-compliant water to MBR.																
	Chemical hazard - pH neutral	DO indicator of biomass health. High MLSS - shock resistance.	3	1	4	3	1	4	± 1				NO					
				1									1					1
	Chemical hazard - Chemical	Appropriate procedures. Operator	3	1	4	2	1	3	± 1	N N			No					
1	cleaning process destroys biomass	training. Slow down production to allow biomass to rebuild. Last resort,		1		1		1	1			1	1			1	1	1
		shutdown and re-seed.		1		1		1	1			1	1			1	1	1
1				1		1		1	1			1	1			1	1	1
				1				1	1			1	1			1	1	1
1				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
	Chemical cleaning damages	Appropriate procedurer, Operator	3	3	5	1	3	4	± 1			+	CCP	Turbidity < 2 NTU Turbidity > 2	NTU Online turbidity			
	membranes.	Appropriate procedures. Operator training. Membranes selected for broad	3	3	3	1			11	ľľ		1		rurbuilty > 2	on the curbinity	1	1	1
		compatability range. In the event membranes are damaged, breach would		1		1		1	1			1	1			1	1	1
		be detected by turbidity probe.		1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1									1					1
				1														1
	Biological hazard	Operator training. DO monitoring. pH probe in filtrate pit is indicator of	3	2	5	3	2	5	± 1	N N	1	Τ				1	1	1
	Over aeration - nitrification reduces pH in tank	probe in filtrate pit is indicator of bioreactor pH.		1		1		1	1			1	1			1	1	1
				1				1	1			1	1			1	1	1
				1		1		1	1			1	1			1	1	1
				1									1					1
		1	1	1	1	1	1	1	1	1 1	- 1	1	1	1 1	1	1	1	1

Step	Potential Hazard	Preventative Measure	Likelihood	Consequence	ce Resid. Ri	isk Lik	elihood Co	onsequ	Resid.	Uncertaint	y Deci	sion Tre	ee CCP		Critical	Levels	Monitoring		Correctiv	ve Action	Records
Process unit			1 to 5	1 to 5	D + E			ence 1 to 5	Risk D + E		1	r or N		Target	ŀ	Action	How	What		How	Where
	hiological other Biological hazard Under aeration failure. 1) electrical 2) diffuser	Biowers are alarmed for electrical failure. Pressure transducers on aeration system detect diffuer blockages. Separate bowers supply blockgy and membrane. Roude Moliterance Program DD probe alarmed for aeration failure.	2	2	4		2	1	3	±1	YN	N	No								
	Biological hazard Loss of biomass due to lack of feed.	Residential estate is likely populated at all times. Experience shows biomass can sustain health over several days.	1	2	3		1	2	3	±1	Y N	N	No								
	Biological hazard Membrane failure allowing pathogens through, either by gross rupturing or pinholing	Upstream screen to protect membranes from foreign matter. Membrane selection with a broad compatibility rage. Level and overflow alarms (membranes dry out) Online turbidity measurement of filtrate. Turbidity shutdown alarm.	2	3	5		2	3	5	± 2	Y N	Y	N CCP1	NTU < 2	I	NTU > 2	Online turbidity				
	Physical hazard Leave drain valve open, emptying membrane tank	Operator training. Remove valve handles. Low level alarm on membrane tank.		1	2	3	1	2	3	±1	Y N	N	No								
	Physical hazard Faulty connections to/from membrane filter.	Good pipe work design and flexible connections used. Use stainless steel damps and screws. Online turbidity to maintain spec.		2	3	5	1	3	4	±1	Y N	Y	N CCP1	Turbidity <	2 NTU	Turbidity > 2 NTU	Online turbidity				
	Physical hazard Loss of air scour due to large bubble size (broken diffuser).	Appropriate design.Inspection. Pressure transducers with low pressure alarm		2	1	3	2	1	3	±1	Y N	N	No								
	Physical hazard Faulty membrane installed	Quality checks at manufacturing, construction, commissioning. Manufacturers approval Verification during commissioning . Water Quality Testing, Turbidity monitoring		2	3	5	1	3	4	±1	Y N	Y	N CCP1	Turbidity -	2 NTU	Turbidity > 2 NTU	Online turbidity				
	Sludge needs to be removed from site and accidental discharge to environment may result with potential public contact to pathogens. Operator handling also implies human exposure risk	Ensure contractors are adequately trained and licensed. Exclude public access and immediately rectify spills. Use appropriate PPE to avoid inhalation and skin contact. Supervision by Aquaceli staff.	1	3	4		1	3	4	±1	Y N	N	No								
	Sludge wasting may fail leading to disruption of plant function	Sluge is manually wasted. Ensure wasted t sludge flows to sludge tank and is not contacted by humans	3	1	4		3	1	4	±1	Y N	N	No								
4. Irrigation System and Storage Tanks	Exposurel hazard, improper use of treated water.	Education program for occupants. Ulac coloured pipes and fittings. Signage Indicating recycled water uzage. No taps on irrigation network. Treatment plant operating correctly	1	3	4		1	3	4	±2	N N		No								
	Degredation in water quality and delivery due to biofilm growth	Correct citing of impation field and intrarge fasts. Knowing point on irrigation system installed. Task keel alarms if irrigation system blocks.	2	3	5		1	3	4	± 2	N N		No								
	Irrigation pump may fail	Small pump which is readily available. Adequate storage volume in buffer and irrigation tank to allow time for pump to be replaced. Irrigation tank and buffer tank can be pump out if necessary.	2	3	5		1	3	4	±1	N N		No								
	may fall	Five seperately operable irrigation zones so problem zones can be isolated. Routine checks to look for pooling or leaking. Adequate storage volume in buffer and irrigation tank to allow time for pump to be replaced. Irrigation tank and buffer tank can be pump out if necessary.	2	3	5		1	3	4	±1	NN		No								
11. General	Prolonged power outages	Buffer tank can hold 8 times daily demand. Buffer tank can be pumped out.	1	2	3		1	2	3	±1	N N		No								

Step	Potential Hazard	Preventative Measure	Likelihood	Consequence	Resid. Risk	Likelihood	Consequ	Resid.	Uncertainty	Decision Tree		ССР	Critical Levels	Monitoring	Corrective Action		Records	
							ence	Risk										
	Physical, chemical, biological, other		1 to 5	1 to 5	D + E	1 to 5	1 to 5	D + E			Y or N	/		Target Action	How	What	How	Where
		Critical equipment under cover. Plant is above flood level on the side of a hill. Pump out can be used if plant is disabled.	1	4	5	1	4	5	±1	N	N		No					
	Earth quake	Pump out can be used if plant is disabled.	1	4	5	1	4	5	± 1	N	N		No					
	Fire	Pump out can be used if plant is disabled. Vegetation is maintained around plant.	1	4	5	1	4	5	±1	N	N		No					
		Pump out can be used if plant is disabled. Plant is in gated estate to prevent any access from general public.	1	3	4	1	3	4	±1	N	N		No					

HAZOP

Checklist

Project Name:	Kurrajong		HAZOP Workshop Attendee	S	Revision 1 Attendees	Revision 2 Attendees	
Project Engineer:	Technical Manager				W. Johnson		
Date of Assessment:	14-Jan-16				J. Taylor		
Revision:	Revision 1						
Approved By and Date:		To be approved by the Technical Manager					

Deviation Consequence Gaues Safeguards Actions Who Due Date Status sunt flow, high flour, pH Which happeens Why does it happeen Values, diarns, instrument, design To be done to mitigate Image and the set of the set	HAZOP								
sunit from, high flow, pit/ honore low levels, not providing enough flow to biology Low influent production Biockage or linebraik gate provide. Low influent production all wels witch to protein of eed is available. Low influent providing and the provide and the provide gate provide. Low influent production all wels witch to protein all wels witch to protein on feed is available. Low influent providing and the provide and the provide and the provide and the provide and the provide and the provide and the communed and the communed and the communed and the communed and the communed and the commune provide and the communed and the provide and the communed and the communed and the communed and the provide and the communed and the commune the provide and the communed and the communed and the communed and the communed and the communed and the analytic and the provide and the communed and the analytic and the provide and the commune and the provide and the commune and the provide and the provide and the samp and the provide and the commune and the provide and the commune and the provide and the commune and the provide and the provide and the provide and the provide and the treated water tank full water tank can be pumped out if required Image: The provide and the provide and the provide and the provide and the provide and	Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
age input, ction lines enough flow to biology Blockage or linebreak upsream of buffer tank offed is available. Image input, offed is available. Image input, out if required	Equipment, tank, process unit		What happens	Why does it happen		To be done to mitigate			
AutomationUpstream of buffer tankProbe which turns influent pump off if pH low. Pump out tank if requiredPerform out tank if required <t< td=""><td>1. Source water (sewage input,</td><td>No influent</td><td></td><td></td><td>downstream equipment if</td><td></td><td></td><td></td><td></td></t<>	1. Source water (sewage input,	No influent			downstream equipment if				
qualitypossibly membranesseptic, contaminated waste, other upsetsinfluent pump out tank if requiredImage: Septic s	collection lines)								
wate, other upsetsPump out tank if requiredImage: Set is the properties of the properi									
Influent feed not used Septicity develops, buffer tank overflows Treatement plant offline, treated water tank full Buffer tank and treated water tank can be pumped out if required Image: Comparison of the pumped treated water tank full Image: Comparison of the pumped out if required Image: Comparison of the pumped out if required Image: Comparison of the pumped treated water tank full Image: Comparison of the pumped treated water tank full		quality	possibly membranes						
Law beamtank overflowstreated water tank full water tank can be pumped out if requiredwater tank con use pumped out if can be pumped out if can be pumped out if can to pumped out if can to pumped out if can to pumped out if can to pumped out if can be pumped out if requiredwater tank can be pumped out if requiredwater tan				waste, other upsets	Pump out tank if required				
Image: Section of the sectin of the section of the		Influent feed not used	Septicity develops, buffer	Treatement plant offline,	Buffer tank and treated				
Image: Section of the section of th			tank overflows	treated water tank full	water tank can be pumped				
stormwater ingress, high demand due to community times daily flow, buffer tank can be pumped out ifplant, buffer tank volume 8 times daily flow, buffer tank can be pumped out ifplant, buffer tank can be pumped out if <td></td> <td></td> <td></td> <td></td> <td>out if required</td> <td></td> <td></td> <td></td> <td></td>					out if required				
Stormwater ingress, high demand due to communityplant, buffer tank volume 8 times daily flow, buffer tank can be pumped out ifImage: Stormwater ingress, high demand due to communityplant, buffer tank volume 8 times daily flow, buffer tank can be pumped out ifImage: Stormwater ingress, high demand due to communityplant, buffer tank volume 8 times daily flow, buffer tank can be pumped out ifImage: Stormwater ingress, high demand due to communityplant, buffer tank, volume 8 times daily flow, buffer tank can be pumped out ifImage: Stormwater ingress, high demand due to communityplant, buffer tank, outfer tank can be pumped out ifImage: Stormwater ingress, high demand due to communityplant, buffer tank, outfer tank can be pumped out ifImage: Stormwater ingress, high can be pumped out ifplant, buffer tank can be pumped out ifImage: Stormwater ingress, high can be pumped out ifplant, buffer tank can be pumped out ifImage: Stormwater ingress, high can be pumped out ifplant, buffer tank can bep		High influent flow	Buffer tank fills up	Flooding of sewer pit,	Additional capcity built into				
Image: Series of the series		0		- · · ·					
Image: cancer provide the provided of the provided of the provided of the provided the provid									
Reverse FlowBack-up in inlet pipe configuration (gravity flow configuration (gravity flow configuration (gravity flow system)Gravity flow systemGravity flow systemImage: Configuration (gravity flow system)Gravity flow systemGravity flow systemImage: Configuration (gravity flow system)Gravity flow systemGravity flow systemImage: Configuration (gravity flow system)Gravity flow systemGravity flow systemGravity flow systemGravity flow systemGravity flow systemGravity flow systemGravity flow systemM/AM/AM/AImage: Configuration (gravity flow system)M/AM/AM/AM/AImage: Configuration (gravity flow system)M/AM/AM/AImage: Configuration (gravity flow system)M/AM/AImage: Configuration (gravity flow system)M/AM/AM/AImage: Configuration (gravity flow system)M/AM/AImage: Configuration (gravity flow system)M/AM/AImage: Configuration (gravity flow system)M/AImage: Configuration (gravity flow system)M/AImage: Configuration (gravity flow system)M/AImage: Co									
Low levelas for 'no influent'Image: SystemImage: SystemIma		Reverse Flow	Back-up in inlet pipe						
Image: Constraint of the systemImage: Sys									
Low levelas for 'no influent'Image: Constraint of the probability of the p									
Image: Source of the second		Low level	as for 'no influent'			•			
Image: Second		High level	Buffer tank fills up. Overflow	Treatement plant offline,	Buffer tank and treated				
Image: Start up/ shutdownNor equirement for isolationImage: Start up/ shutdownNor equirement for isolationImage: Start up/ shutdownNor equirement for isolationImage: Start up/ shutdownImage: Start up			to sump	treated water tank full	water tank can be pumped				
system N/A N/A Low pressure Not possible in gravity flow system N/A N/A Tank rupture Spill of influent to environment Earthquake, subsidence, flood, flotation Good design. Fit for purpose tank. Located above flood level cut into side of hill Image: Comparison of the subsidence of t					out if required				
Low pressureNot possible in gravity flow systemN/AN/AN/ATank ruptureSpill of influent to environmentEarthquake, subsidence, flod, flotationGod design. Fit for purpose tank. Located above flood level cut into side of hillImage: Comparison of the comparison of t		High pressure		N/A	N/A				
environment flood, flotation purpose tank. Located above flood level cut into side of hill integration		Low pressure	Not possible in gravity flow	N/A	N/A				
environment flood, flotation purpose tank. Located above flood level cut into side of hill integration		Tank rupture	Spill of influent to	Earthguake, subsidence,	Good design. Fit for				
above flood level cut into side of hill pH outside expected range Biological process upset Influent pH pH meter in buffer tank above flood level cut into side of hill Start up/ shutdown No- issue Imfluent pH pH meter in buffer tank Imfluent pH Isolation No requirement for isolation Imfluent pH Imfluent pH Imfluent pH					-				
pH outside expected range Biological process upset Influent pH pH meter in buffer tank Implication Impli				,	above flood level cut into				
Isolation No requirement for isolation I I		range		Influent pH					
		Start up/ shutdown	No- issue						
		Isolation	No requirement for isolation						
Cleaning no requirement for cleaning		Cleaning	no requirement for cleaning						
HAZOP									
----------------------------------	---	---	---	--	------------------------	-----	----------	--------	
Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status	
Equipment, tank, process unit	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate				
2. Screen	No Flow	No feed into biology tanks	Screen blockage, motor trip	Level switches, motor overload, screen overflow to buffer tank					
	High flow	Overflow	Screen blockage	high level alarms and control logic, screen overflows to buffer tank					
	Reverse flow from sewer overflow	Not possible							
	Level	As for 'flow'		•	•				
	High pressure in pumped line	Damage pipe and pump	Blockage	Trip and alarm on pump					
	Composition	Foaming and possible overflow	Detergents and/or microbiology	Sealing lids. Overflow to buffer tank					
	Start up/ shutdown	No Issues							
3.MBR	No Flow into MBR	Biomass dies	No flow from upstream	Low level alarm					
	No flow out of MBR	No effluent produced	Membrane fouling, jammed actuated valve, pipe blockage, turbidity alarms, filtrate pump failure	Turbidity alarm, actuated valve alarm, regular membrane cleaning, flux rate monitoring, air scour of membranes					
	Sludge build up in base of tank	No flux through membranes. Blocked diffusers preventing air scour	Poor influent screening.	Inspections. Monitoring scour air pressure					
	High flow	High level and overflows	Over-pumping in from previous tank. Blocked recirculation lines.	Level alarms					
	High flux through membrane	More rapid membrane fouling	High trans-membrane pressure. Chemical membrane clean	Turbidity meter. Flux monitoring.					
	High air pressure	Damage pipe and blower. Damage membranes	Diffuser blockage	Thermal overloads on blowers. Sour air pressure monitoring					

HAZOP								
Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
Equipment, tank, process unit	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate			
	pH drops	Biomass dies. Corrosion. Out of spec water quality pH	tanks does not have	Filtrate pH meter. DO control. Can consider alkalinity dosing.				
	Low air flow	Biomass negatively impacted. Membrane fouling from lack of scouring.	High MLSS	DO probe, blower alarms Monitoring of MLSS/DO. Monitoring biology air pressure.				
	Low levels	No flux through membrane Membrane dries out and/or fouls Biomass dies	Faulty actuated valve	Low level alarm				
	High level	Overflows	Over-pumping in from previous tank. Recirculation pumps blocked or damaged.	Level alarms. Adjustment of recirculation valves lines from bio to MBR.				
	Low pressure on air lines	Low air supply. Membranes do not scour properly. Anaerobic conditions		DO monitoring for Bio (not MBR). Pressure monitoring of membrane and biology air				
	High air pressure	Damage pipes and pumps	Blockage in pipes or diffusers	thermal overloads on blowers				
	High permeate pressure	e Not possible						
	Composition	Biomass impacted and biological treatment lost. Membranes damaged.		DO probe. Influent pH probe.				
4. Filtrate pit	High level	Overflow		Fault pump detection, overflow pipe				
	Inaccurate turbidity reading	false alarms, instrument failure	Failure of turbidity probe. Biofilm in filtrate pit or lines	Routine servicing and calibration				
	Low level	Dry running pump, turbidity probe function	Failure float switch	Low level alarm				
	No flow or overflow	Same as low and high level						
5 Irrigation system and storage tanks	Low level	Dry running of pumps	irrigatino pump fails to stop	Level switch				

HAZOP								
Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
Equipment, tank, process unit	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate			
	High level	Overflows to environment	Failure of irrigation controller or solenoid valves.	Level alarms. Treatement plant stops processing				
	Low pressure	not disposing of water uniformally	irrigation pump stops	Routine inspections of irrigation field				
	high pressure	irrigation pump stops prematurely	blocked lines	high level alarm in irrigation tank				
	Reverse flow in mains supply	not possible - no cross conneciton potential						
6. Manual Work	Maintenance	Damage to equipment	Poor workmanship	Following Work Instructions				
	Maintenance	Chemical spills	Chemical handling	Following Work Instructions				

Risk Matrix

			С	onsequence	e	
		1	2	3	4	5
70	1	Low	Low	Low	Moderate	High
ğ	2	Low	Low	Moderate	High	Very High
Likelihood	3	Low	Moderate	High	Very High	Very High
Ϋ́,	4	Low	Moderate	High	Very High	Very High
_	5	Low	Moderate	High	Very High	Very High

Qualitative measures of likelihood

Level	Descriptor	Example of Description	
1	Rare	May occur only in exceptional circumstances	very rarely > annual
2	Unlikely	Could occur in unusual circumstances	chance of annual occurence
3	Possible	Might occur or should be expected to occur under certain circumstances	chance of monthly occurence
4	Likely	Will probably occur	chance of weekly occurence
5	Almost Certain	Is expected to occur	chance of daily occurrence

Qualitative measures of consequence

Level	Descriptor	Example of Description
1	Insignificant	Insignificant impact or not detectable
2	Minor	Health - Minor impact on contact population, first aid treatment
		Environment - Minimal and short term harm to the environment
3	Moderate	Health - Moderate impact on contact population, medical treatment required
		Environment - Significant harm to the local environment for a short period
4	Major	Health - Major impact on contact population, extensive injuries
		Environment - significant harm to the environment
5	Catastrophic	Health - Potentially lethal on on contact population, death
		Environment - significant, widespread harm outside local area

