

ADW JOHNSON PTY LIMITED

ABN 62 129 445 398

Central Coast 5 Pioneer Avenue Tuggerah NSW 2259 02 4305 4300

Hunter Region 7/335 Hillsborough Road Warners Bay NSW 2282 02 4978 5100

hunter@adwjohnson.com.au

Sydney Level 35 One International Towers 100 Barangaroo Avenue Sydney NSW 2000 02 8046 7411 sydney@adwjohnson.com.au

coast@adwjohnson.com.au

Design Report

Surplus Recycled Water Transfer Scheme to **Gwandalan STP**

Property:

Recycled Water Treatment Plant Site 46 Rockpool Road, Catherine Hill Bay Water

> **Applicant:** Coastal Hamlets Pty Limited

> > Date: September 2019

Engineering

Project Management • Town Planning • Engineering • Surveying Visualisation • Economic Analysis • Social Impact • Urban Planning

www.adwjohnson.com.au

Document Control Sheet

Issue No.	Amendment	Date	Prepared By	Checked By
А	Draft	15 th July 2019	RJ	СВ
В	Final	19 th September 2019	RJ	СВ

Limitations Statement

This report has been prepared in accordance with and for the purposes outlined in the scope of services agreed between ADW Johnson Pty Ltd and the Client. It has been prepared based on the information supplied by the Client, as well as investigation undertaken by ADW Johnson and the sub-consultants engaged by the Client for the project.

Unless otherwise specified in this report, information and advice received from external parties during the course of this project was not independently verified. However, any such information was, in our opinion, deemed to be current and relevant prior to its use. Whilst all reasonable skill, diligence and care have been taken to provide accurate information and appropriate recommendations, it is not warranted or guaranteed and no responsibility or liability for any information, opinion or commentary contained herein or for any consequences of its use will be accepted by ADW Johnson or by any person involved in the preparation of this assessment and report.

This document is solely for the use of the authorised recipient. It is not to be used or copied (either in whole or in part) for any other purpose other than that for which it has been prepared. ADW Johnson accepts no responsibility to any third party who may use or rely on this document or the information contained herein.

The Client should be aware that this report does not guarantee the approval of any application by any Council, Government agency or any other regulatory authority.

Executive Summary

ADW Johnson Pty. Limited (ADW Johnson) has been commissioned by Coastal Hamlets Pty Ltd to design and obtain approvals for the construction of a surplus recycled water transfer scheme pipeline from the Catherine Hill Bay (CHB) Recycled Water Treatment Plant (RWTP), operated by Catherine Hill Bay Water Utility Pty Ltd (CHBWU), to Gwandalan Sewage Treatment Plant (STP), operated by Central Coast Council. The engagement covers the provision of civil engineering, survey and planning services for the construction of a surplus recycled water transfer main.

The RWTP as part of *The Beaches* subdivision at CHB will generate excess recycled water. Under the current approvals, disposal is via onsite irrigation. Since approval, an arrangement to discharge to Central Coast Council's Gwandalan STP via private transfer main and pumping station has been secured, removing the need for onsite irrigation.

The proposed surplus recycled water transfer main (SRWTM) route includes construction within NSW National Parks and Wildlife Services (NPWS) land, a crossing of the Roads and Maritime Services (RMS) road on the Pacific Highway and construction along Kanangra Drive and Summerland Road, Gwandalan. The proposed pipeline section along Kanangra Drive and Summerland Road requires a Development Application (DA) under Part 4 of the Environmental Planning & Assessment Act 1979 (EP&A Act) with Central Coast Council as the Determining Authority. The part within NPWS land, including the RMS crossing, requires a Review of Environmental Factors (REF) under Part 5 of the EP&A Act. CHBWU will also seek overall approval of decommissioning the existing reverse osmosis (RO) ponds and transfer main connecting the existing sewer service from Montefiore Street to the transfer main within NPWS land under Part 5 of the EP&A Act from the Independent Pricing and Regulatory Tribunal (IPART).

The design of the surplus recycled water transfer pipeline has been completed as two separate components to facilitate the split approval process.

Following an iterative design process, it was deemed a single solution was the only practicable solution available following correspondence and requirements posed by the various controlling authorities including Solo Water, RMS and Central Coast Council.

The proposed design of the pumping station and surplus recycled water transfer pipeline includes the following components:

- Re-use of the existing irrigation water pump station with inclusion of standby 'hot spare';
- Re-use of the existing suction and discharge lines;
- Supply and installation of DN140 PE100 DN16 pipe from chainage 0.0 m to 4,677 m;
- DN100 Bermad 700 Series Model 730 Pressure Sustaining/Relief Valve at chainage 4,677 m;
- Supply and installation of DN125 PE PN16 pipe from chainage 4,677 m to 7,959 m; and
- Connection to the Gwandalan Sewage Treatment Plant inlet works chamber.

The proposed design provides a solution able to meet hydraulic requirements while minimising capital and operational costs and meeting all Authority requirements specified as part of the project.

Table of Contents

EXEC	JTIVE SUMMARY	II
1.0		5
2.0	SITE DESCRIPTION	
2.1 2.2	APPLICABLE LOCAL GOVERNMENT AREAS NETWORK OPERATOR	
3.0	PIPE ALIGNMENT	8
3.1 3.2 3.3	SEGMENT 1 – CHB RWTP TO PACIFIC HIGHWAY CROSSING SEGMENT 2 – PACIFIC HIGHWAY CROSSING TO KANANGRA DRIVE SEGMENT 3 – KANANGRA DRIVE TO GWANDALAN STP	10
4.0	CONSULTATION	12
4.1 4.2 4.3 4.4	ROADS & MARTIME SERVICES CENTRAL COAST COUNCIL NSW NATIONAL PARKS & WILDLIFE SERVICES SOLO WATER	12 13 13
5.0	HYDRAULIC DESIGN	14
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	PROCESS OPERATION DESIGN LOADINGS CONTROL VALVE PIPE SELECTION OPERATING PRESSURES OPERATING VELOCITIES FATIGUE ANALYSIS TRANSIENT ANALYSIS	14 16 19 20 20 21
6.0	PIPELINE DESIGN	23
5.1 5.2 5.3 5.4	PIPE MATERIAL SELECTION FIELD LOCATION OF SERVICES DESIGN COVER TO PIPELINE TRENCHLESS CROSSING	23 24
6.0	PUMP STATION DESIGN	25
6.1 6.2 6.3 6.4	LOCALITY PUMPING STATION PUMPS AND PIPEWORK SELECTION PUMPING STATION CONTROL PREFERRED PUMP SUPPLIER	26 28
7.0	ELECTRICAL DESIGN	29
8.0	SAFETY IN DESIGN	30

- FINAL.docx

APPENDIX A

CONSULTATION CORRESPONDENCE

APPENDIX B

PRESSURE SUSTAINING VALVE CORRESPONDENCE

APPENDIX C

WATHAM MODELLING RESULTS

APPENDIX D

PUMP INFORMATION

APPENDIX E

DRAFT FUNCTIONAL SPECIFICATION

APPENDIX F

SAFETY IN DESIGN REPORT

LIST OF FIGURES

Figure 1 – Site Location.

- Figure 2 Proposed SRWTM Pipe Alignment.
- Figure 3 System Curve.
- Figure 4 Surface Profile and HGL.
- Figure 5 MPCR v No. cycles for a range of pressure classes of PE80 and PE100 pipe.
- Figure 6 Permeate Reservoir and Irrigation Water Suction Line.
- Figure 7 Irrigation Pump Station.

Figure 8 – System v Pump Curve.

LIST OF TABLES

- Table 1 Development Scenario ET's
- Table 2 Design Basis Requirements
- Table 3 Design Wastewater Loadings
- Table 4 Ultimate Development Scenario and Pumping Duration
- Table 5 Pipe Velocities
- Table 6 Transient Pressure Results (WATHAM)
- Table 7 Minimum Cover Requirements
- Table 8 Pump Details

1.0 Introduction

ADW Johnson Pty. Limited (ADW Johnson) has been commissioned by Coastal Hamlets Pty Ltd to design and obtain approvals for the construction of a surplus recycled water transfer scheme pipeline from the Catherine Hill Bay (CHB) Recycled Water Treatment Plant (RWTP), operated by Solo Water Pty Ltd (Solo Water), to Gwandalan Sewage Treatment Plant (STP), operated by Central Coast Council. ADW Johnson are to provide civil engineering, survey and planning services for the preparation of design plans and a Development Application (DA) for the section along Kanangra Drive to obtain development consent from Central Coast Council for the construction of a surplus recycled water transfer main.

The proposed surplus recycled water transfer main (SRWTM) route includes construction within NSW National Parks and Wildlife Services (NPWS) land, a crossing of the Roads and Maritime Services (RMS) road on the Pacific Highway and construction along Kanangra Drive and Summerland Road, Gwandalan. The proposed pipeline section along Kanangra Drive and Summerland Road requires a Development Application (DA) under Part 4 of the Environmental Planning & Assessment Act 1979 (EP&A Act) with Central Coast Council as the Determining Authority. The part within NPWS land, including the RMS crossing, requires a Review of Environmental Factors (REF) under Part 5 of the EP&A Act. CHBWU will also seek overall approval of decommissioning the existing reverse osmosis (RO) ponds and transfer main connecting the existing sewer service from Montefiore Street to the transfer main within NPWS land under Part 5 of the EP&A Act from the Independent Pricing and Regulatory Tribunal (IPART).

The design of the surplus recycled water transfer pipeline has been completed as two separate components to facilitate the split approval process.

The SRWTM has been further split into three distinct physical segments:

- Segment 1: CHB RWTP to Pacific Highway;
- Segment 2: Pacific Highway to Kanangra Drive; and
- Segment 3: Kanangra Drive to Gwandalan STP.

This report will discuss all three segments for the purposes of the design of the SRWTM.

2.0 Site Description

The proposed SRWTM alignment runs from the CHB RWTP located off Montefiore Street, Catherine Hill Bay to Gwandalan STP located off Summerland Road, Gwandalan.

An existing bulk potable water main (BPWM) approximately 6.5 km in length delivers drinking water from Central Coast Council's area of operations at Kanangra Drive Reservoir via a new transfer pumping station to the development site known as *The Beaches - Catherine Hill Bay.* The BPWM is DN200 polyethylene (PE) for the majority of the alignment with a section of DN150 stainless steel pipe approximately 120 m in length for an above ground crossing of the Pacific Highway through an existing services culvert. The proposed SRWTM is to generally follow the alignment of the existing BPWM.

The site location showing the existing CHB RWTP, Gwandalan STP, Gwandalan Water Supply Reservoir and BPWM alignment is shown in **Figure 1**.

Figure 1 – Site Location.

2.1 APPLICABLE LOCAL GOVERNMENT AREAS

The pipe alignment and site footprints are located within both Lake Macquarie City Council (LMCC) Local Government Area (LGA) and Central Coast Council (CCC) LGA, as shown in **Figure 1**. The engagement focusses on approvals within CCC LGA, as the components of the scheme and associated approvals required within LMCC LGA are considered to be constructed and approved already.