Construction and Business Operations Risk Assessment

Project Name:	Kurrajong
Date of Assessment:	27th April 2015
Revision:	Original
Created	Justin Taylor
Approved	Colin Fisher
	Justin Taylor, Colin Fisher
Personnel Consulted	Simon Grimwood

Activity	Risk	Impact				ated Risk	1	Control Strategy			Mitigated Risk		
•				elihood		nsequence	Risk		Likeli			quence	Risk
Construction	Insufficient information available to construct the infrastructure	Infrastructure incomplete or not correctly installed	3	Possible	3	Moderate	High	-Detailed process flow diagram, P&ID, electrical drawings, civil drawings, mechanical fabrication drawings - Detailed GA and installation drawings - Detailed valve, equipment and instrument schedules - Project Manager with waste water treatment experience overseeing the project to ensure design is complete prior to construction commencing - Project Manager relates detailed information to construction team and oversees construction	1	Rare	3	Moderate	Low
	Issued for construction drawings not followed accurately	Infrastructure does not operate correctly. Effluent quality may be outside specification. Plant may not achieve design capacity.	3	Possible	3	Moderate	High	 Installation to be supervised by competent Aquacell staff member Construction by employees or contractors with prior experience installation Aquacell plants Detailed commissioning check sheets to ensure plant is systematically checked against design prior to start up 	1	Rare	2	Minor	Low
	Wrong equipment delivered by supplier and subsequently installed during construction	Infrastructure does not operate correctly. Effluent quality may be outside specification. Plant may not achieve design capacity.	4	Likely	2	Minor	Medium	 Detailed purchase orders including supplier part number all goods checked in against goods inwards note, purchase order and supplier delivery docket to ensure ordered part has been correctly supplied Incoming goods labelled and stored in dedicate project bay 	1	Rare	2	Minor	Low
	Correct equipment supplied but mixed up and installed in the wrong position on site	Treatment plant does not produce required effluent quality	2	Unlikely	2	Minor	Low	- Detailed P&ID with tag numbers that match valve, instrument and equipment schedules - detailed commissioning check sheets used by Commissioning Engineer to verify installed equipment against the P&ID	1	Rare	1	Insignificant	Low
	Treated plant cannot be constructed as designed and drawn	Treatment plant cannot be completed with design change	4	Likely	3	Moderate	High	- Treatment plant modelled with 3D software so entire assembly can reviewed prior to 2D fabrication drawings being developed - design review prior to issue for construction drawings being developed which considers constructability of the plant	2	Unlikely	1	Insignificant	Low
	Treatment plant contains design omission or oversight	Non-compliant treated water produced, spill or other adverse environmental condition occurs	2	Unlikely	4	Major	High	- HACCP and HAZOP undertaken prior to issued for construction drawings - HACCP and HAZOP conducted by multidisciplinary team to consider all aspects of the plant design - Peer review of design calculations to check their validity	1	Rare	2	М	Low
	Reticulation pipe work not correctly installed	Non-compliant and possibly non- operational reticulation system	3	Possible	3	Moderate	High	 reticulation system designed by suitably qualified person licensed plumber used to supervise and install the reticulation system system installed compliant with relevant Australian Standards 	2	Unlikely	1	Insignificant	Low
	Plant, irrigation field or reticulation network installed in incorrect place	Location contrary to approvals which have been granted	3	Possible	4	Major	Very High	 Surveyors used where necessary to mark boundaries and ensure infrastructure installed in DA approved area 	1	Rare	1	Insignificant	Low
	Pipe across Vincent Road installed in the incorrect place Working on public road to install	Pipe not within designated easement	3	Possible Possible	4	Major Major	Very High Very High	- Surveyor used to mark location of pipe and ensure it is within designated easement - Traffic Management Plan implemented to ensure safe	1	Rare Rare	1	Insignificant Minor	Low
	pipe across Vincent Road	ingery to installer or public	2	rossibie	4	wajoi	very nign	Trainic Management Plan Implemented to ensure safe work All approvals sought from local council prior to closing road and undertaking work	Ĩ	ndle	2	WINDI	LOW

construction	Injury to construction team or equipment damage Resident complaints	4	Likely	4	Major	Very High	 Work undertaken under the jurisdiction of Aquacell's WHS System including, but not limited to procedures for risk assessment, working at heights, confined space, manual handling etc. Safe Work Method Statements developed to cover the activities undertaken during construction Licensed persons used to undertake work where necessary Construction WHS considered at design phase so the plant can be constructed safely, e.g., lifting hooks added to heavy equipment Correct equipment used to undertake the tasks, e.g., crane for lifting plant in to place Keep noise to a minimum 	2	Unlikely	2	Minor	l
construction							 Work only during normal hours Workers to keep clear of traffic ways and not park cars or leave materials such that they interrupt the peaceful enjoyment of the residents Rubbish to be removed from site as soon as practically possible 					
construction	Environmental contamination	3	Possible	2	Minor	Medium	 all waste to be removed from site as soon as practical, preferably daily where waste cannot be immediately removed from site it is stored such that it cannot be blown or washed into the local environment recyclable material returned to Aquacell for recycling 	1	Rare	1	Insignificant	I
Chemical spill during construction	Environmental contamination	3	Possible	2	Minor	Medium	 minimise number of chemicals used during construction bring chemicals onto site only when required do not store chemicals on site when they are not needed ensure MSD and appropriate clean up materials are available on site 	1	Rare	1	Insignificant	
Plant produces effluent which is out of specification during start up phase	Environmental contamination	4	Likely	4	Major	Very High	 online instrumentation measure critical parameters and causes plant to alarm if effluent is not suitable for discharge water quality can be verified with hand held instrumentation which the Commissioning Engineer carries out of specification water can be held in the treated water tank and be tankered off site if required 	1	Rare	1	Insignificant	
completed on time	Residents cannot get occupancy	3	Possible	3	Moderate	High	 install balance tank as first stage of project. Sewage can be collected in the balance tank and tankered out if there are any delays constructing the treatment plant or irrigation field 	2	Unlikely	1	Insignificant	
available in quoted lead time	Residents cannot get occupancy	2	Unlikely	3	Moderate	Medium	 Long lead time items ordered as soon as issued for construction design approved Long lead time items generally have an alternate which could be used if required 	1	Rare	1	Insignificant	I
flood, natural disaster	Aquacell unable to complete construction	1	Rare	5	Catastrophic	High	 Business interruption insurance in place Procedures in place to minimise disruption, e.g., digital files archived off site Construction works could be undertaken on site if Aquacell workshop was unavailable 	1	Rare	3	Moderate	
Financial Risk - Aquacell Cash Flow	Aquacell unable to complete construction	2	Unlikely	4	Major	High	 Project Manager manages against agreed budget Project Manager aims to run the project cash flow positive if practical Project has milestone payments to ensure Aquacell has a revenue stream through the duration of the project Aquacell has other income streams from servicing and operations to smooth business cash flows Ongoing management reviews of business wide cash flow to forecast and manage periods of low cash flow 	1	Rare	2	Minor	

Business Operations

Financial Risk - Supplier Insolvency	Aquacell not able to receive parts which have been ordered. Loss of deposits or payments already made	2	Unlikely	3	Moderate	High	 Aquacell's standard terms are to pay for the goods once received Aquacell's standard terms are 60 days Where deposits are required, they are negotiated to minimum amounts to mitigate risk Where goods are not provided due to supplier insolvency, an equivalent alternate could be sourced 	1	Rare	2	Minor	Low
Financial Risk - Customer Insolvency	Aquacell does not get paid for the costs they have incurred	1	Rare	3	Moderate	Low	 Milestone payments negotiated into the contract to minimise financial exposure Active debtor management to ensure overdue amounts are collected 	1	Rare	2	Minor	Low
Technical	Plant doesn't operate as designed due to oversight, omission or error	2	Unlikely	4	Major	High	 Aquacell recruit suitably qualified design personnel who are competent to design to required infrastructure Where skills are required outside Aquacell's core competency, appropriately qualified persons are contracted to undertake the work Aquacell maintains Professional Indemnity insurance to mitigate costs associated with technical failures 	1	Rare	2	Minor	Low
Contract Labour	Contractor does, or omits to do something that causes harm or damage	3	Possible	3	Moderate	High	 Contractor's management to ensure contractors are reviewed prior to commencing work Each contractors relevant insurances, licenses and safe work method statements are reviewed prior to engagement Contractor insurance 	2	Unlikely	2	Minor	Low
Personnel - key persons leave the company	Plant cannot be constructed and built with staff available	3	Possible	3	Moderate	High	 disciplined design procedures and storage of documentation to allow others to continue should a staff member become unavailable Standard design blocks which can be reused on each project rather than requiring bespoke designs for each project other employees within Aquacell have similar skills and could continue the work to completion 	1	Rare	2	Minor	Low
Contractual - Aquacell and client disagree on scope	Delays	3	Possible	3	Moderate	High	 a detailed contract between the customer and Aquacell is put in place prior to commencement of works. This document is the reference document and both parties are bound by it 	2	Unlikely	2	Minor	Low
Contractual - Aquacell and supplier/contractor disagree on scope	Delays	3	Possible	3	Moderate	High	 Aquacell only order items with a formal purchase order backed by a set of standard terms and conditions. Scope, price and payment terms are clearly defined prior to purchase 	2	Unlikely	2	Minor	Low
Resource - insufficient resources available	Delays	3	Possible	3	Moderate	High	 Aquacell staff have multiple skill sets and can be redeployed within the business to satisfy short term resource deficiencies Aquacell have established relationships with a number of external contractors who could be called upon if the incumbent was unable to complete the job in a timely manner 	2	Unlikely	1	Insignificant	Low
Safety - Employees	Injury, Lost time, costs to business	4	Likely	4	Major	Very High	- WHS system developed and in place - Staff training in WHS procedures - Stuff training in WHS procedures - SWMS developed for tasks work which is carried out - Correct methods of work identified and appropriate equipment used to ensure risks associated with work are as low as practically possible - Workers Compensation insurance in place to minimise business costs should an injury occur	1	Rare	2	Minor	Low
Safety - Contractors	Injury, Lost time, costs to business	4	Likely	4	Major	Very High	 WHS system developed and in place Contractors to supply SWMS prior to commencing work Contractor selection to ensure appropriate persons selected to undertake work, and licensed where necessary Contractor management to ensure selected contractors have workers compensation policy and other appropriate insurances in place prior to providing them with a purchase order 	1	Rare	2	Minor	Low

Organisational - restructure, sale of Pro	roject delivery compromised	1	Rare	3	Moderate	Low	- Aquacell is 100% privately owned with no third parties	1	Rare	1	Insignificant	Low
business etc.							or holding companies and therefore are unlikely to be					
							sold or restructured at short notice. Any organisational					
							change will be negotiated with the current project and					
							work load in mind					

Tallowood Residential Community Development - Kurrajong NSW

Sewage Management Plan

7 January 2016

A0069 Sewage Management Plan

Prepared by: Warren Johnson - phone 02 4721 0545

Email: warrenj@aquacell.com.au

This document is the property of Aquacell Pty Ltd. Reproduction or unauthorised circulation requires written authorisation by Aquacell Pty Ltd. All rights reserved.

Revision	Date	Ву	Checked	Document	Amendments
				Status	
1	10/12/13	S. Valenzisi	W. Johnson	Draft for internal review	First draft
2	12/12/2013	S. Valenzisi	W. Johnson	Final Document for IPART to review	Minor editing changes
3	7/1/16	W.Johnson	J. Taylor	Issued	Minor editing changes and updated verification testing on monitoring requirements

Table of Contents

1.	INT	TRODUCTION	5
2.	PUI	RPOSE AND SCOPE OF THE SEWAGE MANAGEMENT PLAN	5
3.	OB,	JECTIVES	5
4.	GO	ALS	7
5.	RO	LES AND RESPONSIBILITIES	7
6.	OV	ERVIEW OF THE SEWAGE MANAGEMENT SYSTEM	3
	6.1	SEWAGE COLLECTION	3
	6.2	TREATMENT PROCESS	3
	6.2.	1 Overview	3
	6.2.2	2 Buffer Tank)
		3 Pre-screen	
	6.2.4	4 Biological Treatment)
	6.2.:	5 Membrane Filtration)
	6.2.0	6 Treated Water Storage10)
	6.3	IRRIGATION SYSTEM10)
7.	DES	SCRIPTION OF END USE	1
	7.1	OVERVIEW1	l
	7.2	ACCEPTABLE USES	l
8.	MA	NAGING HUMAN HEALTH RISKS11	1
	8.1	OVERVIEW1	l
	8.2	WORKERS EXPOSED TO TREATED EFFLUENT	3
	8.3	CROSS CONNECTIONS	3
	8.4	TREATED EFFLUENT OUTLETS	3
	8.5	SPRAY DRIFT AND RUNOFF	3
	8.6	CONTAMINANTS	3
9.	MA	NAGING ENVIRONMENTAL RISKS14	1
	9.1	OVERVIEW	1

68

9.2	NUTRIENTS AND SALINITY
10.	COMMUNICATION
11.	MONITORING AND REPORTING15
11.1	MONITORING
1	1.1.1 Monitoring of Treatment Plant Operation
1	1.1.2 Validation Monitoring
1	1.1.3 Ongoing Monitoring of Treated Water Quality
11.2	2 COMPLAINTS AND FAULTS PROCEDURE
12.	MANAGEMENT OF INCIDENTS AND EMERGENCIES16
13.	OPERATOR, CONTRACTOR AND END USER AWARENESS AND TRAINING18
14.	COMMUNITY INVOLVEMENT AND AWARENESS
15.	RESEARCH AND DEVELOPMENT19
16.	AUDITING, REVIEW AND IMPROVEMENT PROGRAMS19
	NDIX A – HAZOP AND HCCP
	NDIX B – LAND CAPABILITY ASSESSMENT
APPE	NDIX C – INCIDENT REPORT

1. Introduction

The Tallowood Residential Community Development is a 41 dwelling residential estate, being developed by the Bennet Property Group. It is located at the intersection of Bells Line of Road and Vincents Road Kurrajong. Kurrajong is located 75 kilometres north-west of Sydney, in the local government area of the City of Hawkesbury. There are two stages to the development. The first stage (stage 1), east of Vincents Road, will contain 22 dwellings, community facility, as well as the blackwater treatment plant and designated area for the sub-surface irrigation. This stage was developed under an existing Section 68 approval. The second stage (stage 2), west of Vincents Road, is currently under development following IPART's granting of a Network Operator License and Retail Supplier Licence to Aquacell.

Potable water is being supplied by Hawkesbury Council's existing potable water reticulation, however Council do not intend to provide sewer reticulation for this area.

An Aquacell S20 blackwater treatment plant is to be installed in Stage 1 of the development, which intends to service all 41 dwellings. The client will provide gravity sewer reticulation from each dwelling, as well as subirrigation reticulation adjacent to the treatment plant. There is no effluent reuse/recycling proposed for this site, only wastewater disposal. The treated effluent is to be discharged to the environment via sub-surface irrigation, in compliance with WICA / Council Section 68 approval.

Blackwater treatment system, including the sewer and irrigation reticulation, is to provide an efficient, reliable and complete effluent wastewater disposal system for the entire 41 dwelling of the Tallowood Residential Community development, Kurrajong. The proposed Aquacell blacwater system is self contained and does not place any demand on council's sewerage network. The treated effluent is disposed of via sub-surface irrigation of an allotted area within the boundaries of the development.

The proposed blackwater treatment plant will utilise wastewater discharged from the facility and irrigate via subsurface irrigation at a rate of 12.2kL/day (0.508 kL/hr).

Effective management of domestic sewage and wastewater is an important consideration for human health and the environment. Effective management of this facility requires the active involvement of the residential community representatives, the Tallowood Community Association, as well as the system maintenance and operator contractor, Aquacell.

This Sewage Management Plan (SMP) is prepared in accordance with the requirements of the Local Government Regulations and WICA Network Operator and Retail Supplier Licence requirements.

The SMP is to regulate and manage the selection, design, installation, operation and maintenance of on-site sewage management systems.

The benefits of an on-site sewage management plan are:

- Better catchment management;
- A consistent message to householders and on-site sewage operators;
- A coordinated approach to liaise with industry, including developers, professional consultants, private certifiers, service agents and plumbers.

2. Purpose and Scope of the Sewage Management Plan

The purpose of the on-site Sewage Management Plan is to:

- Guide landholders towards sustainable on-site management of domestic sewage and effluent water.
- Protect and enhance the quality of public health and the environment within the Kurrajong and Hawkesbury Shire Council Local Government Area (LGA).
- Assist landowner to prioritise resources for the efficient regulation and monitoring of On-site Sewage Management Systems.
- Coordinate monitoring, environmental assessment and data collection related to On-site Sewage Management.
- Allow for site assessment on risk management basis and consideration of alternate solutions on environmentally sensitive sites.

3. Objectives

The objectives of the On-Site Sewage Management Plan are to provide for the safe collection, treatment and disposal of wastewater generated by the Tallowood community.

Sewage contains bacteria, viruses, parasites and other disease-causing organisms. Contact with effluent should be minimised or eliminated, particularly for children. Insects can also act as a vector for disease where they have access to effluent. Residuals, such as composted material, should be handled carefully. Treated sewage should not be used on edible plants that are consumed without cooking.

On-site Sewage Management systems should be selected, sited, designed, constructed, operated and maintained to ensure:

- **Protection of surface water** surface waters are not contaminated by any flow from treated systems and land application areas (including effluent, rainfall run-off and contaminated groundwater flow).
- **Protection of groundwater** groundwater will not be contaminated by any flow from either the treatment systems or land application areas.
- **Protection of land and vegetation** land is not contaminated by any flow from treatment systems, effluent, rainfall run-off or removed tank solids.
- **Protection of community amenity** quality of life shall not be unreasonably interfered with. Where possible, systems should enhance the local amenity special consideration should be given to aesthetics, odour, dust, disease vectors and excessive noise.
- Conservation and reuse of resources the resources in domestic wastewater (including nutrients, organic matter and water) should be identified and utilised as much as possible within the bounds posed by the other performance objectives; water conservation should be practiced and wastewater production should be minimised.

4. Goals

The goals of the On-site Sewage Management Plan are to:

- Ensure sustainable on-site sewage management for the Tallowood Community development.
- Identify roles and responsibilities for the sewage management system.
- To identify communication channels for emergency response and complaints.

5. Roles and Responsibilities

The Tallowood Residential Community blackwater system is located on Stage 1 of the two stage development (Stage 1 is East of Vincents Road Kurrajong NSW). This development is owned by the Bennett Property Group and Tallowood Community Association will manage the community facilities. The system consists of an effluent treatment plant, sewage collection reticulation network and a sub-surface irrigation reticulation network for the disposal of the treated effluent. There is no effluent recycling or reuse on this site.

The following table defines roles and responsibilities of Tallwood Community Association (TCA) and Aquacell, given the ownership and contract status.