Design Report

Surplus Recycled Water Transfer Scheme to Gwandalan STP Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

2.2 NETWORK OPERATOR

Under Section 10 of the Water Industry Competition Act (WICA) 2006 NSW, a network operator's licence has been granted to Catherine Hill Bay Water Utility Pty Ltd (CHBWU) authorising the licensee and any authorised persons to construct, maintain and operate the water industry infrastructure specified in the licence. Solo Water is an authorised person under the WICA licence.

Activities authorised under the WICA licence include non-potable water, drinking water and sewerage services. This engagement is primarily focused with the provision of nonpotable water services.

The CHBWU network operator's license is to be updated to include the SRWTM.

3.0 Pipe Alignment

The proposed SRWTM alignment runs from the CHB RWTP located off Montefiore Street, Catherine Hill Bay to Gwandalan STP located off Summerland Road, Gwandalan. The pipe alignment was selected from the preferred options taking into consideration the following:

- Constructability;
- Existing services;
- Make use of currently installed underground pipeline;
- Consultation with authorities and affected stakeholders;
- Impacts on the public;
- Environmental and planning considerations;
- Restoration requirements;
- Geotechnical and sub-surface conditions;
- Design constraints;
- Methodology for connecting to existing infrastructure;
- Cost consideration; and
- Work, health and safety.

The pipe alignment and alternative routes are discussed below in further details as three distinct sections.

3.1 SEGMENT 1 – CHB RWTP TO PACIFIC HIGHWAY CROSSING

Segment 1 provided two route options from the CHB RWTP to the Pacific Highway. The two sub-segments are discussed in further detail below. Both proposed route options include connection to the existing DN125 PE irrigation water main that currently transfers surplus irrigation (permeate) water from the CHB RWTP to *The Beaches Water Sound* stage release on Lot 1116 DP 1219395. It is proposed to connect to the existing DN125 PE irrigation water main at the roundabout intersection of Montefiore Street and Sunnyspot Boulevard. All suction and discharge pipework to the Irrigation Water Pump Station (IWPS) is proposed to be re-used. For the purposes of hydraulic design following confirmation with Solo Water, the following pipeline section and details proposed for re-use includes:

- Suction pipework DN200 PE100 PN16 13m long from 1 ML MBR Permeate Tank 1 to the IWPS;
- Discharge pipework section 1 DN125 PE100 PN16 82m long from the IWPS to boundary of the CHB RWTP (NOTE: this section of pipe is shown as DN200 PE100 PN16 on the As Constructed Catherine Hill Bay Waste Water Treatment Plant Civil Engineering Design Drawings SW-56-WWTP-WAE-1030 but is confirmed to be DN125 by Solo Water); and
- Discharge pipework section 2 DN125 PE100 PN16 approx. 430m long from the boundary of the CHB RWTP to the proposed connection point at the intersection of Montefiore Street and Sunnyspot Boulevard.

3.1.1 Segment 1 Route Option A – BPWM Alignment

Segment 1 route option A is approximately 1.8 km in length and follows the alignment of the existing BPWM which traverses the following lots:

- CHB RWTP Lot 1120 DP 1219395;
- Crossing of Montefiore Street (Lake Macquarie City Council);
- Along Montefiore Street road reserve (Lake Macquarie City Council);
- Lot 105 DP 1129872;
- Lot 204 DP 1164883; and
- Crossing of Pacific Highway (RMS).

The Segment 1 route option A alignment follows the existing BPWM alignment throughout greenfield areas, adjacent *The Beaches Water Sound* stage release on Lot 1116 DP 1219395. The key design constraints exist near the crossing of the Pacific Highway on the embankment with maximum grade of approximately 40% alongside the existing BPWM DN150 stainless steel pipe section.

The preferred method of crossing the Pacific Highway is via trenchless methods adhering to Roads & Maritime Services (RMS) requirements including provision within a DN375 grout-filled encasing pipe beneath the road pavement. Space and access constraints existing at entry/exit pit sites requires for the trenchless method of construction.

An alternative method considered as part of the design included laying the pipe in the existing services culvert which currently houses the DN150 stainless steel BPWM. It was found that the existing services culvert has limited capacity to additionally house the SRWTM without removing and reinstating the BPWM. The existing steep embankment on either side of the Pacific Highway crossing introduces constructability issues regarding plant access and operation in order to utilise the services culvert. After consultation with the civil contractor that installed the BPWM in the service culvert previously, it was deemed this alternative for laying dual pipes in the existing services culvert as more expensive and hence not preferred.

Given that the alignment is primarily within NPWS lands and follows the same alignment as the BPWM, an easement will be established to cover both the BPWM and the SRWTM throughout this segment.

3.1.2 Segment 1 Route Option B – Montefiore Street Alignment

Segment 1 route option B is approximately 1.4 km in length and includes following the Montefiore Street road reserve alignment towards the traffic light intersection at the Pacific Highway and traverses the following lots:

- CHB RWTP Lot 1120 DP 1219395;
- Crossing of Montefiore Street (Lake Macquarie City Council);
- Along Montefiore Street road reserve (Lake Macquarie City Council);
- Along Pacific Highway road reserve (RMS); and
- Crossing of Pacific Highway (RMS).

The Segment 1 route option B alignment follows the road reserve along Montefiore Street and the Pacific Highway. Preliminary services enquiries show minimal to no existing services being located on the northern side of the Montefiore Street road reserve, being the favourable alignment option over the southern side.

This route option requires the installation of the SRWTM within the RMS road reserve parallel to the Pacific Highway before crossing beneath in the same vicinity where the existing BPWM crosses. Crossing at this location ensures both mains are covered by a common easement and it is the most logical location to cross under the Pacific Highway.

9

This section alignment includes an embankment with multiple stormwater culvert crossings and an existing optic fibre service line.

As per Segment 1 route option A, the preferred method of crossing the Pacific Highway is via trenchless methods requiring a specialist trenchless subcontractor to install with analogous constraints.

In consultation with the construction contractor who laid the BPWM, it was deemed that the option Segment 1 route option B was not preferred due to location of existing services constraints, presence of rock, extensive landscaping re-instatement cost, and general constructability issues.

Segment 1 route option A is therefore the preferred alignment for Segment 1.

3.2 SEGMENT 2 – PACIFIC HIGHWAY CROSSING TO KANANGRA DRIVE

Segment 2 is approximately 2.85 km in length and includes following the alignment of the existing BPWM which traverses the following lots:

- Lot 204 DP 1164883;
- Lot 12 DP 1180296;
- Crosses existing Crown Land road reserve; and
- Lot 12 DP 1180296.

Segment 2 alignment requires following the existing BPWM through NPWS lands. It is considered for purposes of the planning approval and design process that no alternative alignment options are considered. It is understood that an easement will be established to cover both the BPWM and the SRWTM throughout this segment.

3.3 SEGMENT 3 – KANANGRA DRIVE TO GWANDALAN STP

Segment 3 is approximately 3.3 km in length and follows Kanangra Drive road reserve to Gwandalan STP via the round-a-bout intersection of Kanangra Drive and Summerland Road, Gwandalan. The alignment of Segment 3 includes:

- Along Kanangra Drive road reserve (Central Coast Council);
- Crossing Kanangra Drive (Central Coast Council);
- Along Summerland Road road reserve (Central Cost Council); and
- Gwandalan STP Lot 52 DP 785458.

Segment 3 alignment follows the northern road edge line along Kanangra Drive. Minimal space is available between the existing road edge line and tree line. There is potential to move to the other side of Kanangra, although competing underground services exist including a critical asbestos cement (AC) watermain and overhead power transmission lines.

The proposed SRWTM alignment is shown in Figure 2.

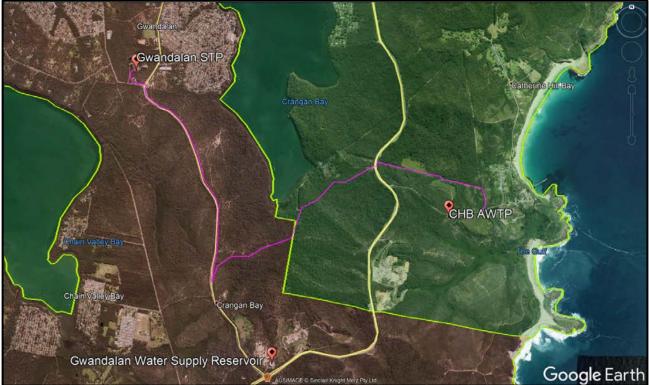


Figure 2 – Proposed SRWTM Pipe Alignment.

4.0 Consultation

ADW Johnson has consulted with multiple controlling authorities as part of the design engagement including RMS, Central Coast Council, NPWS and Solo Water. The following outlines the consultation had between all noteworthy parties.

4.1 ROADS & MARTIME SERVICES

RMS were consulted in regards to the crossing of the Pacific Highway and had no objection, in principal, to the proposed SRWTM. The following requirements were stipulated for crossing the Pacific Highway:

- A Section 138 Application will be required to be made with Issued For Construction (IFC) drawings, prior to the works being undertaken;
- The main is to have a minimum of 1.5 m cover to all existing or proposed surfaces in the State Highway corridor;
- Dependent on crossing methodology, the bore will be required to be encased and grouted, or grouted; and
- The bore will be required to be maintenance free construction in accordance with Hunter Water requirements for maintenance free installations.

Subsequent designs provided to RMS on the 6 September 2019 were provided with RMS S138 approval.

Correspondence had with RMS together with the S138 approval document are included in **Appendix A**.

4.2 CENTRAL COAST COUNCIL

Central Coast Council have been consulted with due to the SRWTM discharging into Gwandalan STP. An approval process exists for the construction and operation of the SRWTM. The following requirements were stipulated for the design of the SRWTM:

- The applicant would be responsible to design and construct the new pumping station and rising main from the CHB RWTP site to a new inlet at the Gwandalan STP (no stubs available);
- A magnetic flowmeter with telemetry connection would also be installed in a pit where the rising main crossing the STP site boundary along with an isolation valve upstream of the flowmeter;
- Council will undertake any required modifications to the inlet works to provide downstream capacity;
- Establishment of a set of operational rules that describes shutdown protocols, notification requirements and maintenance responsibilities;
- The rising main would be a Solo Water asset up to the boundary of the STP property boundary and treated as a private rising main by Council operational personnel downstream of that point;
- Asset ownership would transfer from Solo Water to Council at the property boundary with Council retaining ownership of the magnetic flowmeter and associated infrastructure;
- Include control valve to assist operation of the rising main noting the different high points, which would be the primary responsibility of Solo Water; and

No objection to the transfer main operating as a variable grade sewer (VGS) into the Gwandalan STP considering many of their existing sewer rising mains are VGS.

Correspondence had with Council is included in Appendix A.

4.3 **NSW NATIONAL PARKS & WILDLIFE SERVICES**

NPWS were consulted with in regards to the application to install the CHB SRWTM through Lake Macquarie and Munmorah State Conservation Areas. The following comments and required amendments to the REF include:

- Amendments to the drawings specified in Attachment 9 sheet 16 and 17;
- An addendum to the REF specifying the proposed fence location and fencing design specification; and
- Reference to gate installation on page 22, 24 and 46 are not required.

Letter provided by NPWS is included in Appendix A.