Role/Responsibility		Sewage Collection Network		Blackwater Treatment Plant		Irrigation Disposal Scheme	
		TCA	Aquacell	TCA	Aquacell	TCA	Aquacell
Blackwater Treatment System - Owner		x		x		x	
Treated Effluent - Supplier					х		x
	Preparation and Approval		Х		Х		Х
SMP	Statutory reporting		Х		Х		Х
	System audit		Х		Х		Х
Operation and Maintenance	Operation		х		Х		х
	Maintenance		Х		Х		Х
	Logs: incident, maint., complaint, calibration, audit, non-compliance		x		х		x
	Water sample collection and forwarding				х		
	Management of water testing contract				Х		
Manage Environmental Risk	Initial risk assessment and LCA per SMP		х		Х		х

Table 1: Roles and Responsibilities of Tallowood Residential Community Development Blackwater Treatment System

Role/Responsibility		Sewage Collection Network		Blackwater Treatment Plant		Irrigation Disposal Scheme	
			Aquacell	TCA	Aquacell	TCA	Aquacell
	Resident/neighbour education	Х	Х	Х	Х	Х	Х
Communication Strategy	Development	х	x	х	Х	х	x
	Implementation	Х	Х	Х	Х	Х	Х
	Maintenance	Х	Х	Х	Х	Х	Х
	Feedback	Х	Х	Х	Х	Х	Х
	Evaluation	Х	Х	Х	Х	Х	Х
	Review	Х	Х	Х	Х	Х	Х
Incidents and Emergencies	Identification of potential incidents and emergencies	х	х	х	Х	х	х
	Development of protocols, response actions, responsibilities and communications		x		х		x
Training of employees and contractors			x		х		x
Documentation and Reporting	Notification of non-compliances and incidents to DHS/EPA		x		х		х
Reviews	SMP		Х		Х		Х

6. Overview of the Sewage Management System

The purpose of the overview is to outline factors that will affect the efficient and appropriate functioning of onsite Sewage Management Systems within the Tallowood Residential Development.

6.1 Sewage collection

Sewage collected from the homes on the site flows by gravity through the sewerage network to the buffer collection tank.

6.2 Treatment Process

6.2.1 Overview

The treatment process has been selected based on application of the *Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1)* (2006).

A risk minimisation approach has been adopted which involves the use of sub-surface irrigation and an irrigation area blocked to public access. In addition, as this is a waste disposal project, there is no reuse of treated water allowed. The risk of human contact with pathogens from the plant is therefore limited to workers on the plant and addressed in the use of safe work practises.

The treatment process will be MBR technology which is capable of achieving significant pathogen reduction and very high treated water quality. This, combined with an extremely low risk of human contact during normal operations, ensure that the risk to human health is eliminated.

The process selected to achieve the required water quality as discussed above, and described in further detail in the following sections, is shown below.

Figure 6.1 – Treatment process to achieve treated effluent fit for subsurface irrigation.

The expected wastewater quality and typical treated water quality is shown in table 6.2.

Parameter	Expected Wastewater	Typical Treated
		Water
Biochemical	300-600 mg/L	< 10 mg/L
Oxygen		
demand (BOD)		
Suspended	200-400 mg/L	< 5 mg/L
solids		
рН	6.5-8.5	5 - 9
Oil and grease	< 50 mg/L	< 5 mg/L
Total Nitrogen	85mg/L	< 20 mg/L
Total phosphorous	20 mg/L	< 15 mg/L
E. coli	10 ⁶ -10 ⁸ cfu/100mL	< 10 cfu/100mL
Turbidity		< 2 NTU

Table 6.2 Expected raw wastewater of	quality and typical treated water quality
	addity and typical treated trater quality

6.2.2 Buffer Tank

Wastewater collected from the community residence is directed to a 100 kL concrete buffer tank. When the residential community is fully populated (i.e. 41 lots in total), 12.2 kL/day of wastewater will be produced. This buffer tank will provide up to 8 days storage capacity. Should the tank need to be emptied due to the treatment plant being off line, a tanker will be called in to empty the buffer tank and remove it for disposal off site.

6.2.3 Pre-screen

Wastewater is pumped from the buffer tank to the pre-screen on demand. The pre-screen is a 2mm spiral sieve screen. Screenings are captured, washed and dewatered, then discharged into a wheelie bin via a continuous bagging system. Screenings are sent off site to land fill.

Odours from screenings has been minimised by enclosing the pre-screen and ensuring that screenings are captured in a sealed bag.

The pre-screen is designed to remove fibrous material and large foreign objects, while retaining as little solid organic matter as practical. The screen wastewater is then sent to biological treatment.

6.2.4 Biological Treatment

The biological process uses aerobic treatment to break down and digest the organic matter that contributes to biological oxygen demand (BOD). The aerobic zone uses air blowers and diffusers to distribute air within the reactor to supply the necessary oxygen for biological digestion to take place.

6.2.5 Membrane Filtration

Ultrafiltration membranes (flat sheet 2x BC100 with nominal pore size 0.04 μ m) are used to separate the biomass from the treated water. In addition to removing essentially all the suspended solids, a substantial amount of the pathogens present in the wastewater are also removed in this process step.

The membrane is an integral part of the biological process and the combination is usually referred to as a membrane bioreactor (MBR).

Periodic chemical cleaning of the membranes is required to maintain performance. This will be carried out using sodium hypochlorite and citric acid, and occur approximately once every 3-6 months. Spent chemicals will be neutralised and discharged to the sludge tank for periodic disposal.

6.2.6 Treated Water Storage

The final treated water will be sent to treated water storage tank, 46 kL in volume. The treated water is to be discharge to the environment via sub-surface irrigation.

6.3 Irrigation System

Treated water from the storage tank is automatically distributed to subsurface irrigation via an irrigation control system. The irrigation system is controlled independently from the treatment plant, and is based on level in the treated water storage tank. When water is available, a pump sends water to one of five irrigation zones. Solenoid

valves switch the irrigation zones in sequence and timers in the control panel control the duration of irrigation to each zone. This ensures no single area is over irrigated and minimises the risk of surface pooling.

7. Description of End Use

7.1 Overview

The treated water produced by the treatment process is intended for sub-surface irrigation disposal within the lower section of the Tallowood Community development, and not for distribution beyond the boundaries of the irrigation area.

7.2 Acceptable Uses

The treated water is intended <u>only</u> for disposal by subsurface irrigation in the designated area within the Tallowood development. The treatment process and associated risk has been assessed on that basis, and although the water quality may exceed the requirements, it is not intended for reuse or disposal by any other means.

8. Managing Human Health Risks

8.1 Overview

The report prepared by Woodlots and Wetlands Pty Ltd, Effluent Management Investigations. The document is attached as appendix A.

This SMP focuses on the assessment and management of risks relating to the end uses of sub-surface irrigation.

A summary of the key human health risks and mitigation measures is provided in table 8.1, and detailed further in the following sections.

A HAZOP and HCCP analysis has been carried out to assist in determining the risks and associated mitigation measures. A copy of the risk assessment is provided in appendix A.

Risk	Management Measures	Risk after mitigation
Workers exposed to recycled water	 Exposure in minimised by: No above ground uses. Irrigation is subsurface, so no exposure to humans. Signage will be provided to warn people of the use of treated water in allotted irrigation area. Site inductions of workers and visitors to include reference to the presence of treated effluent and the necessary precautions to take. 	Low
Connection to irrigation reticulation	 Plumbing check for connection before delivering treated water to irrigation network. Site inductions for any plumbing staff to include details on treated effluent water use. Any plumbing mods to have management approval and qualified certification and inspection. Signage where treated effluent is being used to warn and advise precautions. Sub-surface irrigation network does not cross connect with any other water (potable or otherwise) network. 	Low
Inappropriate use	 No above ground treated effluent water taps. All treated effluent reticulation is sub-surface and the reticulation network is isolated and not connected to any other network. The chance for human contact is minimal. Signage will be displayed, where sub-surface irrigation is being carried out, to warn and advise precautions. 	Low
Spray drift and runoff	 All irrigation is sub-surface. No above ground irrigation, hence no spray drift possible. No wet weather storage is required (refer to Effluent Management Investigations by Woodlots and Wetlands Pty Ltd), hence sub-surface irrigation possible all year round. 	Low
Contaminants in water that are detrimental to health	Chemical contaminant levels in the treated effluent are expected to be very low. No special management practises are required.	Low

Table 8.1 – Summary of health risk and mitigation measures

8.2 Workers Exposed to Treated Effluent

The water quality of the treated effluent is such that health risks are minimal. However, it is important that onsite workers and people that may come into contact with treated effluent are educated about the presence of treated effluent on site. This includes washing hands before eating, drinking, or smoking.

Signage will be provided to warn people of the potential presence of treated effluent in the allotted irrigation zone.

Site inductions of workers and visitors should also include reference to the presence of treated effluent and the necessary precautions to take.

The above measures make this a low level risk.

8.3 Cross Connections

There is no dual pipe system or recycled water taps located anywhere in the development. Reuse is not permitted and the disposal network will be largely inaccessible, underground, and sign posted.

The above measures are considered sufficient to eliminate cross connection risk.

8.4 Treated Effluent Outlets

There will be no above ground tap bibs that are fed with treated effluent. These will only be rainwater or potable water.

8.5 Spray Drift and Runoff

Treated effluent will solely be used for sub-surface irrigation of the allotted irrigation zone/area on site

Wet weather storage is not required on site. Refer to Effluent Management Investigations report prepared by Woodlots and Wetlands Pty Ltd. This report states that sub-surface irrigation is possible all year round (even during wet weather) as the soil characteristics and the area allocated enable irrigation all year round. The chance for runoff due to soil saturation is minimal.

These measures are sufficient to consider no spray drift will occur and determine runoff to be a low risk.

8.6 Contaminants

Chemical contaminant levels in the treated effluent are expected to be very low. No special management practises are required.

9. Managing Environmental Risks

9.1 Overview

A risk assessment approach will be undertaken to establish controls for environmental risks associated with the treated effluent treatment and use.

Various control and monitoring measures will be implemented to manage and mitigate environmental risks. Risks to be assessed include soil capability and irrigation risks, noise and odour. A summary of these is provided in table 9.1, and detailed further in the following sections.

Risk	Management Measures	Risk after mitigation
Nutrients and salinity in irrigation water	 LCA conducted and confirms nutrient load is not an issue. 	Low
Spray drift and runoff to the environment	 Spray drift prevented by using subsurface drip irrigation. Runoff low level risk refer to LCA report 	Low
Chemical contaminants in the water	 Chemical concentration in treated effluent is expected to be low. Chemical usage on site is minimal and spent chemicals are neutralised and discharged to the sludge tank for periodic disposal off site. 	Low
Noise	 Treatment plant is situated on site in a cut-away section in the hill side, which helps to reduce operational noise. Equipment that produces noise, such as blowers, are enclosed in noise reduction acoustic enclosures to minimise noise pollution. 	Low
Odour	 Covered tanks and enclosed equipment used Aerobic process, so septic smells are not expected 	Low

Table 9.1 – Summary of environmental risks and mitigation measures

9.2 Nutrients and Salinity

A Land Capability Assessment has been carried out for the Tallowood Residential Community site and is attached as appendix B. This assessment indicated that the irrigation area within this site do not contain saline soils. This is an important result as it means that salinity will not limit the site's usefulness for treated effluent irrigation.

The report concludes that there is minimal risk of any runoff occurring to the local water ways.

The report further concludes that the expected concentration of nitrogen and phosphorus in the effluent do not represent a significant environmental risk.

10. Communication

The Tallowood Community Association are to liaise with Aquacell to ensure existing and new residents are informed of the wastewater disposal system and how to ensure that it is protected from inappropriate disposal of wastes to the sewer.

This will include addition of community specific information to the Aquacell website, and attendance at community meetings as required.

11. Monitoring and Reporting

11.1 Monitoring

11.1.1 Monitoring of Treatment Plant Operation

Operational monitoring of the treatment plant is carried out by a combination of site visits for routine servicing and remote monitoring.

Routine service visits are carried out monthly for the purpose of checking and calibrating instruments, checking plant operation and performing chemical cleans on the membrane when needed. Periodic inspection of the irrigation field is also carried out to check for signs of water surface pooling or uneven irrigation.

Remote monitoring is used to allow daily checks on plant operation. Operating data are logged every 5minutes to the Aquacell server to assist with trouble shooting and for reporting purposes.

System failures or operational issues are dealt with as they arise by Aquacell service personnel.

11.1.2 Validation Monitoring

In order to ensure the installed system is performing as intended, a series of 8 samples will be collected over 8 weeks and analysed as per table 11.1. A validation report will be prepared summarising these results.

The target water quality is based on the low risk of subsurface irrigation in an area with controlled and restricted access, as outlined in section 8.

Table 3.8 of the Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1) (NHMRC 2006) is used as a guide to an appropriate water quality. This table provides guidance on the water quality objectives for various uses. As a conservative target the figures for "Landscape irrigation – trees, shrubs, public gardens, etc." can be used. This site has the additional mitigating measure of no public access and

subsurface irrigation. The additional monitoring parameter of membrane turbidity is added to ensure membrane integrity is maintained, as this provides the bulk of the required pathogen reduction.

Table 11.1: Verification Monitoring and target water quality	onitoring and target water quality	/
--	------------------------------------	---

Parameter	Feed	Treated Water	Target Quality
E. coli	Weekly	Weekly	< 1,000 cfu/100mL
BOD	Weekly	Weekly	< 20 mg/L
Suspended Solids	Weekly	Weekly	< 30 mg/L
Turbidity	N/A	continuous	< 5 NTU

11.1.3 Ongoing Monitoring of Treated Water Quality

Treated water quality is monitored by reference to critical control point operating values. The turbidity of the treated water effluent is the critical control point for the plant and will be maintained at or below 5 NTU. An alert level will be maintained at > 2 NTU to give advance warning of a potential problem and trigger an investigation into the cause. If the turbidity exceeds 5 NTU the plant will shutdown and stop delivering water to the storage tank.

The treated water turbidity will logged every 5 minutes and stored on Aquacell's server.

The buffer capacity is sufficient to ensure the plant can be down for periods for service or breakdown, with offsite disposal of waste by pump out a fall-back option for extended periods.

As an added water quality monitor, treated water E. *coli* levels will be tested at least quarterly to ensure the water meets the requirement shown in table 11.1.

11.2 Complaints and Faults Procedure

A record of any complaints received shall be kept by Aquacell, as well as responses and any corrective actions taken. Aquacell will follow the complaints procedure as documented in IMS CS030-3 Complaints Handling and Dispute Resolution Policy. A copy is available on request.

12. Management of incidents and emergencies

Aquacell maintains a community contact and FAQ section of its website with procedures relating to the management of emergencies. This will be updated to include Tallowood Community.

The specific responses to potential incidents and emergencies have been compiled with reference to IPART Incident Notification by private sector water licensees, WICA 2006, Water – Incident Notification August 2009, Section 2, Incident Notification Process.

Table 12.1: Incidents	and emergencies
-----------------------	-----------------

Hazards and events	Immediate Response		Corrective Action		Authorities	
that may lead to emergencies	What	Who	What	Who	What	Who
Non-conformance of water with critical limits	If detected by online instrument, plant automatically shuts off supply	Aquacell	If fault persists, Aquacell to disable effluent disposal and notify Tallowood Community while they continue to troubleshoot and resolve.	Aquacell	Has non-compliant water been discharged? If yes, notify authorities in accordance with WICA licence conditions.	Aquacell
Response to exceedances of water quality targets	If detected by water testing, evaluate severity to determine whether plant should be shutdown. Order immediate reset.	Aquacell	If fault persists, Aquacell to disable effluent disposal and notify Tallowood Community while they continue to troubleshoot and resolve.	Aquacell	Has non-compliant water been discharged? If yes, notify authorities in accordance with WICA licence conditions.	Aquacell
Accidents that increase level of contamination in source water	Collection tank continuously monitored for pH. Feed pump disabled when pH outside limits.	Aquacell	Aquacell to review cause and treat if possible. If not possible to treat safely, arrange pumpout.	Aquacell		
Equipment breakdown and mechanical failure	Blowers and pumps are alarmed for malfunction. Alarm received by operator. Operator to log in and inspect operation of plant. Disable plant if required.	Aquacell	Repair	Aquacell		
Cross-connections	Not applicable – no reuse in place.					
Gas build-up	As this an outdoors plant, the risk of harmful concentrations of hazardous gases such as methane and ammonia is extremely low.	Aquacell	Investigate any odour complaints or unusual odour occurrences.	Aquacell		
Prolonged power outages	Power failures cause delivery pumps and filtrate solenoid valves to shut. There is sufficient buffer capacity to hold water for at least several days. Power outages beyond this are unlikely.		If buffer tanks fills during a prolonged power outage, arrange pump out.	Tallowood		

Aquacell, as the contracted operator and licence holder will immediately notify the appropriate authorities of any incident that potentially places public health at risk in accordance with the WICA general regulation 2008, Schedule 1, Part 1, cl. 1(2)(a,b) and Schedule 2, Part 1, cl. 1(2)(a,b)

IPART and NSW Health will be notified immediately by Aquacell if any of the following incidents occur:

- An emergency or incident that potentially places public health at risk.
- Any changes to the SMP or operation of the treatment process that may potentially impact achieving the required water quality objectives.

NSW Health information is:

C/- Nepean Hospital Derby Street PENRITH NSW 2750 Phone: 02 47342022

EPA NSW

Phone: 131 555

Tallowood Community Association primary contact person is: C/O Raine and Horne, St Mary's 210 Queen St, St Mary's NSW 2760 Phone: 02 96235666

Aquacell Primary contact for notifications is:

Justin Taylor – G	ieneral Manager, Aquacell
Address:	1 / 10B Production Place, Jamisontown, NSW, 2750
Phone:	02 4721 0545
Mobile:	0417 652 079
Email:	justint@aquacell.com.au

If an incident occurs, Aquacell are responsible for completing an incident report using a form provided in appendix C.

13. Operator, contractor and end user awareness and training

All employees, including contractors, that are working on the blackwater treatment system must be appropriately trained, and qualified, and records kept by their employer to document training. It is the responsibility of the Aquacell to ensure that their staff and subcontractors are suitably qualified and trained to carry out work on the recycled water system.

Aquacell operators are made aware of approval conditions and instructed on occupational health and safety requirements as part of their training. An induction program helps ensure new employees understand what is required and operate accordingly.

Training needs for individual Aquacell employees are identified and adequate resources made available during the induction phase. Annual performance reviews help identify additional training requirements and set performance targets. Training records are kept at the Aquacell head office.

The Tallowood Community Association is provided with a copy of the SMP and additional awareness information is available in the Aquacell website.

14. Community involvement and awareness

All residents and potential residents are made aware of the existence of the on-site wastewater treatment system on disposal areas during the early stages of their move or planned move to the community. The area where the treatment plant is located and the disposal field are clearly marked.

The association is provided with a copy of the SMP which is available to all members of the community. Additional general and site specific information is provided on the Aquacell website.

15. Research and development

The design and operation of the backwater plant is the responsibility of Aquacell. The technology used is state of the art, and is continually being improved through experience and active research. Any improvements that are identified will be presented to TRC for assessment of potential savings or improvements in efficiency.

Aquacell continuously monitor the regulatory environment. Any changes to regulations that potentially alter the operating requirements of the plant will be assessed. Where appropriate these changes can be made to ensure the required water quality is met in the most efficient and economical way.

16. Auditing, review and improvement programs

This SMP will be reviewed on an annual basis or when a major change or addition to the blackwater treatment system is implemented. The review will take into consideration changes to:

- Customer base
- Water quality
- WICA guidelines

Appendix A – HAZOP and HCCP

Risk

			Co	onsequence	es	
		1	2	3	4	5
	1	Low	Low	Low	Moderate	High
ро	2	Low	Low	Moderate	High	Very High
Likelihood	3	Low	Moderate	High	Very High	Very High
eli	4	Low	Moderate	High	Very High	Very High
Ľ.	5	Low	Moderate	High	Very High	Very High

Qualitative measures of likelihood

Level	Descriptor	Example of Description	
1	Rare	May occur only in exceptional circumstances	very rarely > annual
2	Unlikely	Could occur in unusual circumstances	chance of annual occurence
3	Possible	Might occur or should be expected to occur under certain circumstances	chance of monthly occurence
4	Likely	Will probably occur	chance of weekly occurence
5	Almost Certain	Is expected to occur	chance of daily occurrence

Qualitative measures of consequence

Level	Descriptor	Example of Description
1	Insignificant	Insignificant impact or not detectable
2	Minor	Health - Minor impact on contact population, first aid treatment
		Environment - Minimal and short term harm to the environment
3	Moderate	Health - Moderate impact on contact population, medical treatment required
		Environment - Significant harm to the local environment for a short period
4	Major	Health - Major impact on contact population, extensive injuries
		Environment - significant harm to the environment
5	Catastrophic	Health - Potentially lethal on on contact population, death
	•	Environment - significant, widespread harm outside local area

Decision Tree

HACCP Checklist

Project Name:	Kurrajong		HACCP	Workshop Attendees	Revision 1 Attendees	Rev	ision 2 Attendees (December 19th 2011	L)	Revision 3	Revisions
Project Engineer: Date of Assessment:	Technical Manager				W. Johnson						
Date of Assessment:	14-Jan-16				J. Taylor						
Revision:	Revision 1										
Approved By and Date:	W. Johnson	To be approved by the Technical Manager		see RWQMP section 4 for compar	ny affiliations						

DESIGN /			B	efore Mitigati	07	Afte	r Mitigati	00										
	Potential Hazard	Preventative Measure		Consequence					Uncertainty	Decis	ion Tr	ee CCP	Criti	al Levels	Monitoring	Correcti	ve Action	Records
							ence	Risk										
Process unit	Physical, chemical, biological, other		1 to 5	1 to 5	D + E	1 to 5	1 to 5	D + E		Ŷ	ar N		Target	Action	How	What	How	Where
1. Source water	biological, other Physical contact with wastewater	Covers on tanks, locks where appropriate, trained operators to access site, signage, difficult to	1	2	3	1	2	3	± 1	N N		No						
(sewage influent, collection lines,	wastewater	access site, signage, difficult to																
pump stations)		access. Training of services personnel.																
		personner.																
	Biological Hazard. Faecal matter in influent above	Membrane UF treatment. On-line monitoring. Verification monitoring.	1	2	3	1	2	3	± 1	N N		No						
	specification Additional	Actual pathogen removal likely to be																
	pathogen load to treatment	higher than operational target. Ongoing monitoring program includes biological																
	plant resulting in out of spec treated water	monitoring program includes biological parameters. Turbidity meter indicates																
	created water	membrane breach.																
	Physical hazard.	Exclude the public from the plant and	2	2	4	1	1	2	± 1	Y N	N	No						
		irrigation area. Use correct PPE.																
	Chemical Hazard	Buffer tank pH is monitored	3	2	5	3	1	4	± 1	Y N	N	No						
	Blockage or break in	Properly designed sewer. Graviy flow	2	1	3	2	1	3	±1	Y N	N	No						<u> </u>
	sewerage network.	system (no pump stations). Network is	-		-	-	-	-		l ľ				1	1			1
		comparatively small.																
2. Screen	Chemical hazard. Non-	Buffer tank pH is monitored. Buffer tank	2	2	4	2	2	4	± 1	N N		No			1		·	1
	compliant trade waste discharge up stream.	pumps don't transfer if pH is out of range.	1					[1				1	1	1		1	1
			1					1	1				1	1	1		1	1
						1		[1					1	1			1
1						1		[1					1	1			1
															1			1
	Residnets disposing of chemicals down the drain	Education of resident . pH monitoring of the influent, any out of range feed not	2	2	4	2	1	3	± 1	Y N	Ν	No						1
	chemicals down the drain	accepted. Dilution of feed by other																
		residents																
	Screen may block or fail.	Routine maintenance inspections. Level alarms.	2	1	3	2	1	3	±1	Y N	N	No						
		alarms.																
	Screenings and grit need to	Ensure appropriately experienced and	2	2	4	1	2	3	± 1	Y N	N	No						
	be removed from site and	licensed contractors are used for																
	accidental discharge to environment may result with	maintenance of systems. Contractors use adequate PPE to mitigate against																
	potential public contact to	use adequate PPE to mitigate against ingestion, skin contact and inhalation. Remediate spills immediately and																
	pathogens. Contractor may contact the contaminants via	Remediate spills immediately and exclude public from the spill point until																
	the skin or inhalation	rectified.																
3. MBR (Aerators, Mixed Liquor,	Chemical hazard - pH sensitive	High MLSS will reduce effects of shock loads. pH exclusion in pre-treatment	2	2	4	2	1	3	±1	N N		No						
Membranes)	Shock loads	prevents delivery of non-compliant water																
		to MBR.																
	Chemical hazard - pH neutral	DD indicator of biomass health. High MLSS - shock resistance.	3	1	4	3	1	4	± 1			No						
			1					1	1				1	1	1		1	1
	Chemical hazard - Chemical	Appropriate procedures. Operator	3	1	4	2	1	3	± 1	N N		No						
	cleaning process destroys	training. Slow down production to allow biomass to rebuild. Last resort,												1	1			1
1	biomass	biomass to rebuild. Last resort, shutdown and re-seed.				1		[1					1	1			1
1						1		[1					1	1			1
														1	1			1
1						1		[1					1	1			1
			1			1		[1					1	1			1
			1			1		[1					1	1			1
	-					l							-					1
	Chemical cleaning damages membranes.	Appropriate procedures. Operator training. Membranes selected for broad	3	3	5	1	3	4	± 1	Y Y		CCP	Turbidity < 2 NTU	Turbidity > 2 NTU	Online turbidity			1
		compatability range. In the event membranes are damaged, breach would																
		membranes are damaged, breach would be detected by turbidity probe.																
			1			1		[1					1	1			1
			1			1		[1					1	1			1
														1	1			1
			1			1		[1					1	1			1
			1			1		[1					1	1			1
			1			1		[1					1	1			1
														1				1
														1				1
	Biological hazard	Operator training. DO monitoring. pH	3	2	5	3	2	5	± 1	N N			1	1	1		1	1
	Over aeration - nitrification reduces pH in tank	probe in filtrate pit is indicator of bioreactor pH.	1			1		[1					1	1			1
			1					[1				1	1	1		1	1
			1	1	1	1			1	1 1	1	1	1	1	1	1	1	1

Step	Potential Hazard	Preventative Measure	Likelihoo	d Consequer	nce Resid	d. Risk I	Likelihood	Consequ	Resid.	Uncertair	nty De	cision Tr	ee CCP		Critical	Levels	Monitoring		Correctiv	e Action	Records
Process unit	Physical, chemical, biological, other		1 to 5	1 to 5	D	+ E	1 to 5	ence 1 to 5				Y ar N		Target		Action	How	What		How	Where
	Initiation of Inter- Biological Justice Under averation failure. 1) electrical 2) diffuser	Bowers are alarmed for electrical failure. Pressure transdoors on anetation failure. Pressure transdoors and anetation separate Howers acception between the membrane. Roucine Maintenance Program DO probe alarmed for aeration failure.	2	2		4	2	1	3	±1	Ŷ	N N	No								
	Biological hazard Loss of biomass due to lack of feed.	Residential estate is likely populated at all times. Experience shows biomass can sustain health over several days.	1	2		3	1	2	3	±1	Y	N N	No								
	Biological hazard Membrane failure allowing pathogens through, either by gross rupturing or pinholing	Upstream screen to protect membranes from foreign matter. Membrane selection with a broad compatibility rage. Level and overflow alarms (membranes dry out) Online turbidity measurement of filtrate. Turbidity shutdown alarm.	2	3		5	2	3	5	±2	Y	N Y	N CCP1	NTU < 2		NTU > 2	Online turbidity				
	Physical hazard Leave drain valve open, emptying membrane tank	Operator training. Remove valve handles. Low level alarm on membrane tank.		1	2	3	1	2	3	±1	Y	N N	No								
	Physical hazard Faulty connections to/from membrane filter.	Good pipe work design and flexible connections used. Use stainless steel damps and screws. Online turbidity to maintain spec.		2	3	5	1	3	4	±1	Y	N Y	N CCP1	Turbidity	< 2 NTU	Turbidity > 2 NTU	Online turbidity				
	Physical hazard Loss of air scour due to large bubble size (broken diffuser)	Appropriate design.Inspection. Pressure transducers with low pressure alarm		2	1	3	2	1	3	±1	Y	N N	No								
	Physical hazard Faulty membrane installed	Quality checks at manufacturing, construction, commissioning, Manufacturers approval Venfeztion during commissioning - Water Quality Testing, Turbidity monitoring		2	3	5	1	3	4	±1	Y	ΝΥ	N CCP1	Turbidity	< 2 NTU	Turbidity > 2 NTU	Online turbidity				
	Sludge needs to be removed from site and accidental discharge to environment may result with potential public contact to pathogens. Operator handling also implies human exposure risk	Ensure contractors are adequately trained and licensed. Exclude public access and immediately rectily pails. Use appropriate PPE to avoid inhalation and skin contact. Supervision by Aquacell staff.	1	3		4	1	3	4	±1	Y	N N	No								
	Sludge wasting may fail leading to disruption of plant function	Sluge is manually wasted. Ensure wasted sludge flows to sludge tank and is not contacted by humans	3	1	4		3	1	4	±1	Y	N N	No								
4. Irrigation System and Storage Tanks	Exposurel hazard, improper use of treated water.	Education program for occupants. Ulac coloured pipes and fittings. Signage indicating recycled water usage. No taps on irrigation network. Treatment plant operating correctly	1	3		4	1	3	4	± 2	N	N	No								
	Degredation in water quality and delivery due to biofilm growth	Correct citing of integrates field and integrate takes. Funding point on integration system installed. Take keel alarms if irrigation system blocks.	2	3		5	1	3	4	± 2	N	N	No								
	Irrigation pump may fail	Small pump which is readily available. Adequate storage volume in buffer and irrigation tank to allow time for pump to be replaced. Irrigation tank and buffer tank can be pump out if necessary.		3		5	1	3	4	± 1	N	N	No								
	may fall	Five seperately operable irrigation zones so problem zones can be isolated. Routine checks to look for pooling or leaking. Adequate storage volume in buffer and irrigation tank to allow time for pump to be replaced. Irrigation tank and buffer tank can be pump out if necessary.	2	3		5	1	3	4	±1	N	N	No								
11. General	Prolonged power outages	Buffer tank can hold 8 times daily demand. Buffer tank can be pumped out.	1	2		3	1	2	3	±1	N	N	No								

Step	Potential Hazard	Preventative Measure	Likelihood	Consequence	Resid. Risk	Likelihood	Consequ	Resid.	Uncertainty	Dec	cision	Tree	ССР	Critical Levels	Monitoring	Correct	ve Action	Records
							ence	Risk										
	Physical, chemical, biological, other		1 to 5	1 to 5	D + E	1 to 5	1 to 5	D + E			Y or N	/		Target Action	How	What	How	Where
		Critical equipment under cover. Plant is above flood level on the side of a hill. Pump out can be used if plant is disabled.	1	4	5	1	4	5	±1	N	N		No					
	Earth quake	Pump out can be used if plant is disabled.	1	4	5	1	4	5	± 1	N	N		No					
	Fire	Pump out can be used if plant is disabled. Vegetation is maintained around plant.	1	4	5	1	4	5	±1	N	N		No					
		Pump out can be used if plant is disabled. Plant is in gated estate to prevent any access from general public.	1	3	4	1	3	4	±1	N	N		No					

HAZOP

Checklist

Project Name:	Kurrajong		HAZOP Workshop Attendee	S	Revision 1 Attendees	Revision 2 Attendees
Project Engineer:	Technical Manager				W. Johnson	
Date of Assessment:	14-Jan-16				J. Taylor	
Revision:	Revision 1					
Approved By and Date:		To be approved by the Technical Manager				

Juipment, tank, pocess unit Source water ewage input, Jilection lines) Ou qu Int Int	Deviation							
pocess unit fild ch Source water NC ewage input, NC pilection lines) Ou Qu Ini Ini Ini </td <td></td> <td>Consequence</td> <td>Causes</td> <td>Safeguards</td> <td>Actions</td> <td>Who</td> <td>Due Date</td> <td>Status</td>		Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
ewage input, pilection lines) Ou qu Int	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate			
Lo Ta	No influent	Low levels, not providing enough flow to biology	Low influent production Blockage or linebreak	Low level switch to protect downstream equipment if no feed is available.				
qu Ini Ini <			upstream of buffer tank					
Hi Re Lo Hi Lo Ta	Out of spec influent	Upsets biological process and	Long storage time turns	pH probe which turns				
Hi, Re Lo Hi, Lo Ta	quality	possibly membranes	septic, contaminated	influent pump off if pH low.				
Hi, Re Lo Hi, Lo Ta			waste, other upsets	Pump out tank if required				
Re Lo Hi, Lo Ta	Influent feed not used	Septicity develops, buffer	Treatement plant offline,	Buffer tank and treated				
Re Lo Hi, Lo Ta		tank overflows	treated water tank full	water tank can be pumped				
Re Lo Hi, Lo Ta				out if required				
Re Lo Hi, Lo Ta	High influent flow	Buffer tank fills up	Flooding of sewer pit,	Additional capcity built into				
Lo Hi, Lo Ta Ta	0		stormwater ingress, high	plant, buffer tank volume 8				
Lo Hi, Lo Ta Ta				times daily flow, buffer tank				
Lo Hi, Lo Ta Ta			activities	can be pumped out if				
Lo Hi, Lo Ta Ta	Reverse Flow	Back-up in inlet pipe	Cannot hapen in ths	Gravity flow system				
Hi, Hi, Lo Ta			configuration (gravity flow					
Hi, Hi, Lo Ta			system)					
Hi, Lo Ta pH	Low level	as for 'no influent'		•				
Lo Ta	High level	Buffer tank fills up. Overflow	Treatement plant offline,	Buffer tank and treated				
Lo Ta		to sump	treated water tank full	water tank can be pumped				
Lo Ta				out if required				
Ta Ta	High pressure	Not possible in gravity flow system	N/A	N/A				
pH rai	Low pressure		N/A	N/A				
pH rai	Tank rupture	Spill of influent to	Earthquake, subsidence,	Good design. Fit for				
ra		environment	flood, flotation	purpose tank. Located				
ra			,	above flood level cut into				
C+-	pH outside expected range	Biological process upset	Influent pH	pH meter in buffer tank				
36	Start up/ shutdown	No- issue						
Isc	Isolation	No requirement for isolation						
Cle	Cleaning	no requirement for cleaning						

HAZOP								
Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
Equipment, tank, process unit	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate			
2. Screen	No Flow	No feed into biology tanks	Screen blockage, motor trip	Level switches, motor overload, screen overflow to buffer tank				
	High flow	Overflow	Screen blockage	high level alarms and control logic, screen overflows to buffer tank				
	Reverse flow from sewer overflow	Not possible						
	Level	As for 'flow'		•	•			
	High pressure in pumped line	Damage pipe and pump	Blockage	Trip and alarm on pump				
	Composition	Foaming and possible overflow	Detergents and/or microbiology	Sealing lids. Overflow to buffer tank				
	Start up/ shutdown	No Issues						
3.MBR	No Flow into MBR	Biomass dies	No flow from upstream	Low level alarm				
	No flow out of MBR	No effluent produced	Membrane fouling, jammed actuated valve, pipe blockage, turbidity alarms, filtrate pump failure	Turbidity alarm, actuated valve alarm, regular membrane cleaning, flux rate monitoring, air scour of membranes				
	Sludge build up in base of tank	No flux through membranes. Blocked diffusers preventing air scour	Poor influent screening.	Inspections. Monitoring scour air pressure				
	High flow	High level and overflows	Over-pumping in from previous tank. Blocked recirculation lines.	Level alarms				
	High flux through membrane	More rapid membrane fouling	High trans-membrane pressure. Chemical membrane clean	Turbidity meter. Flux monitoring.				
	High air pressure	Damage pipe and blower. Damage membranes	Diffuser blockage	Thermal overloads on blowers. Sour air pressure monitoring				

HAZOP								
Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
Equipment, tank, process unit	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate			
	pH drops	Biomass dies. Corrosion. Out of spec water quality pH	tanks does not have	Filtrate pH meter. DO control. Can consider alkalinity dosing.				
	Low air flow	Biomass negatively impacted. Membrane fouling from lack of scouring.	High MLSS	DO probe, blower alarms Monitoring of MLSS/DO. Monitoring biology air pressure.				
	Low levels	No flux through membrane Membrane dries out and/or fouls Biomass dies	Faulty actuated valve	Low level alarm				
	High level	Overflows	Over-pumping in from previous tank. Recirculation pumps blocked or damaged.	Level alarms. Adjustment of recirculation valves lines from bio to MBR.				
	Low pressure on air lines	Low air supply. Membranes do not scour properly. Anaerobic conditions		DO monitoring for Bio (not MBR). Pressure monitoring of membrane and biology air				
	High air pressure	Damage pipes and pumps	Blockage in pipes or diffusers	thermal overloads on blowers				
	High permeate pressure	e Not possible						
	Composition	Biomass impacted and biological treatment lost. Membranes damaged.		DO probe. Influent pH probe.				
4. Filtrate pit	High level	Overflow		Fault pump detection, overflow pipe				
	Inaccurate turbidity reading	false alarms, instrument failure	Failure of turbidity probe. Biofilm in filtrate pit or lines	Routine servicing and calibration				
	Low level	Dry running pump, turbidity probe function	Failure float switch	Low level alarm				
	No flow or overflow	Same as low and high level						
5 Irrigation system and storage tanks	Low level	Dry running of pumps	irrigatino pump fails to stop	Level switch				
HAZOP								
----------------------------------	---	---	--	--	------------------------	-----	----------	--------
Item	Deviation	Consequence	Causes	Safeguards	Actions	Who	Due Date	Status
Equipment, tank, process unit	Condition such as no flow, high flow, pH change	What happens	Why does it happen	Valves, alarms, instrument, design	To be done to mitigate			
	High level	Overflows to environment	Failure of irrigation controller or solenoid valves.	Level alarms. Treatement plant stops processing				
	Low pressure	not disposing of water uniformally	irrigation pump stops	Routine inspections of irrigation field				
	high pressure	irrigation pump stops prematurely	blocked lines	high level alarm in irrigation tank				
	Reverse flow in mains supply	not possible - no cross conneciton potential						
6. Manual Work	Maintenance	Damage to equipment	Poor workmanship	Following Work Instructions				
	Maintenance	Chemical spills	Chemical handling	Following Work Instructions				

Appendix B – Land Capability Assessment

Effluent Management Investigations

at

Vincent Road, Kurrajong

Prepared for

BENNETT PROPERTY

Woodlots and Wetlands Pty Ltd 220 Purchase Road Cherrybrook NSW 2126

Client **BENNETT PROPERTY** Woodlots & Wetlands Pty Ltd **Prepared By** 220 Purchase Road Cherrybrook NSW 2126 Telephone (02) 94842700 Mobile 0427905440 E mail woodlots3@bigpond.com Date Issued 15 November 2012 Kurrajong Hamlet Effluent Management Investigation **Document File name** V2Effluent Management Investigations at **Document Title** Vincent Road, Kurrajong **Document Registered By** Peter Bacon Principal Consultant

Document Registration

Copyright

This report has been prepared for the express benefit of Bennett Property in establishing a sustainable effluent management system at Vincent Road, Kurrajong. It is time and site specific and must not be used for any other purpose.