4.4 **SOLO WATER**

Solo Water is an authorised person under the network operator licence to construct, maintain and operate the CHB RWTP. The following requirements were stipulated for the design of the SRWTM:

- Preferred pump supplier is Grundfos;
- Preferred valve supplier is Bermad Valves;
- Solo Water are to be involved in and approve the selection of all mechanical and • electrical items including pumps, equipment and instrumentation;
- A Functional Description will need to be documented as part of the design that • defines the monitoring and control requirements so they can be implemented by Solo Water's Electrical and SCADA team;
- The assets are to be designed and constructed to the latest versions of the Hunter Water Edition of the Water Supply Associated of Australia (WSAA) Codes to be consistent across the project site;
- The design will need to define and prepare any specific detailed drawings or standard drawings; and
- Solo Water specified approval to be issued by Solo Water for all design deliverables.

Correspondence had with Solo Water is include in Appendix A.

5.0 Hydraulic Design

5.1 PROCESS OPERATION

The following information has been extracted and summarised from the *Integrated Water Management Plan (IWMP)* prepared by Solo Water for the Independent Pricing and Regulatory Tribunal (IPART) to undertake assessment and approval of the CHBWU integrated water scheme under Part 5 of the EP&A Act.

All lots in the CHBWU scheme are serviced by a pressure sewer collection system. The pressure sewer units (PSU) are owned by CHBWU and service up to 4 lots. All PSU include duty/standby grinder pumps which macerate the sanitary wastewater and pump it directly into the pressure sewer network. The pressure sewer network discharges to CHBWU Wastewater Treatment Plant (WWTP).

All wastewater is treated at the WWTP via a membrane bioreactor (MBR) and is a modified activated sludge process with a number of treatment zones including primary treatment, inlet tank, anaerobic tank, anoxic tank, aeration tank and submerged membrane tank.

The treated effluent is then treated further at the RWTP which produces recycled water for supply to customers part of the CHBWU scheme. Surplus recycled water accumulates in the MBR Permeate Tank.

5.2 DESIGN LOADINGS

In consultation with CCC and Solo Water, it was agreed that the transfer pipeline be sized for ultimate development to avoid the need for major civil infrastructure upgrades in the future. This design basis adopted design criteria for the BPWM. The different development scenarios and corresponding equivalent tenements (ET) are outlined in **Table 1**.

Table 1 – Development Scenario ET's

Development Scenario	ET
The Beaches Development	540
CHB Village	60
Middle Camp Village	50
TOTAL (Ultimate Development Scenario)	650

The design loadings are based on the requirements shown in **Table 2**, with reference to Sydney water's version of WSA 02-2002 Sewerage Code of Australia, CHBWU IWMP REV D July 2015 prepared by Solo Water and the design criteria adopted for the BPWM.

Table 2 - Design Basis Requirements

Design Basis Requirements	Value Adopted	Unit Adopted
Occupancy Rate for Equivalent Population (EP)	3	EP/ET
Per Capita Wastewater Generation Rate ¹	150	L/EP/d
Average Dry Weather Flow (ADWF)	450	L/ET/d
Inflow and Infiltration (I&I) ²	10%	%
Average Day Demand (ADD) for recycled water ¹	350	L/ET/d
Maximum pump duration	12	Hours
Ultimate Design Criteria ³	650	ET

¹WSA 02-2002-2.2 Sewerage Code of Australia (Sydney Water Edition 1 Version 4)

²Reference: CHBWU IWMP REV D July 2015

³Ultimate design criteria adopted for the bulk potable water main

The design wastewater load calculations are shown in Table 3.

Table 3 – Design Wastewater Loadings

Development Scenario	ET	Design Wastewater Loadings kL/d		
		ADWF	 & 	Total
The Beaches Development	540	243	24	267
CHB village	60	27	3	30
Middle Camp Village	50	23	2	25
TOTAL (Ultimate Design Criteria)	650	293	29	322

The design basis conservatively assumes a worst-case scenario of 100% recycled water produced by the plant requiring transfer via the scheme, that is, no recycled water usage back to dwellings or buffering in the MBR Permeate Tanks.

Initial consultation with Council limited the pump duration to 8 hours which has now been increased to a maximum pump duration of 12 hours for the design basis requirements. Adopting a longer maximum pump duration allows for efficiencies in pipe size and associated civil infrastructure. Assessment of flowrates based on the two development scenarios with the adopted pumping durations are shown in **Table 4**.

Table 4 – Ultimate Development Scenario and Pumping Duration

Scenario	Surplus Discharge	Pump Duration	Flowrate
	(kL/d)	(hrs)	(L/s)
Ultimate Design Criteria	322	12	7.45

In order to size infrastructure, adopting a maximum pump duration of 12 hours corresponds to a pump flowrate of 7.45 L/s, for the ultimate development scenario.

It is recommended to adopt a flowrate of 7.45 L/s for the design basis for the ultimate development scenario. This flowrate conservatively assumes there is no recycled water usage and no tank buffering, hence it is seen that this duration of pumping would occur infrequently.

The adopted ultimate design criteria are worse-case to be conservative.

Design Report

Surplus Recycled Water Transfer Scheme to Gwandalan STP Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

5.3 CONTROL VALVE

The system includes pumping over an intermediate high point, being the Pacific Highway over to the discharge location, being Gwandalan STP. The discharge level of the Gwandalan STP inlet works is lower in elevation than the pumping location. Inclusion of a control valve is seen as best practice to ensure the pipeline operates efficiently under full pressure flow and does not allow excessive amounts of air into the pipeline when the pumps shutoff.

In consultation with Central Coast Council and Solo Water, preference is for the valve to be a pressure sustaining valve (PSV), not requiring power and hydraulically operated to negate the need for Programmable Logic Control (PLC) and telemetry requirements. The general control philosophy of the PSV is:

- Pump On upstream pressure on the valve will increase generating a differential pressure beyond the valve set point pressure allowing the valve to open;
- Pump Off static head in the pipeline generated from the intermediate high point creates a differential pressure below the valve set point pressure forcing the valve to close; and
- Valve Closed differential pressure across the valve is less than the valve set point pressure where the upstream pressure is governed by the static head in the pipeline generated from the intermediate high point and the downstream pressure is zero.

The PSV ensures the pipe is generally kept full during pump start up and the main does not expel large quantities of air form the system avoiding air locks and operational inefficiencies.

The location of the PSV has been determined in consultation with Solo Water who will have primary responsibility for the operation and maintenance of the PSV. In an effort to optimise the hydraulic functionality and accessibility, the proposed location of the PSV is at the starting point chainage along Kanangra Drive. This is to ensure the set point of the PSV does not induce an unacceptably high pressurised discharge at Gwandalan STP Inlet Works and to ensure the valve is accessible, operable and not overly susceptible to any risk of damage, bushfire threat and vandalism.

Correspondence has been made with Solo Water's preferred valve supplier Bermad Valves. The preferred valve is a Bermad 700 Series DN100 PSV. See correspondence with Bermad Valves in **Appendix B**.

Solo Water will operate and maintain the PSV as a private asset on the private transfer main as per Central Coast Council's stated requirements i.e. operation and maintenance pertains to asset ownership.

5.4 PIPE SELECTION

Pipe selection analysis was undertaken for a range of pipe sizes which considered the following design requirements and assumptions:

- Pipeline to be sized for ultimate development;
- PE100 PN16 pipe;
- Maximum delivery line velocities to prevent undue noise, water hammer, scouring and excessive head losses;

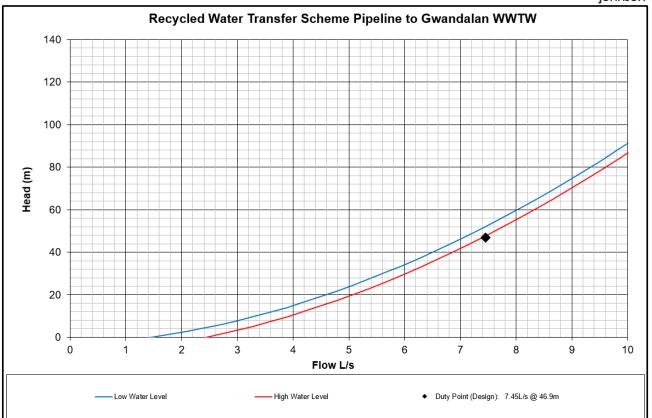
Design Report Surplus Recycled Water Transfer Scheme to Gwandalan STP

Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

- Colebrook-White pipe roughness value of k = 0.015 with inclusion of minor fittings losses in accordance with AS 2200;
- Sensitivity has been provided for pipe roughness value of k = 0.3 with the exclusion of minor fitting losses;
- Minor fittings losses in accordance with AS 2200 and correspondence with valve suppliers;
- Acceptable Total Dynamic Head (TDH);
- Ability to pump over the intermediate high point (Pacific Highway); and
- Capital and Operation and Maintenance (O&M) cost optimization.

Preliminary iterations of the pipe sizing were undertaken, however following approval and acceptance of the location of the PSV, as discussed in **Section 5.3**, the preferred pipe size and selection allows for one practicable option.

The recommended arrangement proposes locating the PSV at the starting point chainage of Kanangra Drive with DN140 HDPE PN16 pipe installed to the PSV location followed by DN125 HDPE PN16 pipe installed downstream of the PSV location to the Gwandalan STP.


This configuration is preferred in order to limit the head loss through the pipe section upstream of the PSV to minimise pump head and associated operational costs. The preferred pipe size for the section upstream of the PSV is DN140 HDPE pipe due to constructability and cost.

Downstream of the PSV location, it is proposed to run DN125 HDPE pipe in an effort to increase head losses so to limit the differential pressure at the discharge point, governed by the PSV pressure set point, being the level of the intermediate high point (Pacific Highway). The proposed DN125 HDPE pipe is the smallest allowable pipe size that is hydraulically suitable to pump to the discharge point.

In adopting the recommended dual pipe size of DN125 and DN140 PE100 PN16, the system curve for the alignment is demonstrated in **Figure 3**. It can be seen that the duty point for the design is 7.45 L/s @ 46.9 m head (High Water Level), noting adoption of a roughness coefficient of 0.015 and inclusion of minor fitting losses.

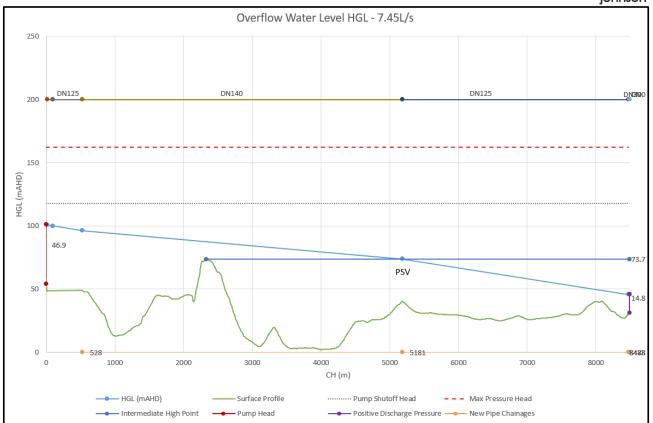


Figure 3 – System Curve.

The hydraulic grade line (HGL) for the adopted duty point and Total Dynamic Head (TDH) for the design is shown in **Figure 4**.

18

Figure 4 – Surface Profile and HGL.

5.5 OPERATING PRESSURES

The following hydraulic design parameters are noted:

- Maximum pressure experienced in the pipeline is ~750 kPa under steady state operating conditions; and
- Maximum pressure experienced in the pipeline is ~1,150 kPa at pump shutoff head.