Acknowledgements

The technical assistance of Aquacell Pty Ltd is gratefully acknowledged.

Glossary

Abbreviation or acronym	Explanation	
or abronym		
ADWF	Average Dry Weather Flow (cubic m/day)	
BOD	Biological Oxygen Demand	
С	Carbon	
Ca	Calcium	
CANRI	Community Access Natural Resource Information	
cfu	Colony Forming Units. A measure of microbial population. It is sometimes referred to as MPN (Most Probable Number)	
cm	centimetres	
DALY	Disability Adjusted Life Years. A World Health Organisation sponsored system of assessing the impact of accidents or disease on a population. DALYs for a disease or health condition are calculated as the sum of the Years of Life Lost (YLL) due to premature mortality in the population and the Years Lost due to Disability (YLD) for incident cases of the health condition (WHO web site, accessed May, 2012). The minimum tolerable health risk is typically 10 ⁻⁶ DALY (NRMMC/ EPHC/ AHMC (2006).	
DEC	Department of Environment and Conservation (in 2012 it was part of Office of Environment and Heritage)	
DIPNR	Department of Planning Infrastructure and Natural Resources	
	in May 2012, the environmental components had been transferred to the Office of Water (NOW) and OEH)	
DIR	Design Irrigation Rate as per AS/NZS 1547	
dS/m	decisiemens/metre A measure of electrical conductivity	
	(1 dS/m=1000 microsiemens/cm)	
Effective risk management	The identification of all potential hazards, their sources and hazardous events, and an assessment of the level of risk presented by each.	
Effluent	Treated wastewater from a sewage treatment plant (STP)	
Ensiled	Storage of fodder as silage. Silage is the result of anaerobic fermentation process used to preserve green vegetation such as oaten hay or green pasture. The vegetation is and packed while at about 70-80% moisture and put into sealed holes in the ground.	
ESCP	Erosion and Sediment Control Plan	
Field capacity (water holding capacity)	The amount of water held in soil once gravitational water has drained from the profile. Typically it is reached approximately 48 hr. after saturation. It can be expressed as a variety of units. In the current report it is in mm of water stored in the plant root zone.	

· ·	
Faecal coliforms	Bacteria that is indicative of faecal contamination.
comornis	
g	grams
К	Potassium
ha	hectare (1 ha=100m*100m)
HACCP	HACCP is the <u>Hazard Analysis and Critical Control Point system</u> . (That is: What can we do to reduce hazards)
Hazard	HAZARD=probability*consequences
	A hazard is a biological, chemical, physical or radiological agent that has the potential to cause harm.
	A hazardous event is an incident or situation that can lead to the presence of a hazard. (What can happen and how)?
HRT	Hydraulic Retention Time – the average travel time for water to pass through a system such as a wetland, maturation pond or reaction chamber.
kg	Kilograms
kL	Kilolitres (1000 L)
km	kilometres
L	litres
m	metres
mg	milligrams (10 ⁻³ g)
Mg	Magnesium
mL	millilitres (10 ⁻³ L)
ML	megalitres (10 ⁶ L)
MSDS	Material Safety Data Sheets
Na	Sodium
Ν	Nitrogen
EMP	Environmental Management Plan
Р	Phosphorus
PET	Potential Evapotranspiration: Rate of loss of water from plants and soil when there is an unlimited supply.
рН	A measure of acidity
Risk	The likelihood of identified hazards (see definition above) causing harm in exposed populations in a specified timeframe, including the severity of the consequences.

	(How likely is it to happen? How serious are the consequences?)	
	Risk is maximum risk in the absence of preventive measures	
	Residual risk is the risk after consideration of existing preventive measures.	
SAR	Sodium Adsorption Ratio. A measure of the ratio of sodium to calcium plus magnesium. It is used in conjunction with salinity data to determine the stability of irrigation water.	
Stormwater	Rainfall derived water arising from roof or ground surfaces.	
STP	Sewage Treatment Plant	
TWL	Top water level (m)	

Executive summary

This investigation is concerned with providing a proposed development at Vincent Road Kurrajong with a sustainable system for managing its tertiary treated sewage.

According to the Australian Bureau of Statistics, the average number of residents per dwelling in the Kurrajong urban area is 2.7. Many of the 41 dwellings to be connected to a centralised sewerage treatment plant (STP) are within a retirement complex and the majority of these are occupied by single people. The dwellings have full water reduction features in them including twin flush toilets and flow reducers on the shower heads. According to AS 1547 the design sewage flow allowance per person is 110 L. Therefore the design sewage flow/day is

41*2.7*110= 12,177 L/day.

Effluent strength is classified as 'low' according to the EPA's criteria (DEC, 2004). Sub surface irrigation will minimise risk of contact.

A landform assessment showed that the site was suitable for effluent irrigation. The main concern was the slope which ranged from 5 to 20%, with an average grade of 11%. Subsurface irrigation is recommended to minimise the risk of effluent runoff.

A back hoe was used to excavate 4 soil inspection and sampling pits. The soils were sampled to a layer of rotted shale. The depth to this layer varied from 1.5 to 1.9m. The soils were sampled at 0-20, 20-40, 40-70, 70-100 and on top of the rotted shale layer. The soils all had moderate structure throughout the profile. The surface 40 cm was typically a clay loam while the 40 to 100 cm layer was a light-medium clay. Heavy clay occurred on top of the shale. This suggests imperfect drainage at depth.

The moderate pedality in the topsoil is not ideal for effluent irrigation. Organic matter is a key agent for soil structure. Increasing organic matter will increase surface soil stability. Permanent pasture is strongly recommended.

The chemistry of the soils varies across the site and within individual profiles. However some generalisations can be made:

- The soils are non-saline and non-sodic. They have good supplies of potassium, calcium and magnesium.
- Applying 1800 kg agricultural lime per ha prior to commencement of effluent irrigation will ensure that productivity is not limited by aluminium toxicity.
- The P sorption capacity of the soil is sufficient for approximately 375 years at moderate rates of effluent irrigation.
- Phosphorus availability is marginal. Addition of 120 kg/ha/year of single superphosphate is recommended for pastures.

All of these features make the soils suitable for effluent irrigation provided the application rate is light.

The irrigation area size needed was based on AS 1547 and the daily weather since 1970. A maximum of 10,150 msq is available. Sensitivity analysis was used to identify sustainability of the irrigation system at a range of rates. A 1 ha field was sufficient for up to 22 cubic m/day of tertiary treated effluent. This is over 80% higher than the anticipated flow of 12.2 cubic m/day.

The environmental risks from the proposed system are small and considered acceptable.

Table of Contents

1	E	BACKGROUND	.3
	1.1	OBJECTIVES OF THE EFFLUENT MANAGEMENT ACTIVITIES	.3
	1.2	Environmental objectives of the effluent management project	.3
	1.3	RELATIONSHIPS BETWEEN BENNETT PROPERTY'S COMMITMENT TO ESD NATIONAL AN	
		ATE GOVERNMENT POLICIES	
	R	Resource Utilisation	6
	Р	Protection of Lands	6
	Р	Protection of Surface Waters	6
	Р	Protection of Ground Waters	6
	C	Community Amenity	6
	1.4	INVESTIGATION REQUIREMENTS	7
	1.5	REFERENCE DOCUMENTS	
2	S	SITE ASSESSMENT	. 8
3		VAILABLE INFORMATION	
5	3.1	Sewage flows	
	3.2		
4		LANDFORM ASSESSMENT	
'	4.1	SITE CONFIGURATION	
	4.1		
	4.3	Conclusions from site assessment	
5	S	SOILS ASSESSMENT	14
-	5.1	Insitu soil assessment	
		Field texture	
	c	all attrangth	11
	3	oil strength	14
	Р	Pedality	14
	F	Pabric	14
	C	Colour	11
	C	.010ur	14
	В	Boundaries	18
	N	Aottle %	18
	N	Vodule %	18
		Root number	
	В	Biological activity	18

	Ro	ck %		
	Со	nclusions and management recommendations		
[5.2	SOIL CHEMISTRY		
	pН	I (5 _{water} :1 _{soil})		
	Sal	inity		
	Ca	tion exchange capacity		
	Ex	changeable calcium (Ca)		
	Ex	changeable magnesium (Mg)		
	Ex	changeable potassium (K)		
	Ex	changeable sodium (Na)		
	Ex	changeable aluminium (Al)		
	Or	ganic carbon		
	То	tal Nitrogen		
	Bra	ay No.1 Available phosphorus		
	P s	sorption capacity		22
	Со	nclusions and recommendations		
6	SI	ZING OF IRRIGATION AREA.	••••••	25
(5.1	NET EFFLUENT PRODUCTION		
(5.2	IRRIGATION AREA REQUIREMENT		
(5.3	IRRIGATION AREA AVAILABLE.		
7 IR		ROPOSED IRRIGATION STRATEGY AND OPTIMISATION		
	7.1 7.2	Model inputs Model output		
8		ANAGEMENT OF CONTAMINANT LOADS		
	8.1 8.2	NITROGEN Phosphorus		
	5.2 8.3	SALINITY		
	3.4	Conclusions		
9	RI	EFERENCES		

1 BACKGROUND

This investigation is concerned with providing a sustainable effluent management for tertiary treated effluent from 41 dwellings on Vincent Road Kurrajong.

The development comprises a mix of 23 retirement villas and 18 'normal' suburban type allotments. Figure 1.1 shows the locality of the development.

Lands to the immediate east of the retirement villas are available for irrigation. Figure 1.2 shows the irrigation area in detail.

This current report assesses the suitability of these lands. It also determines suitable size and configuration of the irrigation area.

1.1 Objectives of the effluent management activities

The aims of the scheme include:

- 1. Minimising risks to human and environmental health
- 2. Maximising effluent reuse opportunities

Bennett Property is committed to ensuring that the effluent management scheme is consistent with the principles of ESD. Additionally it aims to ensure there are no adverse impacts on human and environmental health due to implementation of the effluent management scheme.

1.2 Environmental objectives of the effluent management project

The environmental objectives of the project can be summarised as:

- To ensure environmental and public health safeguards are implemented correctly;
- To comply with the requirements of all relevant Local regulations and NSW and Australian legislation;
- To ensure that the establishment and operational phases of the project are managed to minimise adverse impacts on the environment and on human health.

Effluent Management Investigations, Vincent Road Kurrajong

Figure 1.2. Detail of irrigation area (Source :Envirotech, 2012). NOTES:

- 1 The proposed irrigation area is 10,150 msq
- 2. The irrigation area is 40m upslope from an existing farm dam
- 3. The irrigation area does not drain to the dam to the immediate south of the site.

1.3 Relationships between Bennett Property's commitment to ESD¹ National and State Government Policies

'The EPA's wastewater management policy is to encourage the utilisation of effluent where it is safe and practicable to do so and where it provides the best environmental outcome. The EPA especially encourages the substitution of treated effluent for fresh/potable water wherever potable water is being used for non-potable purposes e.g. irrigation of crops and pastures.' (EPA, 1995).

The key objectives of the *EPA's wastewater management policy* are listed in the draft document '*The utilisation of treated effluent by irrigation*' (EPA, 1995). Each objective is discussed below.

Resource Utilisation

Effluent and its constituents such as water, and nutrients should be evaluated for their usefulness. The agronomic systems for effective utilisation of these constituents should be implemented.

Protection of Lands

The management of the system must be in accordance with ESD principles. In particular it should maintain the productive capacity of the land. No deterioration of land quality through soil structural degradation, salinisation, waterlogging, chemical contamination or erosion should occur.

Protection of Surface Waters

Irrigation areas should be sited, designed, constructed and operated so that surface water does not become contaminated by either the effluent or any effluent contaminated runoff from the irrigation scheme.

Protection of Ground Waters

Irrigation areas should be sited, designed, constructed and operated so that useable subsurface water does not become contaminated by either the effluent or effluent runoff from the irrigation scheme.

Community Amenity

The scheme should be sited, designed, constructed and operated so that it does not cause unreasonable interference with any commercial activity or comfortable enjoyment of life and property off site. Where possible it should add to the amenity.

In NSW the principles of ESD as stated in the Protection of the Environment (Administration) Act 1991 are: **'The precautionary principle**-if there are threats of serious or irreversible environmental damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation; **Intergenerational equity** – the present generation should ensure that the health, diversity and productivity of the environment is maintained and enhanced for the benefit of future generations;

Conservation of biological diversity and ecological integrity, and; Improved valuation and pricing of environmental resources.

¹ Ecological Sustainable Development principle involves

^{&#}x27;Using, conserving and enhancing the community's resources so that ecological processes, on which life depends, are maintained, and the total quality of life, now and in the future can be increased.' (Commonwealth of Australia, 1992).

1.4 Investigation requirements

The investigation brief requires a series of tasks to be undertaken in order to provide evidence that the development will be consistent with ESD principles. These requirements are listed below:

- \Rightarrow Site inspection
- \Rightarrow Review of available information
- \Rightarrow Review of regulatory requirements
- ⇒ Risk assessment
- \Rightarrow Reclaimed water quality
- \Rightarrow Reclaimed water volumes
- \Rightarrow Identification of potential reuse areas
- \Rightarrow Soil and topographical assessment
- \Rightarrow Water and groundwater investigations
- \Rightarrow Soil chemical analysis
- \Rightarrow Identification of potential reuse options
- \Rightarrow Identification of preferred irrigation system
- \Rightarrow Water, salt and nutrient budgets
- \Rightarrow Recommendations

The current report addresses each of these requirements.

1.5 Reference documents

There are a variety of technical documents, guidelines and policy statements that provide instruction on sewage and stormwater management. The list below has been consulted during this investigation.

Asano, T. (1998). Wastewater Reclamation and Reuse. Technomic Publ. Co. Lancaster PA.

DEC (2004). Environmental Guidelines: Use of Effluent by Irrigation. Dept. Env. and Con. Sydney, NSW.

NRMMC/ EPHC/ AHMC (2006). Australian Guidelines for Water Recycling: Managing health and Environmental Risk (Phase 1). NWQMS No. 21. Natural Resource Management Ministerial Council/ Environment Protection and Heritage Council/ Australian Health Ministers Conference. Canberra ACT.

NCST (2009). Australian Soil and Land Survey Field Handbook. The National Committee on Soil and Terrain. Third Edition. CSIRO, Collingwood. Vic.

NSW Agriculture (1997). The NSW Feedlot Manual. NSW Agriculture, Orange, NSW.

QDNR (1998). MEDLI Technical Manual. T. Gardner and R. Davis Eds. Indooroopilly, Qld.

Standards Australia (2000). AS/NZS 1547:2000. On-site domestic wastewater management. Sydney, NSW.

Water Services Australia (2002). Sewerage Code of Australia WSA 03- Version 2.3.

2 SITE ASSESSMENT

The site was inspected by Dr Peter Bacon of Woodlots and Wetlands in October 2012. The inspection activities included the soil and landscape assessment reported below.

The location and issues associated with irrigating the lands to the east were assessed.

The approach has been to identify the likely sewage volume generated from the STP, assess the site to determine the design irrigation rate (DIR) as per AS/NZS 1547, and then determine the irrigation area requirements for sustainable irrigation of this volume. Because the exact sewage flows and number of occupants are unknown a range of possible flows were assessed.

The study also provides an assessment of the risks to human and environmental health from the scheme, and then identifies options to minimise these risks.

3 AVAILABLE INFORMATION

3.1 Sewage flows

Sewage flows are based on AS1547 APPENDIX 4.2D. According to the Australian Bureau of Statistics 2011 census data, the average number of presidents per dwelling in the Kurrajong Urban Area is 2.7. Many of the 41 dwellings to be connected to the sewerage treatment plant (STP) are within a retirement villa complex, and the majority of these are occupied by single people, so the 2.7 persons/ dwelling is likely to be an overestimate. The dwellings have full water reduction features in them including twin flush toilets and flow reducers on the shower heads. According to AS/NZS 1547 the design sewage flow allowance per person in dwellings with full flow reduction devices is 110 L/day. Therefore the design sewage flow/day is

41*2.7*110= 12,177 L/day.

Sensitivity analysis was undertaken to assess the effect of a range of flow rates. The following variables were tested:

- 2.7 persons/dwelling
- 3.7 persons/dwelling
- 4.7 persons/dwelling and
- 110 L/person/day (the anticipated sewage flow assuming full flow reduction fixtures)
- 145 L/person/day (the sewage flow if there are limited flow reduction fixtures in the dwellings (from AS/NZS 1547)

Table 3.1. Effect of varying number of resident/dwelling and average flow/ resident on total effluent volume/day

Assumed 41 dwellings	Persons/ dwelling	2.7	3.7	4.7
Flow/person	110	12.2	16.7	21.2
Flow/person	145	16.1	22.0	27.9

The sensitivity analysis in table 3.1 shows that increasing the flow rate per person and increasing the average number of people in residence more than doubles the anticipated flow rate.

3.2 Effluent attributes

The proposed STP is an Aquacell membrane bioreactor. The anticipated effluent characteristics are shown below.

Table 3.2. Anticipated characteristics of the effluent and criteria for determining low strength effluent (Source: DEC, 2004).

Constituent	Anticipated effluent characteristics	Low strength effluent characteristics
Total Nitrogen (mg/L)	<15	<50
Total Phosphorus (mg/L)	<10	<10
Biochemical Oxygen Demand (mg/L)	<15	<40
Total Suspended Solids (mg/L)	<5	Not given
E coli (CFU/100mL)	<10	Not given

4 LANDFORM ASSESSMENT

4.1 Site configuration

Figure 1.2 shows the site. The proposed irrigation area is on an eastern facing slope, below the development area. Figure 1.2 also shows that the subject site is currently surrounded by grazing lands. The nearest downslope waterbody is over 40m south of the subsurface irrigation area.

The soil landscape map (Bannerman and Hazelton, 1989) shows that the site is on the Luddenham Soil Landscape. Gymea Soil Landscape occurs downslope of the site. Typical attributes are summarised in table 5.1.

Table 5.1 typical attributes of the Luddenham and Gymea Soil Landscapes (Source: Bannerman and Hazelton, 1998).

Attribute	Luddenham Soil Landscape	Gymea Soil Landscape
Geology	Wianamatta Shales	Hawkesbury Sandstone
Topography	Low rolling to steep hills	Undulating to rolling low hills
Slopes	5-20%	10-25%
Erosion hazard	High	High
Soils classification b	Red (upper slope) to yellow (lower slope) podsolics	Yellow earths, earthy sands yellow podsolics
Fertility	Moderate fertility	Very low fertility

4.2 Landform assessment procedures

A total of four localities within the proposed irrigation area were assessed for landform and soil characteristics.

Table 4.2 summarises the results of the landform assessment.

Table 4.2. Site attributes and their likely impact on site suitability of effluent irrigation at the	
site.	

Attribute	Rationale	Comment
Grid ref	Permanent record of assessment position	
Aspect	Influences solar radiation intensity on lands with more than 10% slope	Slopes towards the east. It will get full morning sun, but little late afternoon sun. There will be reduced exposure to dry westerly winds.
Exposure	Exposed areas have higher evapotranspiration demand	The trees shown in figure 1.1 and 1.2 have been removed. All areas are now exposed, with no tree cover. Therefore OK.
Slope %,	Impacts on the erosion and runoff potential	Ranges from 5 to 20%. Therefore use subsurface irrigation
Slope length	Impacts on the erosion and runoff potential	Maximum of 120m
Landscape position	Impacts on the extent on run-on from upper slopes. Impacts on local drainage.	Mid slope. Drainage to the north and east of the development site. A minimum of 40m between the proposed irrigation area and the farm dam line.
Local Relief	Indicates the extent of steep slopes	Undulating low hills. Subsurface irrigation will minimise risk of effluent runoff.
Landform element	Identifies drainage issues, e.g. floodplains	Convex, divergent slope, so ideal
Drainage line distance (m)	Indicates risk of stream contamination via runoff. Used in DEC (2004) as a buffer distance guide.	Minimum of 40m to a farm dam This is in excess of the 40m distance where Office of Water involvement occurs under the Water Management Act (2000).
Flow patterns	Indicates stream networks and the risk of contamination	No apparent drainage network within the site. There is an opportunity to capture and convey stormwater runoff around the topside of the irrigation area. This will minimise run-on
Run-on/ runoff potential	Identify management needed to minimise excess inflow or losses from the site.	A contour bank will intercept flow above the irrigation area.
Surface water bodies- dams, ponds, springs DS or US of site	Used in DEC (2004) table 4.9 as a buffer distance guide.	No springs or other surface water bodies were evident within the irrigation area. Use of tertiary treatment of the effluent and subsurface irrigation at the AS/NZS 1547 design irrigation rate(DIR) will minimise risk
Storm water	Risk of external flooding, especially with contaminated water.	A contour bank will intercept flow above the irrigation area.
Salt	Salinisation can limit plants' ability to utilise the effluent. It can indicate poor	The profiles seem reasonably well drained. There is no evidence of

Attribute	Rationale	Comment
	drainage and the need salt tolerant plants.	salinisation.
	Salinisation can destroy soil structure leading to increased risk of effluent runoff.	
Erosion potential+/- cult	Erosion potential is used to adjust the cropping/ pasture regime to minimise risk	Low erosion potential once permanent grass cover is established and maintained.
Rock out crops %	Rocky soil can reduce plant growth, make cultivation difficult and increase runoff.	None
Depth to hard rock	Soil less than 1m deep can have poor root development and inadequate ability to retain nutrients. They can also become waterlogged.	All except location 4 have over 1.5m of soil. Location 3 has decomposed rock at 1.5m
Water table, depth	Depth to water table is critical in determining the most suitable vegetation. A shallow water table will preclude irrigation in parts of the year.	None evident.
Groundwater	Distance between the irrigation area and groundwater bores used for domestic purposes is a critical issue in risk assessment	The site itself has a bore on it. However it is not used anymore as town water is now available.
Flood risk	Frequent flooding can destroy infrastructure, prevent irrigation and damage crops.	Not an issue
Land use	The most suitable land uses should be the ones that result in acceptable minimum risks to human and environmental health. At the same time the landuse must be suitable for the site and not be too expensive to establish or operate. A range of permanent pastures and cropping will be considered.	Improved pasture. Therefore OK. The lack of trees makes it simpler to install subsurface irrigation.
Land use history	Past land use activities such as sheep dips and landfills can result in contaminated lands. These lands are normally unsuited for effluent irrigation because the irrigation will increase the risk of off-site contamination.	Long term, low intensity woodlot and pastures. Therefore OK.
Landuse zoning	The proposed landuse must be consistent with current / proposed land zoning.	A new LEP has been placed on public display. It is assumed that the STP and associated irrigation area will be consistent with this LEP.
Distance to public roads houses, etc.	Buffer distances will be a function of the likely contaminant load and the likely level of exposure to the effluent.	A minimum of 80m to the nearest public road. This is well beyond the 25 to 30m recommended in the National Guidelines.
Fire hazard	Fire hazard can be significant for landuses such as woodlots. Fire can destroy both vegetation and equipment.	Not considered an issue

4.3 Conclusions from site assessment

The land slopes relatively steeply to the east. Run-on and run-off are likely to be moderate because of the relatively steep slope. Therefore subsurface irrigation is proposed. Additionally a contour bank immediately upslope of the irrigation area will divert run-on. Permanent pasture cover is also essential to reduce erosion rate.

There is a farm dam near the eastern boundary of the site but this is over 40m from the likely irrigation area.

Other site attributes create minimal risk. On this basis the site appears suitable for application of effluent, especially in view of the relatively low level of contamination in the effluent as shown in table 3.2.

5 SOILS ASSESSMENT

5.1 Insitu soil assessment

A back hoe was used to excavate 4 pits. The sampling depths used to assess the profiles were based on DEC (2004). DEC (2004) suggest 4 sampling depths in the surface 100 cm. A total of 5 depths were used. Four of these were in the top metre and a fifth sample at least 2m or at refusal. The surface depth aimed to define soil surface conditions such as structural stability. The deepest sample was used to assess phosphorus sorption capacity of the entire profile.

The results of the field assessment are shown in table 5.1.

Field texture

Field texture typically changed gradually from clay loams to medium to heavy clay at approximately 1m depth.

The presence of clay loam on the soil surface means that the irrigation application rate needs to be relatively light.

The clay dominant subsoil means that the soil can store adequate supplies of water. However the profile can also become saturated and poorly drained. Overwatering must be avoided.

Soil strength

Soil strength varied from very strong at the surface of sites 1, to very weak at depth in profile 4. The very strong conditions in the surface soil reflect dry conditions and compaction.

A combination of long term pasture and cropping using reduced tillage is recommended.

Pedality

The pedality is moderate in almost all samples. Organic matter accumulation under pasture will assist in maintaining soil structural stability.

Moderate pedality is preferred in the subsoil as weak pedality can indicate structural degradation. Strong pedality can mean that the effluent passes through the soil too quickly.

Fabric

Earthy or rough pedal fabric is preferred. All the samples had earthy fabric.

Colour

Soil colour is derived from organic matter, clay mineralogy, and drainage conditions. Pale greys, yellow and whites indicate poor drainage. Dark browns are indicative of organic matter accumulation, while bright reds and oranges are indicative of good drainage. The topsoils are typically brown or reddish brown, indicating organic matter accumulation and moderate drainage. The increasing grey colour with increasing depth indicated imperfect drainage.

Table 5.1. Insitu soil conditions.

Few soil fauna evident, no water repellency or hard setting evident but no obvious hard pan or bleaching. The fabric was earthy at all depths. There was no hard pan or bleaching at depth.

Site No.	Depth (cm)	Field texture	Consistency	Moisture	Pedality	Colour	Boundaries	Mottles %	Nodules %	Root No.	Biological activity	Texture change	Hard setting	% rock
KH1	0 to 20	clay loam	very strong	dry	weak	dark reddish brown	diffuse	none	none	common	none	gradual	hard setting	none
	20 to 40	clay loam	firm	moderately moist	moderate	dark reddish brown	diffuse	none	none	common	none	gradual		none
	40 to 70	light medium clay	weak	moderately moist	moderate	very dark gray	diffuse	none	none	common	none	gradual		15%
	70 to 100	medium clay	weak	moderately moist	moderate	dark grayish brown	diffuse	20% yellow	none	common	none	gradual		10%
	160 to 180	heavy clay	weak	moist	moderate	grayish brown	diffuse	10% yellow	none	common	none	gradual		60% (shale)
KH2	0 to 20	clay Ioam	firm	moderately moist	moderate	very dark gray	diffuse	none	none	common	common	gradual	hard setting	none
	20 to 40	clay loam	firm	moderately moist	moderate	dark brown	diffuse	none	none	abundant	none	gradual		none

Depth (cm)	Field texture	Consistency	Moisture	Pedality	Colour	Boundaries	Mottles %	Nodules %	Root No.	Biological activity	Texture change	Hard setting	% rock
40 to 70	clay loam	weak	moderately moist	moderate	reddish gray	diffuse	10% red	none	common	none	gradual		20%
70 to 100	medium clay	weak	moderately moist	moderate	reddish brown	diffuse	25% red	none	common	none	gradual		40%
165 to 175	heavy clay	weak	moist	moderate	gray	diffuse	20% orange	none	rare	none	gradual		80%
0 to 20	clay Ioam	firm	moderately moist	moderate	dark brown	diffuse	none	none	common	rare	gradual	compacted	none
20 to 40	clay Ioam	firm	moderately moist	moderate	dark brown	diffuse	none	none	common	none	gradual		none
40 to 70	clay loam	weak	moderately moist	moderate	dark grayish red	diffuse	none	none	rare	none	gradual		none
70 to 100	medium clay	weak	moderately moist	moderate	reddish gray	diffuse	20% red	none	rare	none	gradual		none
180 to 190	heavy clay	firm	moist	moderate	light gray	diffuse	30% red	none	none	none	gradual		none
	(cm) 40 to 70 to 100 165 to 175 0 to 20 to 40 to 70 to 100 180 to	(cm)texture40 to 70clay loam70 to 100medium clay70 to 175heavy clay loam0 to 20 to 40clay loam20 to 40clay loam40 to 70clay loam70 to 100medium clay70 to 100medium clay180 to clayheavy clay	(cm)texture40 to 70clay loamweak70 to 100medium clayweak165 to 175heavy clayweak0 to 20clay loamfirm20 to 40clay loamfirm20 to 40clay loamfirm70 to 100clay clayfirm180 to 100heavy clayfirm	(cm)texturemoderately40 toclayweakmoderately70 tomediumweakmoderately100mediumweakmoderately165heavyweakmoist165heavyweakmoist175heavyweakmoist0 toclayfirmmoderately20 toclayfirmmoderately40 toclayweakmoderately70 tomediumweakmoderately70 tomediumweakmoderately180heavyfirmmoist	(cm)textureImage: sector	(cm)texturemoderatemoderatelymoderatereddish40 toclayweakmoderatelymoderatereddish70 tomediumweakmoderatelymoderatereddish100clayweakmoderatelymoderatereddish165heavyweakmoistmoderategray165heavyweakmoistmoderategray175heavyweakmoistmoderategray0toclayfirmmoderatelymoderatedark20toclayfirmmoderatelymoderatedark20toclayfirmmoderatelymoderatedark40toclayfirmmoderatelymoderatedark70tomediumweakmoderatelymoderatedark70tomediumweakmoderatelymoderategrayish70toclayfirmmoderatelymoderategray180heavyfirmmoistmoderatelight180heavyfirmmoistmoderatelight	(cm)textureImage: sector of the sector	(cm)textureimage: second	(cm)texturemoderately moistmoderately moistmoderately reddiffuse10% rednone40 to 70loamweakmoderately moistmoderatereddish graydiffuse10% rednone70 to 100medium clayweakmoderately moistmoderatereddish browndiffuse25% rednone165 to 175heavy clayweakmoistmoderategraydiffuse20% orangenone165 to 175heavy clayweakmoistmoderategraydiffuse20% orangenone0 20clay loamfirmmoderately moistmoderatedark browndiffusenonenone20 to 40clay loamfirmmoderately moistmoderatedark browndiffusenonenone20 to 40clay loamfirmmoderately moistmoderatedark browndiffusenonenone40 to 70clay loamweakmoderately moistmoderatedark grayish reddiffusenonenone70 to 100medium clayweakmoderately moistmoderatereddish grayishdiffuse20% claynone70 to 100medium clayweakmoderately moistmoderatereddish graydiffuse20% claynone70 to 100medium clayweakmoderat	(cm)texturemailmoderately moistmoderately moistmoderately graymoderatel graydiffuse10% rednonecommon70 to 100mmedium clayweakmoderately moistmoderatel moistreddish browndiffuse25% rednonecommon70 to 100mclayweakmoderately moistmoderatel moistreddish browndiffuse25% rednonecommon165 to 175heavy clayweakmoistmoderatel moistgraydiffuse20% orangenonerare165 to 175heavy clayweakmoistmoderatel moderatelygraydiffusenonenonecommon105 to 100mclay loamfirmmoderately moistmoderatel moderateldark browndiffusenonenonecommon20 to 10amclay loamfirmmoderately moistmoderatel browndark browndiffusenonenonecommon20 to 10amclay loamfirmmoderately moistmoderatel browndark browndiffusenonenonecommon20 to 10amclay loamfirmmoderately moistmoderatel browndark browndiffusenonenonerare20 to 10amclay loamweakmoderately moistmoderatel graydark graydiffusenonenone <td< td=""><td>(cm)textureimage for an activityimage for activityimage for activityimage for activity40 toclayweakmoderatelymoderatelreddishdiffuse10%nonecommonnone70 tomediumweakmoderatelymoderatelreddishdiffuse25%nonecommonnone100clayweakmoderatelymoderatelreddishdiffuse25%nonecommonnone165heavyweakmoistmoderatelgraydiffuse20%nonerarenone165clayweakmoistmoderatelgraydiffuse20%nonerarenone165clayfirmmoderatelymoderatelmoderatelformnonenonenonerare20clayfirmmoderatelymoderatelmoderatelformnonenonenonenone20 toclayfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclayfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclayfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclaykeavyfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclaykeavy<!--</td--><td>(cm)texturereadread%%activitychange40 toclayweakmoderatelymoderatelreddishdiffuse10%nonecommonnonegradual70 toioamweakmoderatelymoderatereddishdiffuse25%nonecommonnonegradual70 toioamweakmoderatelymoderatereddishioffuse25%nonecommonnonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual105clayfirmmoderatelymoderategraydiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradual20 toclayfirmmoderatelymoderategraydiffuse<</td><td>(cm)texturereadreadread%%readactivitychangesetting40 toclayweakmoderatelymoderatelymoderatelygraydiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatelymoderatelymoderatelyfifuse25%nonecommonnonegradual165heavyweakmoistmoderatelymoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffusenonenonerarenonegradual165heavykeakfirmmoderatelymoderatedarkdiffusenonenonerarenonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcompace20 toclayfirmmoderatelymoderategraygraynonenonenonegraygradual<tr< td=""></tr<></td></td></td<>	(cm)textureimage for an activityimage for activityimage for activityimage for activity40 toclayweakmoderatelymoderatelreddishdiffuse10%nonecommonnone70 tomediumweakmoderatelymoderatelreddishdiffuse25%nonecommonnone100clayweakmoderatelymoderatelreddishdiffuse25%nonecommonnone165heavyweakmoistmoderatelgraydiffuse20%nonerarenone165clayweakmoistmoderatelgraydiffuse20%nonerarenone165clayfirmmoderatelymoderatelmoderatelformnonenonenonerare20clayfirmmoderatelymoderatelmoderatelformnonenonenonenone20 toclayfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclayfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclayfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclaykeavyfirmmoderatelymoderatelformdiffusenonenonenonenone20 toclaykeavy </td <td>(cm)texturereadread%%activitychange40 toclayweakmoderatelymoderatelreddishdiffuse10%nonecommonnonegradual70 toioamweakmoderatelymoderatereddishdiffuse25%nonecommonnonegradual70 toioamweakmoderatelymoderatereddishioffuse25%nonecommonnonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual105clayfirmmoderatelymoderategraydiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradual20 toclayfirmmoderatelymoderategraydiffuse<</td> <td>(cm)texturereadreadread%%readactivitychangesetting40 toclayweakmoderatelymoderatelymoderatelygraydiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatelymoderatelymoderatelyfifuse25%nonecommonnonegradual165heavyweakmoistmoderatelymoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffusenonenonerarenonegradual165heavykeakfirmmoderatelymoderatedarkdiffusenonenonerarenonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcompace20 toclayfirmmoderatelymoderategraygraynonenonenonegraygradual<tr< td=""></tr<></td>	(cm)texturereadread%%activitychange40 toclayweakmoderatelymoderatelreddishdiffuse10%nonecommonnonegradual70 toioamweakmoderatelymoderatereddishdiffuse25%nonecommonnonegradual70 toioamweakmoderatelymoderatereddishioffuse25%nonecommonnonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual105clayfirmmoderatelymoderategraydiffusenonenonecommonraregradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradual20 toclayfirmmoderatelymoderategraydiffuse<	(cm)texturereadreadread%%readactivitychangesetting40 toclayweakmoderatelymoderatelymoderatelygraydiffuse10%nonecommonnonegradual70 tomediumweakmoderatelymoderatelymoderatelymoderatelyfifuse25%nonecommonnonegradual165heavyweakmoistmoderatelymoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffuse20%nonerarenonegradual165heavyweakmoistmoderategraydiffusenonenonerarenonegradual165heavykeakfirmmoderatelymoderatedarkdiffusenonenonerarenonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonecommonnonegradual20 toclayfirmmoderatelymoderatedarkdiffusenonenonenonegradualcompace20 toclayfirmmoderatelymoderategraygraynonenonenonegraygradual <tr< td=""></tr<>

Site No.	Depth (cm)	Field texture	Consistency	Moisture	Pedality	Colour	Boundaries	Mottles %	Nodules %	Root No.	Biological activity	Texture change	Hard setting	% rock
KH4	0 to 20	clay loam	firm	moderately moist	moderate	reddish brown	diffuse	none	none	common	common	gradual	compacted	none
	20 to 40	clay loam	weak	moderately moist	moderate	brown	diffuse	10% orange	none	abundant	none	gradual		none
	40 to 70	light medium clay	weak	moderately moist	moderate	grayish brown	diffuse	20% orange	none	common	none	gradual		10%
	70 to 100	medium clay	very weak	moderately moist	moderate	olive yellow	diffuse	30% orange	none	common	none	gradual		15%
	135 to 145	heavy clay	very weak	moist	moderate	olive	diffuse	20% orange	none	rare	none	gradual		5%

Boundaries

The sharpness of the boundaries between the soil layers generally indicates the extent of soil development (Isbell, 1996). There is a gradual increase in clay content with depth: clay loam topsoils grade into medium then to heavy clay subsoils.

Mottle %

Mottles can indicate imperfect drainage. Mottles become evident from 40 to 70 cm. The mottles are typically red, suggesting reasonable drainage. Yellow mottles at depth in site KH 1 suggest poorer drainage at this site.

Nodule %

There were few if any nodules evident.

Root number

Root number is typically common to abundant in the surface 40cm and common in the 40-70 cm layers. They were common to rare in the 70-100cm layer and common to absent in the lowest horizon.

There was no evidence of impedance. It is expected that the root frequency will be maintained under permanent pasture. The widespread presence of roots at 70cm suggests adequate physical conditions throughout the normal rooting depth.

Biological activity

Biological activity indicators include the presence of ants, earthworms, millipedes and insect holes in the ground. The activity was rare to absent. The acidic conditions can reduce soil biota numbers.

Liming and planting of long term pasture will increase soil biodiversity, thereby ensuring longevity of the effluent irrigation system.

Rock %

More than 10% rock in the surface horizon can increase risk of machinery damage. None of the soils have rock in the surface 40cm.

Profile HK 2 has a significant volume of rocks below 70cm. This can interfere with water movement through the profile in this area.

Conclusions and management recommendations

The ideal soil for effluent irrigation has sand dominant topsoil overlying moderately structured clay subsoil. The subject site has relatively little sand in it. Therefore the irrigation application rate needs to be relatively light to minimise the risk of runoff.

The moderate pedality in the topsoil is not ideal for effluent irrigation. Organic matter is a key agent for soil structure. Increasing organic matter will increase surface soil stability. Consequently, the establishment of long term is strongly recommended for the area.

Soil colour indicates that the subsoils have imperfect internal drainage. The irrigation rate needs to be relatively light in order to avoid effluent accumulation in the subsoil.

The soils have good root penetration into the subsoil. This suggests that the soils are suitable for effluent irrigation.

Rocks are not an issue.

It is concluded that the soils appear suited to effluent irrigation, however the application rate should be low to avoid waterlogging at depth.

A good cover of vegetation, either as crops or long term pasture, is critical.

The proposed use of subsoil irrigation is ideal for this site as there is clay loam extending 40 to 70cm below the surface.