The following design and test pressures have been adopted.

Delivery Pipework

٠	1.25 x Normal Working Pressures (1.25 x 750 kPa) Shutoff Pressure Maximum pressure including surge (Section 5.8)	937.5 kPa 1,150 kPa 1,107 kPa
Su	uction Pipework	

•	1.25 x Normal Working Pressure (1.25 x 50 kPa)	6.25 kPa
٠	Maximum suction pressure (MBR Tank)	5 kPa

A System test Pressure (STP) of 1,150 kPa has been adopted for the surplus recycled water transfer main delivery pipework.

Design Report

Surplus Recycled Water Transfer Scheme to Gwandalan STP

Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

A minimum STP of 1,000 kPa has been adopted for the surplus recycled water transfer main suction pipework. It is understood that this pipework has already undergone acceptance testing for the specified STP and pass quality assurance criteria.

5.6 OPERATING VELOCITIES

Velocities in the suction and delivery pipework are shown below in Table 5.

Table 5 – Pipe Velocities

Duty	Pipework Velocities (m/s)				
Duty Flow	Suction Pipework		Delivery Pipework		
(L/s)	DN200 PE100	DN150 PVC-U	DN125 PE100	DN140 PE100	DN300 DICL
(L/S)	PN16 Suction	PN12 Station	PN16 Delivery	PN16 Delivery	PN20 Delivery
7.45	0.36	0.47	0.92	0.73	0.09

WSA 03-2011 specifies for non-drinking water with turbidity \geq 2 NTU, the minimum velocity shall be at least 0.8 m/s at least once per day.

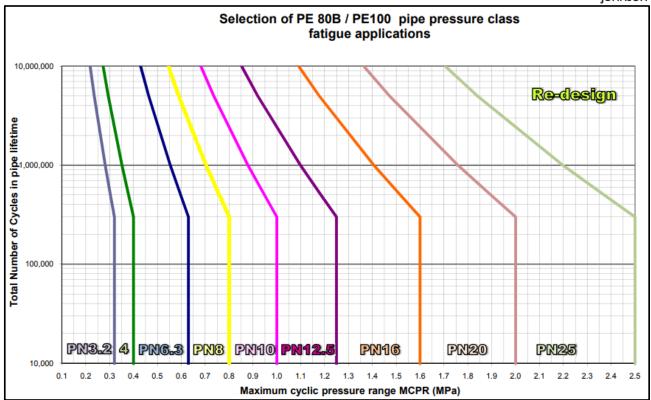
For the majority, velocities are acceptable, however the re-used sections of DN200 pipework shows low velocity along with the proposed section of DN300 (noting common pumping will deliver higher velocities). The velocities are considered acceptable for the application over the short lengths and due to the surplus recycled water having target turbidity \leq 2 NTU.

5.7 FATIGUE ANALYSIS

Fatigue analysis has been undertaken as the proposed pipeline material is polyethylene PE100, a thermoplastic pipe material, which has been shown to undergo cyclic de-rating or fatigue over time when subject to a large number of repetitive events.

Adopting a 100-year design life and 1 pump start and stop (i.e. 2 cycles per day) for transferring the surplus recycled water, translates to a total number of cycles during the design lifetime of 73,000 which equates to a fatigue cycle factor, *f*, of 1.00. the Maximum Cyclic Pressure Range (MCPR) can then be calculated using the following equation:

MCPR = PN / 10 x f = 1.6 MPa


It can be seen in **Figure 5**, that up to a total number of cycles during the design lifetime of 300,000 (i.e. 8 cycles per day), the fatigue cycle factor is 1.00. Therefore, for the given estimated total number of cycles, the proposed PE100 pipeline will not undergo any cyclic de-rating or fatigue and the pressure class will remain at 16 bar or 1,600 kPa during the 100-year design life.

It should be noted that if the pipeline were to be operated beyond the design life specified, or if the pipeline were to be operated differently that intended as per this design basis and cycles exceed approx. 8 per day, then this fatigue analysis should be revisited.

Design Report

Surplus Recycled Water Transfer Scheme to Gwandalan STP Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

Figure 5 – MPCR v No. cycles for a range of pressure classes of PE80 and PE100 pipe.

5.8 TRANSIENT ANALYSIS

The proposed pipeline was modelled using the modelling software package "WATHAM" to simulate a transient (water-hammer) analysis of the pipeline for surge action scenarios. The transient analysis incorporated air relief valves at all high points and polyethylene pipe which has a low pipe celerity in comparison to other common pipeline materials.

Results of the transient analysis simulation for the following scenarios were modelled:

- 1. Normal pump start and stop with a 10 second ramp up to full speed;
- 2. Discharge isolation valve closed;
- 3. Power and pump failure; and
- 4. Air Valve failure.

Results of the transient analysis simulation for the event scenarios specified above and corresponding pressure results can be seen in **Table 6**. WATHAM results of the transient analysis can be found in **Appendix C**.

Modelled Scenario	Minimum Internal Pressure (m)	Maximum Internal Pressure (m)	Maximum Variation in Pressure (m)
1. Normal Pump Start	-0.36	78.16	48.40
2. Discharge Valve	0.45	110.73	82.56
3. Power Failure	-0.42	78.17	49.15
4. Air Valve Failure	-10.37	78.18	48.41

Table 6 - Transient Pressure Results (WATHAM)

Design Report Surplus Recycled Water Transfer Scheme to Gwandalan STP

Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

From the results it can be seen that column separation does not occur under standard operation but could occur if the air valves fail to operate.

The results of the water hammer analysis were used in the pipe material selection. the maximum cyclic head variation can be seen to be 82.56m under model scenario 2, therefore PE100 PN16 SDR11 with a maximum allowable cyclic head of 160m (based on a maximum of 8 start/stops per day) is suitable for the anticipated cyclic head variation.

PE100 PN16 SDR11 was also checked for pipe critical collapse pressure, based on a maximum overburden depth of 1.85m in conjunction with vacuum pressure, the pipe material was deemed to have a factor of safety of approximately 4.6. Therefore, the selected pipe material is suitable and will be nominated as part of the design.

6.0 Pipeline Design

The pipeline is designed in accordance with Hunter Water's Edition Version 2 of the WSAA Code 03-2011-3.1. Design requirements imposed by authorities have also been incorporated into the design of the pipeline as specified under Section 4.0.

5.1 PIPE MATERIAL SELECTION

Two options were considered for the pipe material being polyethylene (PE) and oriented polyvinyl chloride (PVC-O) with ductile iron (DI) fittings. The recommended pipe material is PE100 pipe for ease of construction throughout alignment.

In order to comply with Solo Water's requirements for cross connections, the SRWM is to be purple stripe high-density polyethylene (HDPE).

The selected pipe material for the trenched sections is to be DN140 PE100 with a pressure rating (PN) 16 bar using electrofusion welded joints as this is the preferred method of pipe joining for ease of installation and cost-effectiveness.

5.2 FIELD LOCATION OF SERVICES

A Dial-Before-You-Dig (DBYD) was conducted during the design to identify the anticipated services along the pipeline route and to determine the proposed pipeline alignment. Following the pipeline alignment selection, above ground location of services was carried out following by potholing of critical crossing locations to determine more accurate location of underground infrastructure along the pipeline alignment.

An existing DN125 polyethylene (PE) PN16 irrigation water main exists from the site of the CHB RWTP to areas for development to the north of Montefiore Street. As can be seen within the attached plans, the existing DN125 irrigation water main has been installed predominately on the northern side of Montefiore Street continuing north east within the footpath allocation. The main is currently not being used. It is proposed to connect to this main near the intersection of Montefiore Street and Sunnyspot Boulevard. Connection into the existing main will require some limited excavation works within Montefiore Street for approximately 10 m through to Lot 105 DP 1129872.

The design alignment for the proposed SRWTM then generally follows the alignment of the existing fire access track and potable bulk water main. This alignment was chosen to avoid the need for any further vegetation clearing and will allow both mains to be located within a proposed dedicated easement. No other services are found to existing throughout this section of the alignment.

The Pacific Highway crossing includes existing services such as a high-pressure gas main and telecommunications that need to be considered when crossing via trenchless methods.

Following the Pacific Highway crossing, the design alignment then continues to follow the alignment of the existing potable bulk water main through NPWS land until the alignment reaches Kanangra Drive, Gwandalan. No other services are found to existing throughout this section of the alignment.

Design Report

Surplus Recycled Water Transfer Scheme to Gwandalan STP Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

The alignment along the eastern side of Kanangra Drive does not include any existing services, with exception for a section where overhead power lines exist for approx. 150 m.

The alignment then reaches the roundabout intersection of Kanangra Drive and Summerland Road where other services are found including Central Coast Council asbestos cement (AC) DN450 watermain, telecommunications, overhead and below ground power.

The alignment through Central Coast Council's Gwandalan STP site will need to consider all private services and any process pipework. Two existing asbestos cement rising mains connect into the inlet works. Consideration of the existing rising mains and, in particular, existing concrete thrust blocks, not shown on WAC drawings, require consideration when installing the proposed SRWTM.

5.3 DESIGN COVER TO PIPELINE

For the purposes of the design, minimum cover requirements were adopted in accordance with Hunter Water's Edition of the WSAA 03-2011-3.1, as shown in **Table 7**.

Table 7 – Minimum Cover Requirements

Location	Minimum Cover (mm)	
Private residential property and public land not subject to	600 – new developments	
vehicular loading	450 – existing developments	
Private residential property subject to vehicular loading	750	
Footways, nature strips and industrial property subject to	900	
vehicular loadings and sealed local road pavements	900	
Unsealed road carriageways	1200	
Future road, rail and tram pavements	1200	
RMS State Road crossing (to crown of encasing pipe)	1500	

5.4 TRENCHLESS CROSSING

Requirements imposed by RMS include trenchless construction of the pipeline crossing of the Pacific Highway. The proposed trenchless method is directional drill. It is proposed to run the DN140 PE100 line through a grout filled DN375 PE100 encasing pipe with minimum 1.5m cover to the encasing pipe for the full pavement width. The encasing pipe must extend 1m past the pavement extent and be constructed as "maintenance free".

There is a second road crossing proposed at Kanangra Drive. A similar method of trenchless crossing is preferred, only the subject pipe will be DN125 PE100 and the encasing pipe will be DN300 PE100 at that point on the alignment.

Trenchless methods other than directional drilling proposed by the Contractor will need prior approval.

6.0 Pump Station Design

6.1 LOCALITY

In consultation with Solo Water, the preferred site for the location of the Surplus Recycled Water Pump Station (SRWPS) is in the existing treatment plant building, located on Lot 1120 DP 1219395. An existing irrigation water pump station (WPS) is located on the proposed footprint which currently draws water on the inlet side of the pump through a DN200 PE100 line from the existing 2 x 1 ML MBR Permeate Reservoir (**Figure 6**).

Figure 6 – Permeate Reservoir and Irrigation Water Suction Line.

The existing irrigation WPS is located adjacent the existing potable water WPS and recycled water WPS, both located inside the existing treatment plant building on the concrete floor slab (Figure 7).