5.2 Soil chemistry

The soil analysis aims to quantify the soil attributes that influence the ability of the site to sustainably utilise the effluent. Two soil profiles were analysed in detail. Table 5.2 sets out the major soil attributes.

pH (5_{water}:1_{soil})

The pH in the surface 20 cm is ideally between 5.8 and 7 (Slattery, et al, 1999). Profile 1 is too acidic, while profile 4 is in the 'ideal' range. However table 5.2 shows that profile 4 becomes more acidic with depth.

Both profiles would have improved fertility if the pH were higher.

Liming is considered essential.

Salinity

Salinity is expressed as electrical conductivity (EC) in saturated paste equivalent. The units are dS/m. Soils with $EC_{sat paste}$ less than 4 are non-saline (Richards, 1954). Table 5.2 shows that none of the soils are saline. This is an important result as it means that salinity will not limit the site's usefulness for effluent irrigation.

Cation exchange capacity

Cation exchange capacity (CEC) is a measure of the soil's ability to retain nutrients. Ideally the CEC should be at least 5, and preferably greater than 12 cmol(+)/kg (Metson, 1961). Table 5.2 shows that both sites have slightly low CEC.

Attribute	KH1 0-20 cm	KH1 20-40 cm	KH1 40-70 cm	KH4 0-20 cm	KH4 20-40 cm	KH4 40-70 cm
pH (5:1) water: soil	5.37	5.18	5.27	6.05	5.3	5.07
pH (CaCl2)	4.38	4.17	4.35	5.06	4.20	4.01
Salinity (dS/m sat paste)	0.70	0.39	0.32	0.49	0.39	0.41
Exch Ca (cmol+/kg)	2.65	2.66	2.12	5.08	2.42	1.19
Exch Ca as % of CEC	27	22	27	58	23	9
Exch Mg (cmol+/kg)	2.74	2.67	1.34	2.33	2.31	2.15
Exch Mg as % of CEC	28	22	17	27	21	16
Exch K (cmol+/kg)	0.45	0.45	0.61	0.72	0.49	0.43
Exch K as % of CEC	5	4	8	8	5	3
Exch Na (cmol+/kg)	0.43	0.24	0.09	0.30	0.24	0.26
Exch Na as % of CEC	4	2	1	3	2	2
Exch Al (cmol+/kg)	2.13	3.98	2.31	0.13	3.55	6.61
Exch Al as % of CEC	22	33	29	2	33	49
Organic carbon (%)	2.73	2.09	2.86	2.44	0.57	0.45
Total nitrogen (%)	0.17	0.15	0.17	0.14	0.09	0.08
C:N ratio	16.0	14.1	17.0	17.7	6.2	5.7
Available phosphorus (Bray No 1, mg/kg)	5.2	6.5	4.2	3.9	9.0	9.5

Table 5.2. Results of laboratory analysis.

Exchangeable calcium (Ca)

Ideally soils should contain over 10 cmol(+) /kg of exchangeable Ca (Metson, 1961). However soils with 5 to 10 cmol(+) /kg of exchangeable Ca are considered to have moderate concentrations. Thus both soil profiles have low exchangeable Ca as table 5.2 shows.

Adding good quality agricultural lime will remove Ca deficiency and increase production of acid sensitive plants such as clover.

According to Abbott (1989) Ca should make up 65 to 80 % of the sum of cations. Both profiles are deficient in Exch Ca as a % of the CEC. This can result in structural instability.

Addition of lime prior to commencement of irrigation is essential to correct this. The soil should be retested after 3 years.

Exchangeable magnesium (Mg)

Soils should contain at least 1, and up to 3 cmol(+) of exchangeable Mg (Metson, 1961). The data in table 5.2 show that the soils have sufficient Mg.

Dolomite is not required.

According to Abbott (1989) Mg should make up 10 to 15 % of the sum of cations. Both profiles have excessive Exch Mg as a % of the CEC. The ratio of Exch Ca : Exch Mg should be at least 2:1. The Kurrajong soils are typically 1:1. This can result in structural instability. Liming is essential.

Exchangeable potassium (K)

Potassium is an essential nutrient and topsoils should have at least 0.3 cmol(+)/kg. Table 5.2 shows that all soils have an abundant supply of potassium.

Exchangeable sodium (Na)

Exchangeable Na in soil is important because excessive Na can cause structural instability. This is especially critical in the topsoil, where cultivation or heavy rainfall can make the soil susceptible to structural degradation. Generally the potential impact is expressed as Exch Na as a percentage of the sum of cations:

Exch Na*100

Exchangeable (Na+K+Ca+Mg+Al)

Less than 5% exchangeable Na is preferred.

All surface soils have less than 5% Exchangeable Na. The surface soils are therefore non-sodic. Sodicity is also low at depth. Sodicity is not an issue in these soils.

Any soil structural problems, such as crusting on the soil surface, are likely to be due to excessive Mg, over-cultivation and the consequent loss of organic matter. Strategies to increase and maintain organic matter near the soil surface are important for this site.

Exchangeable aluminium (Al)

Exchangeable AI is a potentially toxic ion. Ideally its concentration is below detection. It can stunt growth of susceptible plants such as clovers when more than 5% of the total exchangeable cations are AI. Some of the soil samples have over 4 times more than this percentage.

Agricultural lime addition will reduce this percentage to nontoxic values.

Assuming that the typical Exchangeable AI concentration in the surface 20 cm is 2 cmol+/kg, and the bulk density is 1.2 MT/cubic m, then 1800 kg/ha of lime is needed to minimise exchangeable AI.

It is essential that the lime be incorporated into the soil.

Organic carbon

Soils with less than 1% organic carbon (OC) are likely to have poor structure and low structural stability (Charman and Roper, 2000). Clay loams similar to the Kurrajong topsoils typically should have around 2.5% OC. Table 5.2 shows that on the subject site the soils are near or slightly above this concentration. Ideally the effluent irrigation will be used to produce permanent pasture as this will result in a gradual increase in soil organic carbon concentration.

Total Nitrogen

Soil total nitrogen concentrations less than 0.15% are considered low (Bruce and Rayment (1982). The nitrogen concentrations of the soils are close to this value. Nitrogen addition via effluent irrigation should increase site nutritional status.

C : N ratio

The C : N ratio in typical soils is 10 to 12. The higher values in the current soils suggest that there is accumulation of carbon rich residues. This may be due to the acidic conditions inhibiting bacterial activity. Liming will assist in normalising carbon transformations.

Bray No.1 Available phosphorus

Available phosphorus concentration is a measure of the current adequacy of supply of this nutrient. According to Moody and Bolland (1999), a concentration of 10 to 12 mg/kg in the surface 7.5 cm is sufficient for 90% potential yield of pastures. Table 5.2 shows that the soils have less than 1/2 of this concentration.

The soils would benefit from the phosphorus in the effluent. So effluent irrigation will increase pasture yield, partly at least by increasing phosphorus supply.

P sorption capacity

Table 5.3 shows the P sorption capacity expressed in kg/ha for each horizon. The P sorption capacity is a measure of the soils' ability to retain phosphorus. It is a function of the P sorption capacity expressed as mg/kg of soil and the mass of soil.

The storage capacity in the surface 20 cm is relatively small and the bulk of the storage occurs at depth.

Profile/ depth	P sorption (mg/kg)	P sorption (kg/ha)
KH1 0-20 cm	815	1939
KH1 20-40 cm	824	2059
KH1 40-70 cm	801	3125
KH1 70-100 cm	737	2983
KH1 1.6-1.8 m	624	6552
Tota	al P sorption	16658
KH4 0-20 cm	702	1671
KH4 20-40 cm	809	2023
KH4 40-70 cm	834	3251
KH4 70-100 cm	710	2876
KH4 1.4 m	602	3612
Tota	I P sorption	13432

Table 5.3.	Phosphorus	sorption	capacity	(kg/ha).
				(·····································

The average capacity over the two profiles is 15 t/ha. Assuming the effluent has 10 mg/L of P and 4 ML/year were applied, it would take approximately 375 years before the profiles would become saturated with phosphorus, even if there was no removal of phosphorus in cut or grazed pasture. It is reasonable to conclude that addition of P via effluent will not reduce site sustainability.

Conclusions and recommendations

The soils varied across the site and within individual profiles. However some generalisations can be made:

- The soils are non-saline and non-sodic. They have good supplies of potassium and magnesium.
- The soils are deficient in calcium. Applying and incorporating 1800 kg agricultural lime per ha prior to commencement of effluent irrigation will ensure that productivity is not limited by aluminium toxicity.
- The P sorption capacity of the soil is sufficient for approximately 375 to 500 years at moderate rates of effluent irrigation.
- Phosphorus availability is marginal. Addition of 120 kg/ha of single superphosphate is recommended for pastures at establishment. After this the effluent will supply sufficient phosphorus.

All of these features would make the soils suitable for effluent irrigation.

The key recommendations:

- Install runoff diversion banks upslope of the irrigation area
- Apply and incorporate 1.8 t/ha of agricultural lime
- Install subsurface irrigation
- Apply 120 kg/ha of single superphosphate at pasture establishment
- Plant pasture as soon as possible after the irrigation system is installed and operational.
- The pasture should include a mix of perennial temperate grasses such as perennial ryegrass.
- Facilitate accumulation of soil organic carbon by combinations of long term pasture and reduced tillage cropping.
- Retest the soil for nutrients, pH, organic carbon and stability after 3 years of effluent irrigation.

6 SIZING OF IRRIGATION AREA.

6.1 Net effluent production

Net effluent production was based on AS/NZS 1547 (2000). According to this standard, wastewater flow allowance for dual flush toilets, front loading washing machines, shower flow restrictors and aerated faucets is $110L/EP/day^2$. According to the 2011 census data (Australian Bureau of Statistics for the 2011 census), the average dwelling in the Kurrajong area has 2.7 persons in residence. There will be 41 dwellings at the full development stage. So the design sewage flow is 110*2.7*41= 12.2 cubic m/day.

In practice the flow is likely to be less as many of the dwellings are within a retirement section and the majority of dwellings will have 1 person in them.

Table 3.1, reproduced below as table 6.1, shows the range of design effluent flow rate depending on number of people/dwelling and flow per person.

Table 6.1. Effect of varying number of resident/dwelling and average flow/ resident on total effluent volume in cubic m/day.

Assume 41 dwellings	Persons/dwelling	2.7	3.7	4.7
Flow/person (L/day)	110	12.2	16.7	21.2
Flow/person (L/day)	145	16.1	22.0	27.9

The flow ranged from 12.2 cubic to 27.9 cubic m/day.

6.2 Irrigation area requirement

AS/NZS 1547 table 4.2A4 shows the recommended design irrigation rate (DIR) for irrigation systems over a range of soil textures. This information is combined with the range of estimated flow rates to assess the irrigation area requirement.

Table 6.2. Effect of varying the design flow rate and design irrigation rate (DIR) for different soil textures on irrigation land requirement.

Design flow rate (cubic m/day)	DIR for clay loams: (25mm/week)	DIR for light clay: (20mm/week)	DIR for medium to heavy clay: (15mm/week)
12.2	3416	4270	5693
16.7	4676	5845	7793
21.2	5936	7420	9893
16.1	4508	5635	7513
22	6160	7700	10267
27.9	7812	9765	13020

 2 EP = equivalent person

Table 6.2 shows that even with the higher flow rate/person and over 4 people per retirement unit, less than 1 ha of irrigation would be needed for clay loam and light clay soils.

Table 5.1 shows that the typical soil profile has clay loam to between 40 and 70 cm and light to medium clay to at least 1 metre. This observation indicates that a 1 ha subsurface irrigation, as shown in figure 1.2, would be sufficient even for conservatively estimated design flows.

6.3 Irrigation area available.

The proposed irrigation area lies to the immediate north of the STP. The maximum proposed irrigation area is 10150 msq.

Based on AS/NZS 1547 this area is sufficient.

7 PROPOSED IRRIGATION STRATEGY AND OPTIMISATION OF THE IRRIGATION AREA

7.1 Model inputs

Table 7.1 itemises the inputs used to model the site water balance.

Table 7.1. Components used to model irrigation demand. Daily data over the 42 years between Jan 1970 and October 2012 was used. (Climate data from BoM).

Component	units	Average/y
Effluent production (12.2 cubic m/day)	cubic m	4448
Rainfall	mm	1040
Pan evaporation	mm	1387
Potential evapotranspiration (PET)	mm	1186
Runoff	mm	129
Run-on to irrigation area	mm	zero
Effective root zone	500 mm	
Plant available water in root zone at field capacity	92 mm	

Table 7.2. Effect of effluent irrigation onto 1 ha of land at 1.2 mm/day since 1970.

Water balance component (all mm/y)	No irrigation	With irrigation	Comment
Rainfall infiltration	911	911	
Irrigation	0	438	Daily at 1.2 mm.
Total water available	911	1349	
Actual evapotranspiration ¹	737	1004	
Percolation	175	345	An additional 14mm/month of percolation.

¹ Plant evapotranspiration is assumed to occur at Potential Evapotranspiration (PET) until 46 mm moisture deficit, then a linear fall to zero at permanent wilting point.

Woodlots	&	Wetlands
----------	---	----------

7.2 Model output

In the period 1970-2012, the average annual rainfall was 1040 mm. Of this 911 mm infiltrated the soil while 129 mm ran off the site. Some 175 mm of the infiltrated rainfall moved below the 500 mm deep root zone.

Pan evaporation averaged 1387 mm while potential evapotranspiration (PET) averages 1186 mm. The PET has a strong annual cycle varying from over 6 mm/day in summer to 1 mm/day in winter. Figure 7.1 shows that the rainfall pattern is more varied and can occur throughout the year.

Figure 7.2 shows the effect of applying 1.2mm/day irrigation on the soil water balance.

The main effect of the irrigation is to increase the mid-range soil water content. During prolonged dry periods the irrigation impact is relatively minor. During periods of heavy rainfall, the 1.2 mm/day is small compared with the more than 20mm of rainfall during the same day.

The non-irrigated soil has moisture content in excess of field capacity (92mm in the top 500 mm) in 3% of days whilst the soil receiving 1.2 mm/day irrigation has moisture content exceeding field capacity in 8% of days. The result is increased percolation on the irrigated soil, but this only occurs during heavy rainfall.

It is concluded at the proposed irrigation rate will not increase runoff from the subsurface irrigation area. There will be increased deep percolation, but this will only occur during heavy rainfall events.

8 MANAGEMENT OF CONTAMINANT LOADS

8.1 Nitrogen

The indicative nitrogen concentration in the effluent is <15 mg/L.

Table 8.1 shows the nitrogen loading rate for a range of irrigation areas and nitrogen concentrations.

Table 8.1.	Effect of	f varying	irrigation	area oi	n the	nitrogen	and
phosphorus	loading ra	ates (kg/ha	a/y). The a	ssumed	flow v	vas 12.2 c	ubic
m/day							

Irrigation area	0.8 ha	1 ha	1.2 ha
mm of irrigation/year	454	406	365
Assumed nitrogen concentration in irrigated effluent (mg/L)	15	15	15
Nitrogen application rate (kg N/ha/y)	68	61	55
Assumed phosphorus concentration in irrigated effluent (mg/L)	10	10	10
Phosphorus application rate (kg P/ha/y)	45	41	37

According to NSW Agriculture (1997), a typical 12 dry t/ha crop of perennial pasture will have a nitrogen concentration of 2.4 to 3.5% nitrogen. That is, the crop will accumulate 290 to 420 kg/ha/year of nitrogen, provided the crop is harvested. This is more than 4 times the nitrogen application rate in the effluent as shown in table 8.1.

If the pasture is not forage harvested then the nutrient removal rate is dependent on grazing intensity. Plant growth and nutrient uptake are similar, but a proportion of the ingested nutrients is returned in urine and faeces. As an example, a 500 kg cow grazing low quality pasture will excrete approximately 35 kg/year of nitrogen and 14 kg/year of phosphorus (QDNR, 1998). Depending on its initial weight and calf management it will 'accumulate' over 100 kg of N /year. That is, provided the site is either cut and baled or grazed the potential nitrogen export could exceed the nitrogen being supplied in the effluent.

8.2 Phosphorus

Raw sewage contains 10 to 25 mg/L of phosphorus (DLG, 1998). Precipitation and other processes within the STP results in the effluent usually having less than 10 mg/L of phosphorus.

Assuming 10 mg/L of phosphorus, the phosphorus application rate will range from 37 to 45 kg P/ha/y depending on the irrigation rate. Phosphorus concentration in the pasture will be approximately 0.3%, so 12 dry t /ha of pasture will contain 36 kg of phosphorus. This is virtually the anticipated phosphorus application rate.

Section 5.2 shows that the soil profile contains some 15 t/ha of P sorption capacity. That is, even if there was an excess of phosphorus being applied with the effluent, it will take centuries for the soil's sorption capacity to become saturated. (If there were zero net uptake the site would last 369 years prior to saturation).

8.3 Salinity

Salinity increases by some 0.3 dS/m as water passes through a domestic sewerage system.

The current proposal is to subsurface irrigate the water over 1.0 ha on lands that are over 40m from any drainage line. The soils are not saline. Finally the proposed irrigation rate of 400 mm/year is adequate but not excessive, so there will be minimal risk of waterlogging or salinisation.

Salinity is not an issue at this site.

8.4 Conclusions

The anticipated nitrogen application rate via effluent irrigation is 2 to 4 times less than the potential uptake by the pasture. Consequently nitrogen leaching to below the root zone is unlikely to be significant.

Phosphorus application rate is similar to the anticipated accumulation rate by plants. This, plus a large sorption capacity in the soil profile, means that the system can be considered sustainable: Profile saturation with P is unlikely for at least 3.5 centuries.

9 REFERENCES

Abbott, T. S. (1989). Soil testing service- methods and interpretation. NSW Agriculture, Rydalmere NSW.

Asano, T. (1998). Wastewater Reclamation and Reuse. Technomic Publ. Co. Landcaster PA.

Bannerman, S., and Hazelton, P. A., (1989). Soil Landscapes of the 100,000 Penrith Sheet. NSW SCS. Sydney, NSW

Bruce, R. C., and Rayment, G. E. (1982). Analytical methods and interpretations used by the Agricultural Chemistry Branch for Soil and Land Use surveys. QDPI Bull QB8 (2004). Indooroopilly, Qld.

Charman, P. E. V. and Roper, M. M. (2000). Soil Organic Matter. IN: Soils-their properties and management. 3 rd edition. P. E. V. Charman and B. W. Murphy Editors. pp 276-285. OUP Melbourne.

DEC (2004). Environmental Guidelines: Use of Effluent by Irrigation. Dept Env. and Con. Sydney, NSW.

Decker, R. S., and Dunnigan, L. P. (1977). Development and Use of Soil Conservation Service dispersion test. ASTM STP 623.

Department of Water and Energy (2007). Interim NSW Guidelines for Management of Private Recycled Water Schemes. DWE, Sydney, NSW.

EPA (1995). Draft Environmental guidelines for Industry-The Utilisation of Treated Effluent by Irrigation (EPA, unpublished).

Holford, I., Doyle, A., D. (1992). Yield Responses and Nitrogen Fertilizer Requirements of Wheat in Relation to Soil Nitrate levels at various Depths. Soil Testing for Phosphorus. AJSR 30: 683-694

Isbell, R. F. (1996). The Australian Soil Classification. CSIRO publ. Collingwood. Vic.

Kovac, M., Lawrie, J., and Murphy, B. W. (1990). Soil Landscapes of the 250,000 Bathurst Sheet. NSW SCS. Sydney, NSW

McKenzie, N., Coughlan, K. and Cresswell, H. (2002). Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO, Collingwood. Vic.