Design Report

Surplus Recycled Water Transfer Scheme to Gwandalan STP Ref: N:\11688(13)\Design\Documents\Design Report\Designers Report - Surplus Recycled Water Transfer Scheme - FINAL.docx

Figure 7 – Irrigation Pump Station.

Security will not be an issue for pumps housed in the existing treatment plant building.

6.2 PUMPING STATION PUMPS AND PIPEWORK SELECTION

Solo Water expressed a preference for re-use of the existing irrigation WPS, pending hydraulic suitability. Subsequently, Solo Water expressed a preference for using a single pump supplier throughout the CHBWU WWTP and RWTP, being Grundfos pumps. This provides efficiencies in operation, maintenance and spare parts at the plant.

In correspondence with Grundfos pump suppliers, the following details of the existing pump were provided as shown in **Table 8**.

Table 8 - Pump Details

Pump	Value	Units
Manufacturer	Grundfos	
	Vertical, multistage	
Pump Type	centrifugal pump	
Model No.	CRIE 20-3	
Rated Motor Power	5.5	kW
Rated Motor Speed	3495	rpm
Frequency	50	Hz
Rated Voltage	3 x 380-500	V
Motor Efficiency	89.2	%
Net Weight	92	kg
Enclosure Class	IP55	
Duty Flow	7.5	L/s
Duty Head	47.4	m
Shutoff Head	63.5	m

It is proposed to re-use the existing irrigation WPS located on site and shown in **Figure 7**. Pump product information is provided in **Appendix D**.

Recycled Water Transfer Scheme Pipeline to Gwandalan WWTW 140 120 100 80 Head (m) 60 40 20 0 0 1 2 3 4 5 6 7 8 9 10 Flow L/s Low Water Level High Water Level Duty Point (Actual) 7.36L/s @ 46.4m Duty Point (Design): 7.45L/s @ 46.9m 1 x GRUNDFOS CRIE 20-3 Non-Standard, 5.5kW, mm, 3530rpm @ 50Hz

The proposed system curve and existing irrigation WPS pump curve which is a Grundfos CRIE 20-3 Non-Standard 5.5 kW 3530 rpm @ 50 Hz fixed speed pump is shown in **Figure 8**.

It can be seen that the duty point (actual) of the intersection of the system and pump curves is 0.09 L/s less than the duty point (design). The difference is considered negligible, therefore it is recommended to re-use the existing irrigation WPS. This avoids the need for any unnecessary re-configuration requirements at the existing pump location and potential electrical upgrades. Solo Water have indicated satisfaction with inclusion of a 'hot spare' instead of a permanent duty-standby pumping arrangement for system redundancy. The risk associated with a single pump failure and need for changing the pumps over can be managed with the on-site storage.

6.3 PUMPING STATION CONTROL

The control philosophy of the pump station is discussed further within the draft Functional Description found in **Appendix E**. Solo Water will finalise the Functional Description during the construction and implementation stage. Telemetry control to the SRWPS will be routed through the RWTP with all physical infrastructure currently installed. PLC and SCADA code updates to be to Solo Water PLC and SCADA standards.

6.4 PREFERRED PUMP SUPPLIER

Solo Water stated preference for Grundfos pumps to be used for pump selection. It is proposed to re-use the existing irrigation WPS, which is a Grundfos pump and supplying a Grundfos 'hot spare' to be stored permanently on-site in the case of a pump failure.

7.0 Electrical Design

Due to the proposed option to re-use the existing irrigation pump as the SRWPS pump, no electrical work is required.

Mechanical and electrical infrastructure is existing and only PLC and SCADA changes are required for the change in operation of the pump.

Solo Water have preference to use their preferred electrical subcontractor for any required PLC and SCADA works, including design and installation.

Solo Water will prepare the Functional Specification along with implementing the necessary PLC and SCADA code changes following project approval.

8.0 Safety in Design

The purpose of a Safety in Design Report is to describe any project specific safety issues that have been identified during the design.

This report is prepared specifically to discharge duties of the designer to provide a safety report under the following legislation:

- The Work Health and Safety Act 2011 Section 22 and/or; and
- Work Health and Safety Regulation 2011 regulation 295.

ADW Johnson has prepared a Safety in Design Report which is shown in Appendix F.

Significant risks identified that could not be designed out include:

- 1. Working on or in close proximity to existing roads;
- 2. Excavation near gas main;
- 3. Failure of existing pipelines/services during connection;
- 4. Open pits and deep excavations; and
- 5. Steep gradients and poor ground conditions.

The Civil Contractor engaged to complete the installation of the proposed SRWTM should consider the items within the Safety in Design Report attached and include mitigation measures during construction works to mitigate the inherent risks during construction.

CONSULTATION CORRESPONDENCE

Cameron Black

From:	Cameron Black		
Sent:	Wednesday, 18 September 2019 10:03 AM		
То:	Cameron Black		
Subject:	FW: RMS s138 Consent fA7003771 RE: HW10 Pacific Hwy, Catherine Hill Bay FW:		
	Proposed Recycled Water Transfer Main		
Attachments:	RMS_s138Consent_RecycledWater_06September2019 _ADWJohnson_PacificHighway_CATHERINE HILL BAY.pdf		

From: Hunter Road Asset <<u>Hunter_Road_Asset@rms.nsw.gov.au</u>>
Sent: Friday, 6 September 2019 11:59 AM
To: Rhys Johns <<u>rhysj@adwjohnson.com.au</u>>
Subject: RMS s138 Consent fA7003771 RE: HW10 Pacific Hwy, Catherine Hill Bay FW: Proposed Recycled Water
Transfer Main

Rhys

Please find attached RMS Roads Act Section 138 Consent for proposed recycled water main under Pacific Highway, Catherine Hill Bay. Regards,

Mark James Asset Engineer Regional Infrastructure Services T 02 4908 7739 www.rms.nsw.gov.au

Every journey matters

Roads and Maritime Services Level 8 266 King St Newcastle NSW 2300

From: Rhys Johns [mailto:rhysj@adwjohnson.com.au]
Sent: Friday, 6 September 2019 8:18 AM
To: Hunter Road Asset
Subject: RE: HW10 Pacific Hwy, Catherine Hill Bay FW: Proposed Recycled Water Transfer Main

REF No. CR2019/002148

To whom it may concern,

Please see attached the 'Issue For Construction' drawing sheets showing the details of the Pacific Highway crossing for the proposed Surplus Recycled Water Transfer Main from Catherine Hill Bay to Gwandalan Sewer Treatment Plant.

Please provide Section 138 Approval with any relevant conditions which need to be included into the detailed design and tender documentation.

Do not hesitate to contact me should you require any further information or wish to discuss further.

Regards,

THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

A please don't print this e-mail unless you really need to.

From: Hunter Road Asset <<u>Hunter_Road_Asset@rms.nsw.gov.au</u>>
Sent: Tuesday, 21 May 2019 4:11 PM
To: Rhys Johns <<u>rhysj@adwjohnson.com.au</u>>
Subject: RE: HW10 Pacific Hwy, Catherine Hill Bay FW: Proposed Recycled Water Transfer Main

Rhys,

Thank You for your query with regard to the recycled water main. I have reviewed the submitted drawings titled "RECYCLED WATER MAIN CATHERINE HILL BAY" – Project No. 11688 - 45 sheets.

Please quote CR2019/002148 with any future correspondence.

The drawings are received as 'preliminary issue' and it is understood that the drawings are concept drawings.

RMS is responsible for the care, control and management the state road network and in this case RMS interest lies only in the state highway crossing. Please ensure approval is sought from other relevant authorities.

RMS has no objection in principal to the proposed recycled water main.

The following conditions are provided as guidance only for the design phase. Further conditions may be applied to the S138 approval once the detailed design is received with the S138 application.

- 1. A section 138 application will be required to be made with IFC drawings, prior to the works being undertaken.
- 2. The main is to have a minimum of 1.5m cover to all existing or proposed surfaces in the state highway corridor.
- 3. Dependant on methodology, the bore will be required to be encased and grouted, or grouted.
- 4. The bore will be required to be maintenance free construction in accordance with Hunter Water requirements for maintenance free installations.

If you have any further queries, please do not hesitate to contact the undersigned.

To: Hunter Road Asset Cc: Cameron Black Subject: Proposed Recycled Water Transfer Main

To whom it may concern,

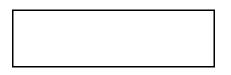
ADW Johnson has been engaged to undertake the design of approximately 8 km of DN125 PE100 recycled water transfer main from Catherine Hill Bay Water Utility (CHBWU) to Gwandalan Sewer Treatment Plant (STP). A plan showing the proposed pipe alignment can be downloaded at the following link: <u>https://spaces.hightail.com/receive/DhUeUBSVEM/cmh5c2pAYWR3am9obnNvbi5jb20uYXU=</u>

Could you please advise ADW Johnson of any requirements that will need to be incorporated in the design, in particular, the proposed trenchless crossing of the Pacific Highway?

Please do not hesitate to contact me on the below details should you require further information or wish to organise a meeting to discuss further.

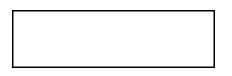
I look forward to a response by Friday 24th May 2019.

Regards,


APPROVED COMPANY	APPROVED	APPROVED COMPANY	JAS-ANZ
ISO 14001 Environmental Management Systems	ISO 9001 Quality Management Systems	AS/NZS 4801 OH&S Management Systems	C-
QMS 🗯	QMS ====	QMS ====	ι <mark>Γ</mark>

ADW Johnson Pty Limited

SYDNEY Level 35 One International Towers, 100 Barangaroo Avenue, Sydney NSW 2000 Ph. 02 8046 7411 CENTRAL COAST 5 Pioneer Avenue, Tuggerah NSW 2259 Ph. 02 4305 4300 HUNTER 7/335 Hillsborough Road, Warners Bay NSW 2282 Ph. 02 4978 5100


THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

please don't print this e-mail unless you really need to.

Before printing, please consider the environment

IMPORTANT NOTICE: This email and any attachment to it are intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. Roads and Maritime Services is not responsible for any unauthorised alterations to this email or attachment to it. Views expressed in this message are those of the individual sender, and are not necessarily the views of Roads and Maritime Services. If you receive this email in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this email if you are not the intended recipient.

Before printing, please consider the environment

IMPORTANT NOTICE: This email and any attachment to it are intended only to be read or used by the named addressee. It is confidential and may contain legally privileged information. No confidentiality or privilege is waived or lost by any mistaken transmission to you. Roads and Maritime Services is not responsible for any unauthorised alterations to this email or attachment to it. Views expressed in this message are those of the individual sender, and are not necessarily the views of Roads and Maritime Services. If you receive this email in error, please immediately delete it from your system and notify the sender. You must not disclose, copy or use any part of this email if you are not the intended recipient.

RMS Corro. No.: CR2019/002148 Your Ref:

ADW Johnson Pty Ltd 7/335 Hillsborough Road Warners Bay NSW 2282

Att: Rhys Johns

Applicant Email: rhysj@adwjohnson.com.au

Determination of Application for undertaking Works in, on or over a public road, under Section 138 Roads Act 1993 as amended

RE: Proposed DN140 PE100 Surplus Recycled Water Main Directional Drill under Pacific Highway, Catherine Hill Bay

I refer to your email dated 6 September 2019, and related communications and you are advised as follows. In accordance with Section 138 of the Roads Act 1993, Roads & Maritime Services (RMS) has reviewed your application and hereby issues **ADW Johnson** (the Applicant) **Consent** for the proposed works on RMS State Road, **Pacific Highway**, as per your application and attachments as listed.

• 11688(13)NPWS-RWAT-10, 029(G).pdf

Your RMS Asset S138 Consent/Concurrence Number is: fA7003771

Please quote the RMS Consent/Concurrence number in any correspondence

The proposed scope of works for this acceptance is confirmed to be:

Scope:

- Directional Drill DN140 PE100 Recycled Water Main under Pacific Highway, Catherine Hill Bay
- Reinstatement of area upon completion of works

Conditions of RMS Consent

This consent is subject to the Applicants' agreement to the following conditions

- 1. No part of the RMS State Road sealed road pavement may be opened for the purpose of performing any aspect of these works.
- 2. All works are to be in accordance with supplied attachments. Any design variation will require a revised S138 application.
- 3. Crossing of RMS State Road to be by underbore with minimum 1.5m cover (including encasement) for full pavement width perpendicular to the State Road Centreline and be maintenance free.
- 4. Pressurised utilities under RMS State Roads are to be encased for the full width of pavement plus a minimum1m beyond pavement extent or to relevant Australian Standards.
- 5. Utilities are to be located in accordance with Streets Opening Conference (SOC) Guidelines.
- 6. Where new utilities are installed permanent surface markers are to be provided at the entry and exit points of the road reserve or on top of Kerb for the utility. Any access points/pits are to be located outside the road pavement.

- 7. Any openings outside of the RMS State Road sealed road pavement to be in accordance with RMS Specification *M209 Road Openings and Restorations* and local Council standards. Works in the footpath of the RMS State Road and on local Council roads will need the concurrence of Council.
- 8. Copies of this consent / concurrence and any related approvals (Road Occupancy Licence, etc.) must be held on site at all times and made available for RMS inspection when requested.
- 9. If there is any deviation to the approved proposed works or these conditions cannot be met the work must cease until a new written application is submitted and approved by RMS.
- 10. The Applicant is responsible for all legislative compliance including but not limited to Work Health & Safety and Environmental legislation.
- 11. The Applicant must obtain any necessary approvals, including but not limited to environmental approvals, prior to works commencing.
- 12. After RMS Asset consent / concurrence has been granted to undertake work in the RMS road reserve the applicant must then contact the RMS Hunter Regional Traffic Commander to obtain a Road Occupancy Licence (ROL). When applying for an ROL the applicant, designers, traffic controllers or contractor must submit the RMS Asset authorisation to the Hunter Regional Traffic Commander as evidence that works have consent / concurrence and that the consent / concurrence is current. ROL applications will not be reviewed until the letter from RMS Assets has been cited by the Traffic Commander. The Traffic Commander will advise if an ROL is required for each project and area in question.
- 13. Please contact Traffic Operations for Road Occupancy Licence (ROL) via the internet link; https://myrta.com/oplinc2
- 14. All backfill of excavation works is to be to a standard that no future sinking or depressions will occur. No excavations are to be left open and unattended. Shoring and fencing to WorkCover and Australian Standards are to be implemented.
- 15. The Applicant is required to reinstate all affected vegetation, materials, surfaces and structures to no lesser conditions than pre-existing conditions and to RMS requirements.
- 16. RMS is not liable for any sub-surface conditions or existing services encountered. It is entirely the responsibility of the Applicant to locate, identify and avoid any under or above ground infrastructure before work commences including as a minimum contacting Dial Before You Dig.
- 17. Any work undertaken in the Local Government Authority reserve or privately owned land is to be approved by the relevant owner of the property prior to work taking place.
- 18. The Applicant is to take out or extend a Public Risk Insurance Policy to cover RMS and for public liability in an amount of not less than twenty million dollars (\$20,000,000). Evidence of such policy and its extension to cover RMS and its currency is to be produced for examination by the RMS upon request.
- 19. The RMS shall be indemnified by the Applicant and the Utility Owner against any suit, action, claim etc, which may arise from the presence of the utility within the RMS's road or median or generally within the road boundaries. The RMS shall be indemnified by the Applicant and the Utility Owner from and against all actions, suits, proceedings, losses, costs, damages, charges, claims and demands in any way arising from the proposed work.
- 20. This consent / concurrence is only valid for a period of six (6) months.

Please contact the undersigned should you require any further assistance with this matter.

Yours sincerely

Mark James Asset Engineer RMS Regional Infrastructure Services Hunter Phone: 02 4908 7739 Email: Hunter_Road_Asset@rms.nsw.gov.au

Rhys Johns

From:	Luke Drury <luke.drury@centralcoast.nsw.gov.au></luke.drury@centralcoast.nsw.gov.au>
Sent:	Friday, 31 August 2018 2:24 PM
To:	Ian Brown
Cc:	Tass Meli; Mark Coleman; Andrew Passafaro; Mark Dowdell; Ken Gerschler
Subject:	TRIM: RE: External invitation - Catherine Hill Bay Effluent Discharge
Attachments:	Catherine Hill Bay - surplus recycled water

Hi lan,

Thanks for our recent meeting where your client described a potential discharge of treated effluent from their development site at Catherine Hill Bay to Gwandalan Sewage Treatment Plant. Council's Water and Sewer Unit has reviewed the proposal and offers the following advice, noting all the below charges are regulated charges as determined by IPART through its pricing determination process. I have copied in a few others within Council's Planning area as information ahead of potential future application to Council.

 The discharge point will be the recieval chamber at the inlet works for Gwandalan Sewage Treatment Plant (red circle on below plan). Council's Environmental Protection Licence (EPL) states that all inflows to the plant must receive full treatment through the nominated processes, there is no current option to bypass individual process units.

2016

- Developer Charges are applicable inline with Council's existing 'Wyong Water Supply and Sewerage Development Servicing Plan' which is available on Council's website. The development is assessed as a 'wet industry' customer with Equivalent Tenements (ET) payable based on peak daily discharge rate as outlined below:
 - 1 ET = 576 L sewage/day (2.4 EP per ET x 240L/EP/day)
- The 2018/19 financial year sewerage developer charge is \$5,327.44/ET. The DSP is next due for update on 1 July 2019.
- Annual sewerage service charge will apply based on the size of the meter (magnetic flow meter). A discharge factor of 1 would be applied to the meter, with sewage discharged to GWSTP charged at \$0.83/kL. Annual sewerage service charges for different meter sizes are outlined below:
 - o 100mm meter \$7,103.80/year
 - o 150mm meter \$15,983.55/year
 - o 200mm meter \$28,415.20/year

- Ongoing volumetric charges would be billed monthly, with meter charge billed in quarterly instalments.
- Sewage discharged at GWSTP would not be classified as trade waste given the nature of the Catherine Hill Bay Catchment. Solo Water would however need to manage septicity within the rising main to minimise corrosion and odour issues at GWSTP, this would be subject to further investigations by the applicant at detail design stage. Solo Water would also be expected to manage any Trade Waste customers (if applicable) in Catherine Hill Bay in accordance with its Trade Waste Policy and Procedures.
- Dependant on the required timing of discharge capacity the applicant could consider staging the developer charges based on development milestones in a similar manner to the water supply developer charges.
- The applicant would be responsible to design and construct the new pumping station and rising main from the site at Catherine Hill Bay, to a new inlet at the Gwandalan Sewage Treatment Plant (no spare inlet stubs). A magnetic flow meter with telemetry connection would also be installed in a pit where the rising main crosses the treatment plant site boundary.
- Council will undertake any required modifications to its inlet works to provide downstream capacity required. Council is already planning modification to the inlet works channel (sections of channel wall raising) to cater for additional growth within the Gwandalan catchment and this project will ensure capacity required for Catherine Hill Bay is included as part of the design.
- Council would require lodgement of a Section 305 application (Water Management Act Approval) which will trigger the formal assessment of developer charges payable and review of the interface of the proposed pumping system with the Water Authorities assets. A development application will also be required to be lodged in tandem with the S305 application which will address the environmental planning and assessment act considerations relating to the proposed rising main construction (Statement of Environmental Effects, Traffic Management etc). For details relating to the lodgement of the development application feel free to contact Council's duty planner (Ken Gerschler) on 4350 5546.
- The establishment of a set of operational rules that describes shutdown protocols, notification requirements and maintenance responsibilities would also commence following the lodgement of the S305 application. All commercial terms would be as per regulated charges with no exception agreement applicable for the Catherin Hill Bay scheme. This likely reflects requirements for customer code of conduct documentation as part of the applicants WICA licences.
- It is envisaged the rising main would be a Solo Water asset up to the boundary of GWSTP and treated as a
 private rising main by CCC operational personnel. Asset ownership would transfer from Solo Water to CCC at
 the boundary of GWSTP, with CCC retaining ownership of the magnetic flow meter and associated
 infrastructure. An isolation valve would be required at the treatment plant boundary, upstream of the flow
 meter pit to ensure safe isolation of the inlet works if required. Note that the protocols for shutdown of the
 rising main would need to be agreed to by both parties. The flow meter at GWSTP will be required for billing
 purposes however this could be connected to both CCC and Solo Water's SCADA systems for operational
 purposes similar to the water supply scheme.
- There was initial discussion relating to a potential control valve to assist the operation of the rising main noting the different high points along the proposed alignment. This would be discussed as part of the design review however the operation and maintenance of the valve would be the primary responsibility of Solo Water.
- It is noted that Solo Water has a tradewaste approval for the disposal of sewage at Toukley Sewage Treatment Plant (tanker disposal point). Currently a single combined waste stream is being discharged however in the future following commissioning of the onsite plant and overland disposal it is likely the waste stream being disposed will be primarily wasted sludge and/or the CIP discharge stream. This would likely trigger a different product charge at the discharge site compared to the blended waste stream. Please contact Council's Trade Waste Supervisor, Mr Andrew Passafaro (4350 5515) to discuss Solo Water's future plans for the discharges to Toukley. Andrew will be in contact shortly to organise a site visit to the plant at Catherine Hill Bay for Council's information purposes.
- Council is currently finalising its next IPART pricing submission, with the next determination due to commence 1 June 2019. Details of the progress of the pricing review will be available on IPART's website as the process unfolds.

For any further information please contact Luke Drury, Section Manager Water Services and Design, in the first instance. However, for any enquiries relating to the preparation of the development application for the private rising main, please contact Mr Ken Gerschler as described above.

Cheers,

From: Ian Brown [mailto:ianb@adwjohnson.com.au]
Sent: Thursday, 23 August 2018 8:11 PM
To: Luke Drury
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi Luke,

Just following up from our meeting, I understand you were going to send through a couple of notes regarding the rationale around Council accepting the excess recycled water from CHBWU and/or some information on what flows the Gwandalan treatment plant can accept?

Please excuse my lack of terminology as the sewer/water infrastructure space isn't my strong suit. Happy to discuss if required.