Metson, A. J. (1961). Methods of chemical analysis for soil survey samples. Soil bureau Bull No. 12. NZ DSIR.

Moody, P. W., and Bolland, M. D. A. (1999). Phosphorus. IN Soil Analysis. K. I. Peverill , L. A. Sparrow and D. J. Reuter. Editors. Chapter 12. CSIRO Collingwood, Vic.

NRMMC/ EPHC/ AHMC (2006). Australian Guidelines for Water Recycling: Managing health and Environmental Risk (Phase 1). NWQMS No. 21. Natural Resource Management Ministerial Council/ Environment Protection and Heritage Council/ Australian Health Ministers Conference. Canberra ACT.

NCST. (2009). Australian Soil and Land Survey Field Handbook. The National Committee on Soil and Terrain Third Edition. CSIRO, Collingwood. Vic.

NSW Agric. (1997). The NSW Feedlot Manual. NSW Agric Orange, NSW.

Woodlots & Wetlands

QDNR (1998). MEDLI Technical Manual. T. Gardner and R. Davis Eds. Indooroopilly, Qld.

Richards, L. A. (Editor). Diagnosis and improvement of saline and alkaline soils. USDA Handbook No. 60. Washington, DC.

Slattery, W. J., Conyers, M. K., and Aitken, R. L. (1999). Soil pH, Aluminium, Manganese and Lime Requirement. IN Soil Analysis. K. I. Peverill , L. A. Sparrow and D. J. Reuter. Editors. Chapter 7. CSIRO Collingwood, Vic.

Williams, J. (1983). Soil Hydrology. IN: Soils: An Australian Viewpoint. Div. of Soils CSIRO, Academic Press, Melbourne.

Appendix C – Incident report

Reported by: Aquacell Pty Ltd. 1/10b Production Jamisontown NSW		aquacell & water recycling solutions
Network Operator Retail Suppliers Lic	rs Licence Number: cence Number:	
Date of Incident:		
Time of Incident:		
Reported By:	Position:	Date:
Reported To:	Position:	Date:
Plant location		
Affected Area		
	no, undetermined at this time (circle app	propriate)
Description of the Impact of the	Incident: (have customers been affected	? How many?)
Details of the threat or potential	threat to water quality, public health or p	public safety:
Name of Person/Persons Involve	d in Incident:	
		Aquacell Pty Ltd Unit 1/10b Production Place, Penrith NSW 2750, Australia PO Box 7091, Leura NSW 2780, Australia

	INCIDENT F	REPORT for	RECYCLED	WATER TI	REATMENT PLANTS
--	-------------------	-------------------	----------	----------	-----------------

Contact information and name(s) of Person(s) notified of the Incident by Aquacell:

Sequence of Events Immediately Prior to Incident:

Actions Taken Immediately After Incident:

Reason(s) for the Incident occurring / possible cause(s) of the Incident:

aquacell

INCIDENT REPORT for RECYCLED WATER TREATMENT PLANTS

Status of the Treatment Plant:

Actions Taken to rectify the incident and prevent reoccurrence:

Anticipated date of return to normal services:

aquacell

<u>INCII</u>	DENT REPORT for RE	CYCLED WATER 1	IREATMENT PLANTS	
For Water Infrastructure rela	ited Incidents:			
Were water samples taken fo	or analysis? Y	'es 🗌 No	o 🗌	
If yes, give the details of the o	contact person and a	ddress of the NA	TA laboratory tasked with the	analysis:
Expected date of results:				
Sampling Protocol:				
Date and time of sampling: Water quality characteristic	S:			
Sample location(s):				
Water source: Intended use / purpose of w Disinfection regime: Residual free chlorine (if kno Turbidity (if known):	own):			
Compliance Values				
	Paramter	Units	Compliance Value	
-	E. Coli	Cfu/100mL		
	Turbidity	NTU (95%ile)		
-	pH Free Chlorine	units mg/L		
	Coliphages	pfu/100mL		
-	Clostridia	pfu/100mL		
Additional Sampling required Yes 🗌 No [?			
Office Use Only				
Reported to insurance brok	er? Yes 🗌	No 🗌	Date:	
Reported by Office Manage	r/HR Manager:	Name	Signati	Ire
IE020-1 Revision 1, 6 December 2011 Infrastructure Incident Report Templa	ate	-		

INCIDENT REPORT for RECYCLED WATER TREATMENT PLANTS

Attach sketch/photograph of scene (if relevant)

Statement of Environmental Effects

Community Title Subdivision of Seniors Living Housing – 20 lots

No. 19 Old Bells Line of Road Kurrajong Lots 9 & 10 DP1167912 (Proposed Lot 301)

Submitted to Hawkesbury City Council

January 2012

© MONTGOMERY PLANNING SOLUTIONS REPRODUCTION OF THIS DOCUMENT OR ANY PART THEREOF IS NOT PERMITTED WITHOUT PRIOR WRITTEN PERMISSION. PH 02 4572 2042

CONTENTS

1.	Intr	Introduction 1				
2.	Bad	ckgro	bund	. 1		
3.	Site	e anc	I Surroundings	. 2		
4.	Pro	pose	ed Development	. 3		
	4.1	Design Objectives				
	4.2	Dev	elopment Detail	. 3		
5.	See	ction	79C Matters for Consideration	. 5		
	5.1	Env	ironmental Planning Instruments	. 5		
	5.1	.1	State Environmental Planning Policy (Housing for Seniors or People with a Disability 2004	/		
	5.1		State Environmental Planning Policy No. 5 – Housing for Older People or People wir a Disability			
	5.1	.3	Sydney Regional Environmental Plan No. 20 – Hawkesbury Nepean River (No. 2 – 1997)	5		
	5.1	.2	Hawkesbury Local Environmental Plan 1989			
	5.2	Dra	ft Environmental Planning Instruments	. 8		
	5.3	Plar	nning Agreements	. 8		
	5.4	Dev	elopment Control Plans	. 8		
	5.5	Mat	ters prescribed by the Regulations	. 9		
	5.6	Like	ly Impacts of the Proposed Development	. 9		
	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	.2 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. Suit	Context and Setting S Access, Transport & Traffic S Public Domain S Other Land Resources S Water S Soils S Flora and Fauna S Waste S Energy S Noise and Vibration 10 Natural Hazards 10 Safety, Security & Crime Prevention 10 Social Impact in the Locality 10 Cumulative Impacts 10 ability of Site for the Proposed Development 10	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
	5.8	5.8 The Public Interest				
6	Co	nclus	ion	11		

This Statement of Environmental Effects was prepared by Robert Montgomery, Principal, Montgomery Planning Solutions.

AL

Robert Montgomery BApSc (Environmental Planning) MPIA CPP

Date: January 2012 Reference: 11/38

Montgomery Planning Solutions PO Box 49 Kurmond NSW 2757

Tel:4572 2042Fax:4572 2044Mobile:0407 717 612

Email: robert@montgomeryplanning.com.au

1. Introduction

Montgomery Planning Solutions has been engaged by the owner of the subject land to prepare this statement of environmental effects for a community title subdivision of the approved seniors living development located on the north-east corner of Old Bells Line of Road Vincents Road Kurrajong.

The land is 8.19 hectares in area and is zoned Mixed Agriculture under the provisions of Hawkesbury Local Environmental Plan 1989 (HLEP 1989). The proposal is to create 20 allotments including 18 dwellings lots, one community title lot and a large vacant lot.

This statement of environmental effects concludes that the proposed subdivision is compliant with all relevant statutory provisions and is recommended for approval.

2. Background

Consent was issued on 15 June 199 (M844/98) for the "construction of aged/disability housing" on the land. The consent approved 18 self-care dwellings and a community building.

The consent was subsequently modified by Council on three occasions, with the last modification being issued on 7 September 2010. The modifications have been in relation to design and layout of buildings within the development. Figure 1 below is the current approved site plan (except for caretaker's residence, which is not approved as per condition 1(b)).

Figure 1: Approved Plan 7 September 2010

3. Site and Surroundings

The land is described as proposed Lot 301 in a re-subdivision of Lots 9 and 10 DP1167912 (No. 19) Old Bells Line of Road Kurrajong.

The land is 8.19 hectares in area, with a frontage to Vincents Road of some 110 metres and a frontage to Old Bells Line of Road of some 195 metres. The land currently comprises a farm shed, two dams and scattered trees and is currently used for animal grazing. The proposed dwelling allotments are located generally around the outside of the circular road which has been constructed in accordance with development consent No. M844/98.

Land adjoining to the north comprises four rural lifestyle allotments and a church and cemetery. Land adjoining to the east and south comprises rural living allotments. Land on the southern side of Vincents Road consists of a number of rural living allotments, a larger rural property and an undeveloped parcel of residential land. Land on the western side of Old Bells Line of Road comprises a Sydney Water reservoir, a retirement village and residential allotments.

Figure 1 below is a satellite image showing the land and surrounds.

Figure 2: Locality. Source LPMA SIX Viewer

4. Proposed Development

4.1 Design Objectives

The objectives of the proposed subdivision are:

- 1. To define individual allotments for each of the 18 approved seniors living dwellings with sufficient space for dwelling construction and private space;
- 2. To create an allotment containing the proposed community building and effluent disposal areas; and
- 3. To create a large vacant allotment for rural or other land use.

4.2 Development Detail

Development consent is sought for a community title subdivision as follows:

Lot No.	Area	Proposed Use	
1	2.3 Ha	Community Building & Effluent Disposal	
2	513m2	Dwelling Lot	
3	444m2	Dwelling Lot	
4	532m2	Dwelling Lot	
5	543m2	Dwelling Lot	
6	495m2	Dwelling Lot	
7	542m2	Dwelling Lot	
8	483m2	Dwelling Lot	
9	512m2	Dwelling Lot	
10	555m2	Dwelling Lot	
11	840m2	Dwelling Lot	
12	642m2	Dwelling Lot	
13	672m2	Dwelling Lot	
14	973m2	Dwelling Lot	
15	516m2	Dwelling Lot	
16	536m2	Dwelling Lot	
17	536m2	Dwelling Lot	
18	838m2	Dwelling Lot	
19	786m2	Dwelling Lot	
20	4.77ha	Vacant except for existing shed	

5. Section 79C Matters for Consideration

5.1 Environmental Planning Instruments

5.1.1 State Environmental Planning Policy (Housing for Seniors or People with a Disability 2004

The Policy applies to the subject land in that the land adjoins land zoned primarily for urban purposes as defined and permits dwelling houses and hospitals with consent.

The development was approved under the previous State Environmental Planning Policy No. 5 – Housing for Older People or People with a Disability. Therefore in accordance with the transitional provisions of Clause 6 (1)(c), SEPP 5 continues to apply to the development.

5.1.2 State Environmental Planning Policy No. 5 – Housing for Older People or People with a Disability

Clause 18 is relevant to the proposal. Clause 18 of SEPP 5 states:

18 Subdivision

Land on which development has been carried out under this Policy may be subdivided with the consent of the consent authority.

Although no dwellings have been constructed to date, the internal road has been constructed in accordance with the consent. Therefore, in my submission, the development has technically been "carried out" on the land. In any case, construction is about to commence on Stage 1, comprising community centre and a number of dwellings.

It is submitted that Council can issue development consent for the subdivision with a suitable condition to ensure that the construction of Stage 1 has commenced prior to registration of final plan of subdivision.

5.1.3 Sydney Regional Environmental Plan No. 20 – Hawkesbury Nepean River (No. 2 – 1997)

In accordance with clause 120 of Schedule 6 to the Environmental Planning and Assessment Act 1979, this REP is deemed to be a State Environmental Planning Policy.

The aim of SREP 20 is to protect the environment of the Hawkesbury – Nepean River system by ensuring that the impacts of future land uses are considered in a regional context.

The subject land is within the area covered by SREP 20. There are a number of matters for consideration and statutory controls which apply to development within various scenic corridors and defined areas.

There are no specific development controls applying to the proposed development.

5.1.2 Hawkesbury Local Environmental Plan 1989

The land is zoned Mixed Agriculture under the provisions of Hawkesbury Local Environmental Plan 1989 (HLEP 1989). The proposed subdivision relies on the provisions of Clause 18 of State Environmental Planning Policy No. 5 for permissibility.

HLEP 1989 contains a number of general and specific objectives, which are examined in respect of the proposed development as follows.

Aims & Objectives of HLEP 1989

The aims and objectives are listed below, with comments relevant to the proposed development.

(a) to provide the mechanism for the management, orderly and economic development and conservation of land within the City of Hawkesbury;

The proposal does represent the orderly and economic development of land.

(b) to provide appropriate land in area, location and quality for living, working and recreational activities and agricultural production;

The proposal satisfies this objective.

(c) to protect attractive landscapes and preserve places of natural beauty, including wetlands and waterways;

The proposal satisfies this objective.

(d) to conserve and enhance buildings, structures and sites of recognised significance which are part of the heritage of the City of Hawkesbury for future generations; and

There are no listed heritage items on the land.

(e) to provide opportunities for the provision of secure, appropriate and affordable housing in a variety of types and tenures for all income groups within the City.

The proposed development satisfies this objective. In particular, the subdivision of the development will add to the variety of tenure and availability of seniors living housing.

Specific Clauses

The following clauses of HLEP 1989 are relevant and applicable.

Clause 9A – Zone Objectives

Clause 9A provides that Council must be of the opinion that the proposed development is consistent with the relevant objectives of the zone, before granting consent.

Specific Objectives of the Mixed Agriculture zone

The objectives are listed below, with comments relevant to the proposed development.

(a) to encourage existing sustainable agricultural activities,

This objective is not relevant to the proposal.

(b) to ensure that development does not create or contribute to rural land use conflicts,

It is considered that the proposed development will not create or contribute to land use conflict. The land is surrounded by rural residential development.

(c) to encourage agricultural activities that do not rely on highly fertile land,

No agriculture is proposed.

(d) to prevent fragmentation of agricultural land,

The seniors living dwellings have been approved by Council. The subdivision will not create any additional fragmentation.

(e) to ensure that agricultural activities occur in a manner:

- (i) that does not have a significant adverse effect on water catchments, including surface and groundwater quality and flows, land surface conditions and important ecosystems such as streams and wetlands, and
- (ii) that satisfies best practice guidelines and best management practices.

No agriculture is proposed.

(f) to promote the conservation and enhancement of local native vegetation, including the habitat of threatened species, populations and ecological communities by encouraging development to occur in areas already cleared of vegetation,

The proposal will have no impact in this regard.

(g) to ensure that development retains or enhances existing landscape values that include a distinctive agricultural component,

The existing landscape values will be retained. There is no perceptible change.

(h) to prevent the establishment of traffic generating development along main and arterial roads,

Pursuant to State Environmental Planning policy (Infrastructure) 2007, the development is not traffic generating.

(i) to control outdoor advertising so that it does not disfigure the rural landscape,

No advertising is proposed.

(j) to ensure that development does not create unreasonable economic demands for the provision or extension of public amenities or services.

Montgomery Planning Solutions

The proposal will not create any additional demands for the provision or extension of public amenities or public services. The dwellings are already approved, and the proposed subdivision does not change the demand for services.

Clause 18 – Provision of water, sewerage etc. services

Clause 18 requires Council to be satisfied that arrangements have been made for the provision of water, sewerage, drainage and electricity services.

Reticulated water is connected to the land. Effluent will be treated and disposed of on-site as approved in consent No. MA0844/98. Electricity and phone services are available and will be reticulated to each lot.

Clause 37A – Development on land identified on the Acid Sulfate Soils Planning Map

The land is shown as Class 5 on the Acid Sulfate Soils Planning Map. There are no specific requirements for the proposed subdivision.

5.2 Draft Environmental Planning Instruments

Draft Hawkesbury Local Environmental Plan 2011applies. The subject land is proposed to be zoned <u>"RU1" Primary Production</u>.

The objectives of the RU1 zone are similar to those of the Mixed Agriculture zone under Hawkesbury LEP 1989.

The draft plan has no bearing on the permissibility of the proposed subdivision as Clause 18 of SEPP 5 provides statutory permissibility.

5.3 Planning Agreements

No planning agreement has been entered into or is offered under section 93F of the Environmentally Planning and Assessment Act, 1979 in respect of the land.

5.4 Development Control Plans

The Hawkesbury Development Control Plan applies to the subject land. The following chapters are relevant to the proposed development.

Part A: 3 – Notification

In accordance with the notification table in Clause 3.10, the proposed development is required to be notified to adjoining landowners/occupiers.

Part C: 7 – Effluent disposal

An on-site wastewater management plant will be installed in accordance with condition 7(b) of development consent No M844/98.

Part D: 3 – Subdivision

It is submitted that this section is not relevant to the proposal as the subdivision is simply applying cadastral boundaries to the development which has already been approved by Council.

5.5 Matters prescribed by the Regulations

There are no prescribed matters relevant to the proposed development.

5.6 Likely Impacts of the Proposed Development

5.6.1 Context and Setting

The site is located within a transition area between residential and rural land uses. The existing lot configuration sits in context with both the surrounding rural-residential allotments and nearby residential area.

5.6.2 Access, Transport & Traffic

There is no change proposed to the access arrangements to the site as approved by development consent M844/98. The access, transport and traffic arrangements were considered as part of the approved development application and found to be acceptable.

It is submitted that no further analysis is required.

5.6.3 Public Domain

The proposed subdivision has no impact in terms of the public domain.

5.6.4 Other Land Resources

This development has no impact in terms of other land resources.

5.6.5 Water

There will be no impacts on water.

5.6.6 Soils

It is considered that there is no impact on soils.

5.6.7 Flora and Fauna

There is no impact on flora and fauna. The proposal simply creates cadastral boundaries around the dwellings and facilities already approved by Council.

5.6.8 Waste

There will be no waste associated with the proposed subdivision.

5.6.9 Energy

There is no impact in terms of energy.

5.6.10 Noise and Vibration

There are no noise or vibration impacts associated with the proposal.

5.6.11 Natural Hazards

Under the Hawkesbury City Council's Bushfire Management Risk Plan for the site, the land is identified as bushfire prone. Attached is a Bushfire Threat Evaluation Report prepared by Control Line Consulting which demonstrates that the hazard will be managed in an acceptable way.

5.6.12 Technological Hazards

There are no technological hazards.

5.6.13 Safety, Security & Crime Prevention

It is considered that the proposal has no impact in terms of safety, security and crime prevention.

5.6.14 Social Impact in the Locality

It is considered that the proposal will have a positive social impact in that it will allow seniors to purchase a retirement dwelling with title to the dwelling and the land upon which it is constructed. This provides long term financial security that cannot be obtained with all retirement villages.

5.6.15 Economic Impact in the Locality

The proposed development represents an appropriate economic use of the land.

5.6.16 Cumulative Impacts

There are no cumulative impacts. The development is compliant with the relevant requirements of State Environmental Planning Policy No. 5.

5.7 Suitability of Site for the Proposed Development

The site is considered to be suitable for the proposal.

The proposed development represents *"the promotion and coordination of the orderly and economic use and development of land"* as stated in the Objects of the Environmental Planning & Assessment Act, 1979.

5.8 The Public Interest

Approval of this development is considered to be in the public interest. There is no negative impact.

6 Conclusion

This statement of environmental effects has been prepared for a community title subdivision of the approved seniors living development located on the north-east corner of Old Bells Line of Road Vincents Road Kurrajong. The proposal is to create 20 allotments including 18 dwellings lots, one community title lot and a large vacant lot.

It is concluded that the subdivision is compliant with all relevant statutory provisions and is recommended for approval.