Thanks,

THE MARK AND AND AN ADDRESS A STAR CONTROL & MARKEN AND ADDRESS AND AD

Apple seral entry in this ermal unces yourgary need to a

From: Luke Drury <Luke.Drury@centralcoast.nsw.gov.au>

Sent: Tuesday, 7 August 2018 12:44 PM

To: Brad Irwin <brad.irwin@solowater.com.au>; Ian Brown <ianb@adwjohnson.com.au>
Cc: Nick Jackman <njackman@rosegroup.com.au>; Nathan Delaney <nathand@adwjohnson.com.au>; Tass Meli
<Tass.Meli@centralcoast.nsw.gov.au>; Mark Coleman <Mark.Coleman@centralcoast.nsw.gov.au>
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Thanks Brad,

We are actually interested if there are any opportunities for beneficial use of a portion of the effluent stream within Central Coast area as we currently operate recycled water plants for internal (STP) and external usage rather than just putting it all into the treatment process. We understand we are not the regulators of your treatment process.

I can see that your PFD for the plant shows a U.V and chlorine treatment process for effluent used in the dual reticulation scheme which is what I assume you are referring to with the AGWR log reduction verification. Can you confirm whether the water currently approved to be disposed of by centralised irrigation is also required to undergo UV and chlorine treatment?

Cheers,

Luke Drury Section Manager Water Services and Design Water Planning and Development Central Coast Council P.O. Box 20 Wyong, NSW 2259 t: 02 4350 5109 m: 0400 734 217 e: Luke.Drury@centralcoast.nsw.gov.au

A Please consider the environment before printing this email

From: Brad Irwin [mailto:brad.irwin@solowater.com.au]
Sent: Tuesday, 7 August 2018 10:17 AM
To: Luke Drury
Cc: 'Ian Brown'; Nick Jackman; Nathan Delaney
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi Luke,

Thank you for arranging this meeting to discuss the options for the transfer of surplus recycled water from our CHB scheme across to your Gwandalan WWTP for final effluent disposal.

I have put some preliminary answers to your questions below in green.

I have also attached the latest PFD showing the potential offtake to CCC from the plant.

Note that CCC do not need to approve the treatment processes or anything else inside the CHB scheme, this is all approved by IPART under WICA.

The only thing that CCC would need to approve is the surplus recycled water main and connection onto your network in a volumetric trade waste type arrangement. I imagine we would do DA for this. Similar to how CCC approved the bulk water pump station and transfer main inside CCC region but IPART approved the works inside the scheme.

I look forward to catching up on Thursday.

If you have any further questions in the mean time please send them through.

Can you provide a process flow diagram for the treatment system including the additional treatment (if any) provided to effluent used in the dual reticulation scheme. Can you include the proposed offtake for discharge to Central Coast Council.

See attached PFD of the overall scheme, including the options for offsite transfer of surplus water to Gwandalan WWTP.

The proposed offtake is shown in green in the PFD.

The surplus water is MBR permeate and contains little or no free chlorine that could potentially upset the Gwandalan WWTP processes.

The offtake would use variable speed drive pumps so we can control flows being transferred.

Can you confirm the status of the approvals for the effluent reuse scheme including:

Who is the regulator and under what act are the approvals granted?

IPART/Minister for Utilities is the main regulator and have approved the current scheme under the WIC Act and Part 5 of EP&A Act.

CCC also approved a DA for the potable water pump station and transfer main located in CCC area, which was under Part 4 of EP&A Act.

The current WICA approval is based on irrigation of surplus recycled water and needs to be updated to include an offsite discharge.

It is likely that a DA with CCC would be undertaken for the surplus recycled water main works located in CCC region, if this proves feasible.

CCC would also need to approve the discharge as a volumetric & pollutant load based trade waste discharge type arrangement.

Once this is done we would update our WICA licence with IPART, which will be reasonably straight forward if CCC approved the DA and Trade Waste Permits.

What approvals have been obtained to date?

The scheme is approved under WICA based on all surplus recycled water being irrigated. This approval needs to be updated to include an offsite discharge if this is feasible.

What framework/guidelines was the scheme assessed under? The treatment process was assessed under AGWR (2006). Water and sewer networks are assessed under the WSAA codes.

Has the treatment system been validated/verified to achieve a certain log reduction for pathogen removal or production of a certain class of effluent (depends on assessment framework relevant to the site). The overall process is verified to be compliant with the AGWR (2006) and exceeds the Log Reduction Targets required in this guideline.

The treatment process is currently being commissioned.

The process will be audited by IPART accredited auditors at the end of commissioning.

The treatment process itself does not require approval from CCC. It is only the surplus recycled water offsite discharge pipeline and connection to CCC system.

Please give me a call if you wish to discuss.

Cheers

Brad

Brad Irwin | Environmental Engineer

Solo Water Pty Ltd

A: 86-88 Chinderah Bay Drive Chinderah NSW 2487

P: 1300 765 698

E: brad.irwin@solowater.com.au

W: www.solowater.com.au

Confidentiality

This message, including any attachments, is intended for the sole use of the addressee(s) and may contain information that is privileged, confidential and/or subject to copyright. Any other use, distribution, copying or disclosure is strictly prohibited. If you are not the intended recipient or have received this message in error, please notify us immediately by reply e-mail and permanently delete this message, including any attachments, without reading, or distributing it or making a copy.

From: Ian Brown [mailto:ianb@adwjohnson.com.au] Sent: Monday, 6 August 2018 10:13 AM To: Brad Irwin; Nick Jackman; Nathan Delaney Subject: FW: External invitation - Catherine Hill Bay Effluent Discharge

Hi all,

Please see below confirmation from Central Coast Council that the Thursday meeting time is now locked in.

Brad,

Are you able to provide further details on the items that Luke has requested below?

Thanks,

adw	Ian Brown SENIOR CIVIL ENGINEER Central Coast Office 02 4305 4300 Email : janb@adwjohnson.com.au	
johnson	Website: www.adwjohnson.com.au	
ADW Johnson Pty	r Limited	
SYDNEY	Level 35 One International Towers, 100 Barangarop, Avenue, Sydney NSW 2000	Ph. 02 8046 7411
CENTRAL COAST	5 Pioneer Avenue. Tuggerah NSW 2259	Ph. 02 4305 4300
HUNTER	7/335 Hillsborough Road. Warners Bay NSW 2282	Ph. 02 4978 5100

THIS WESSAGE AND ANY FLESTRANS/ ITED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE FUR FORESS OF OUR CLIENTS INSTRUCTIONS, ANY F HEREWITH ARE COPYRIGHT OF ADWILLSHIGHT FHURE, AND ARE NOT TO BE CIOPIED FOR ANY OTHER FUR FORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRIT FERMISSION OF ADWILLSHIGHT FHURE.

🚓 pielase a on tipototoris e-mail un essivicultea Nineea to.

From: Luke Drury <<u>Luke.Drury@centralcoast.nsw.gov.au</u>>
Sent: Monday, 6 August 2018 9:54 AM
To: lan Brown <<u>ianb@adwjohnson.com.au</u>>
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi lan,

I have my manager confirmed for the meeting so will remove the tentative status from the meeting invitation.

Can you also follow up the following information which helps inform our review of the proposed discharge:

- Can you provide a process flow diagram for the treatment system including the additional treatment (if any)
 provided to effluent used in the dual reticulation scheme. Can you include the proposed offtake for discharge
 to Central Coast Council.
- Can you confirm the status of the approvals for the effluent reuse scheme including:
 - Who is the regulator and under what act are the approvals granted?
 - What approvals have been obtained to date?
 - What framework/guidelines was the scheme assessed under?
 - Has the treatment system been validated/verified to achieve a certain log reduction for pathogen removal or production of a certain class of effluent (depends on assessment framework relevant to the site).

Cheers,

Luke Drury Section Manager Water Services and Design Water Planning and Development

🚓 Please consider the environment before printing this email

From: Ian Brown [mailto:ianb@adwjohnson.com.au]
Sent: Monday, 6 August 2018 8:59 AM
To: Luke Drury
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi Luke,

Just wanted to follow up regarding the meeting on Thursday, has this date and time been confirmed? The water utility contact needs to travel down from Brisbane for the meeting so I just want to make sure he can book flights confidently.

Thanks,

FERMISSION OF ADVV. shread Fraund.

🚔 pielase a on tipt not not ser mail un essiviou real vin essito.

-----Original Appointment-----From: Ian Brown Sent: Tuesday, 31 July 2018 5:08 PM To: Luke Drury Subject: Accepted: External invitation - Catherine Hill Bay Effluent Discharge When: Thursday, 9 August 2018 1:00 PM-2:00 PM (UTC+10:00) Canberra, Melbourne, Sydney. Where: Central Coast Council - Hely Street Wyong Office

Thanks Luke,

I have forwarded the invite to the client, water utility contact, as well as Nathan D in our office who will also attend. Noted that this is a preliminary meeting time at the moment, feel free to send through an update if required once you have confirmation from Council staff.

Rhys Johns

From:	Cameron Black
Sent:	Wednesday, 31 October 2018 6:02 PM
То:	Rhys Johns
Subject:	FW: External invitation - Catherine Hill Bay Effluent Discharge
Attachments:	Catherine Hill Bay - surplus recycled water

FYI

Regards,

Cameron Black Hunter Office 02 4978 5100 0412 552 835 Email : cameronb@adwjohnson.com.au Website: www.adwjohnson.com.au	APPROVED COMPANY ISO 14001 Environmental Management Systems QMIS Services
--	--

SYDNEY	Level 35 One International Towers, 100 Barangaroo Avenue, Sydney NSW 2000	Ph. 02 8046 7411
CENTRAL COAST	5 Pioneer Avenue, Tuggerah NSW 2259	Ph. 02 4305 4300
HUNTER	7/335 Hillsborough Road, Warners Bay NSW 2282	Ph. 02 4978 5100

THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

A please don't print this e-mail unless you really need to.

From: Ian Brown

Sent: Friday, 31 August 2018 2:50 PM

To: 'njackman@rosegroup.com.au' <njackman@rosegroup.com.au>; Brad Irwin <brad.irwin@solowater.com.au>; Nathan Delaney <nathand@adwjohnson.com.au>

Cc: Cameron Black <cameronb@adwjohnson.com.au>

Subject: FW: External invitation - Catherine Hill Bay Effluent Discharge

All,

Please see below advice from Central Coast Council following from the meeting held a few weeks ago regarding the potential recycled water discharge from CHB to Gwandalan.

Thanks,

lan Brown SENIOR CIVIL ENGINEER **Central Coast Office** 02 4305 4300 Email : ianb@adwjohnson.com.au Website: www.adwjohnson.com.au

ADW Johnson Pty Limited SYDNEY Level 35 One International Towers, 100 Barangaroo Avenue, Sydney NSW 2000 Ph. 02 8046 7411 CENTRAL COAST 5 Pioneer Avenue, Tuggerah NSW 2259 Ph. 02 4305 4300 7/335 Hillsborough Road, Warners Bay NSW 2282 Ph. 02 4978 5100 HUNTER

THIS IVESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY F HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRIT PERMISSION OF ADW Johnson Pty Ltd.

🛃 please don't print this e-mail unless you really need to.

ADW Johnson Pty LimitedSYDNEYLevel 35 One International Towers, 100 Barangaroo Avenue, Sydney NSW 2000CENTRAL COAST5 Pioneer Avenue, Tuggerah NSW 2259HUNTER7/335 Hillsborough Road, Warners Bay NSW 2282Ph. 02 4978 5100

THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS, ANY F HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRIT PERMISSION OF ADW Johnson Pty Ltd.

please don't print this e-mail unless you really need to.

-----Original Appointment-----From: Ian Brown Sent: Tuesday, 31 July 2018 5:08 PM To: Luke Drury Subject: Accepted: External invitation - Catherine Hill Bay Effluent Discharge When: Thursday, 9 August 2018 1:00 PM-2:00 PM (UTC+10:00) Canberra, Melbourne, Sydney. Where: Central Coast Council - Hely Street Wyong Office

Thanks Luke,

I have forwarded the invite to the client, water utility contact, as well as Nathan D in our office who will also attend. Noted that this is a preliminary meeting time at the moment, feel free to send through an update if required once you have confirmation from Council staff.

MINUTES OF MEETING

DATE: 16/11/2018

ATTENDEES: Stephanie Van Dissel, Patricia Daufenback, Rhys Johns (ADW Johnson) Luke Drury, Mark Coleman, Hugh Williams, Mark Dowdell (Central Coast Council)

MEETING – CATHERINE HILL BAY CONNECTION DESIGN DISCUSSION

INTRODUCTION:

Meeting held between ADW Johnson and Central Coast Council regarding design and development application for the proposed recycled water (RW) transfer main from Catherine Hill Bay to Gwandalan Wastewater Treatment Plant (WWTP) Inlet Works. The aim is to discuss matters for consideration as part of the design and planning process.

DISCUSSION POINTS:

SVD introduced meeting and project and explained the two separate environmental approval processes would be used; one for the Kanangra Drive main and one for the National Parks & Wildlife Services (NPWS) main. ADWJ would be doing the environmental assessment for the Kanangra Drive Section and Solo Water would do the other section. ADWJ would however design the entire main.

Council raised that the transfer main may not need a DA approval as it falls under the Water Industry Competition Act (WICA) 2006. It was conferred that at the least, an Environmental Impact Assessment (EIA) will need to be undertaken.

SVD advised that due to time constraints, the client did not want to use Part 5 of the EP&A Act through IPART as they take too long to assess and as such, AWDJ were electing to use Part 4 of the EP&A Act.

SVD also advised that DA needed to be lodged next week to avoid new Biodiversity Legislation. For this reason, only the Kanangra Drive section was proposed under the DA as ecology surveys could not be conducted over Council land without consent which would take too long to obtain.

SVD explained that if the main from the round-about to Council's WWTP needed to remove trees, then AWDJ would deal with that and pay for credits if needed, however the area for this section looks relatively clear.

Council have confirmed that Gwandalan WWTP is able to cater for the proposed RW transfer main flowrate of 11 L/s, as stated in the attached email correspondence from Ian Brown (ADWJ) to Luke Drury (Council) on 27/07/2018.

Council are in the process of upgrading the inlet works at Gwandalan WWTP to cater for an additional wastewater pumping station (WWPS) in Gwandalan 9 (GW09) WWPS. ADWJ are undertaking the design of the GW09 WWPS and rising main. Council mentioned that the proposed alignment of GW09 WWPS rising main needs to be considered along with Council's existing asbestos cement (AC) trunk watermain. It's likely there will be a trenchless crossing of Kanangra Drive that will need to be mindful of existing services and Councils' existing major infrastructure. HW noted consideration of construction and other ground-breaking work activities close to the existing AC watermain to have minimal vibrational impacts.

Council have provided hard copy Work-As-Executed (WAC) drawings of the existing Gwandalan WWTP inlet works along with the design drawings of the upgrade. The upgrade includes a stub for future connection for GW09 WWPS and spare connection. Council have indicated that the spare connection point currently proposed on the GW09 WWTP inlet works connection is to remain spare for future development at Summerland Point. Connection of the proposed RW transfer main shall be made at an alternative point. It was suggested that if the diameter of the RW transfer main pipe permits, it would be Council's preference that the main be tapped into the proposed GW09 WWPS rising main at the vicinity of the inlet works. AWDJ design to include connection detail of RW transfer main to Gwandalan WWTP.

The inlet works upgrade timing will hinge off the Gwandalan 9 WWPS upgrade. ADWJ are currently developing the design of Gwandalan 9 WWPS, rising main and the connection to Gwandalan WWTP, which is yet to be finalised.

Council advised that the RW transfer main be treated as private up until where it crosses the boundary of the WWTP site, as stated in the attached email correspondence from Luke Drury (Council) to Ian Brown (ADWJ) on 31st August 2018. It is expected that the proposed automatic control valve be owned, operated and maintained by Solo Water and be located outside the WWTP site boundary. A manual isolation valve and magnetic flowmeter are to be located within the WWTP site and be operated and maintained by Council. The flowmeter is to include visual or manual meter read capabilities. The flowmeter is to be constructed in a pit, not buried. Council advised to use the potable watermain as a reference for the design of the RW transfer main.

Council satisfied with PVC or PE for the pipe material for the section along Kanangra Drive.

Telemetry requirements for the control valve and flowmeter are to be discussed with HW. Pressure transducer is also required by Council.

MC couldn't foresee any issues with the Biochemical Oxygen Demand (BOD) < 10 mg/L being received by WWTP as raw sewage typically BOD >= 300.

MD advised that client has previously been advised that DSP charges will apply.

ACTIONS:

Council to provide electronic copies of the WAC drawings of the inlet works and the final design plans for the inlet works upgrade at Gwandalan WWTP. Council are currently developing a concept plan based on the future inflow rates to the inlet works. This will not

be finalised until the proposed inflow rates are confirmed by the applicant. Works at the inlet works will be limited to increasing of the wall height only and will not impact the incoming mains design.

ADWJ to ensure design of both GW09 WWPS rising main and RW transfer main undertaken holistically to ensure suitable alignments and road crossing treatments are selected which do not impact existing assets.

ADWJ are to organise a site visit for Council staff, including trade waste officer, to Solo Water's Catherine Hill Bay Recycled Treatment Plant Facility. Actual reads of the water quality at Critical Control Points (CCP) is required to ensure quality is to Council standards, as Council have no control.

ADWJ to check with the client that no additional recycled water would be used by this RW transfer main as the Middle Camp development was also originally proposing private sewer. If so, this should be accounted for in the design to avoid upgrade costs later.

\$305 application to be lodged with DA.

Rhys Johns

From:	Luke Drury <luke.drury@centralcoast.nsw.gov.au></luke.drury@centralcoast.nsw.gov.au>
Sent:	Friday, 31 August 2018 2:24 PM
To:	Ian Brown
Cc:	Tass Meli; Mark Coleman; Andrew Passafaro; Mark Dowdell; Ken Gerschler
Subject:	TRIM: RE: External invitation - Catherine Hill Bay Effluent Discharge
Attachments:	Catherine Hill Bay - surplus recycled water

Hi lan,

Thanks for our recent meeting where your client described a potential discharge of treated effluent from their development site at Catherine Hill Bay to Gwandalan Sewage Treatment Plant. Council's Water and Sewer Unit has reviewed the proposal and offers the following advice, noting all the below charges are regulated charges as determined by IPART through its pricing determination process. I have copied in a few others within Council's Planning area as information ahead of potential future application to Council.

 The discharge point will be the recieval chamber at the inlet works for Gwandalan Sewage Treatment Plant (red circle on below plan). Council's Environmental Protection Licence (EPL) states that all inflows to the plant must receive full treatment through the nominated processes, there is no current option to bypass individual process units.

2016

- Developer Charges are applicable inline with Council's existing 'Wyong Water Supply and Sewerage Development Servicing Plan' which is available on Council's website. The development is assessed as a 'wet industry' customer with Equivalent Tenements (ET) payable based on peak daily discharge rate as outlined below:
 - 1 ET = 576 L sewage/day (2.4 EP per ET x 240L/EP/day)
- The 2018/19 financial year sewerage developer charge is \$5,327.44/ET. The DSP is next due for update on 1 July 2019.
- Annual sewerage service charge will apply based on the size of the meter (magnetic flow meter). A discharge factor of 1 would be applied to the meter, with sewage discharged to GWSTP charged at \$0.83/kL. Annual sewerage service charges for different meter sizes are outlined below:
 - o 100mm meter \$7,103.80/year
 - o 150mm meter \$15,983.55/year
 - o 200mm meter \$28,415.20/year

- Ongoing volumetric charges would be billed monthly, with meter charge billed in quarterly instalments.
- Sewage discharged at GWSTP would not be classified as trade waste given the nature of the Catherine Hill Bay Catchment. Solo Water would however need to manage septicity within the rising main to minimise corrosion and odour issues at GWSTP, this would be subject to further investigations by the applicant at detail design stage. Solo Water would also be expected to manage any Trade Waste customers (if applicable) in Catherine Hill Bay in accordance with its Trade Waste Policy and Procedures.
- Dependant on the required timing of discharge capacity the applicant could consider staging the developer charges based on development milestones in a similar manner to the water supply developer charges.
- The applicant would be responsible to design and construct the new pumping station and rising main from the site at Catherine Hill Bay, to a new inlet at the Gwandalan Sewage Treatment Plant (no spare inlet stubs). A magnetic flow meter with telemetry connection would also be installed in a pit where the rising main crosses the treatment plant site boundary.
- Council will undertake any required modifications to its inlet works to provide downstream capacity required. Council is already planning modification to the inlet works channel (sections of channel wall raising) to cater for additional growth within the Gwandalan catchment and this project will ensure capacity required for Catherine Hill Bay is included as part of the design.
- Council would require lodgement of a Section 305 application (Water Management Act Approval) which will trigger the formal assessment of developer charges payable and review of the interface of the proposed pumping system with the Water Authorities assets. A development application will also be required to be lodged in tandem with the S305 application which will address the environmental planning and assessment act considerations relating to the proposed rising main construction (Statement of Environmental Effects, Traffic Management etc). For details relating to the lodgement of the development application feel free to contact Council's duty planner (Ken Gerschler) on 4350 5546.
- The establishment of a set of operational rules that describes shutdown protocols, notification requirements and maintenance responsibilities would also commence following the lodgement of the S305 application. All commercial terms would be as per regulated charges with no exception agreement applicable for the Catherin Hill Bay scheme. This likely reflects requirements for customer code of conduct documentation as part of the applicants WICA licences.
- It is envisaged the rising main would be a Solo Water asset up to the boundary of GWSTP and treated as a
 private rising main by CCC operational personnel. Asset ownership would transfer from Solo Water to CCC at
 the boundary of GWSTP, with CCC retaining ownership of the magnetic flow meter and associated
 infrastructure. An isolation valve would be required at the treatment plant boundary, upstream of the flow
 meter pit to ensure safe isolation of the inlet works if required. Note that the protocols for shutdown of the
 rising main would need to be agreed to by both parties. The flow meter at GWSTP will be required for billing
 purposes however this could be connected to both CCC and Solo Water's SCADA systems for operational
 purposes similar to the water supply scheme.
- There was initial discussion relating to a potential control valve to assist the operation of the rising main noting the different high points along the proposed alignment. This would be discussed as part of the design review however the operation and maintenance of the valve would be the primary responsibility of Solo Water.
- It is noted that Solo Water has a tradewaste approval for the disposal of sewage at Toukley Sewage Treatment Plant (tanker disposal point). Currently a single combined waste stream is being discharged however in the future following commissioning of the onsite plant and overland disposal it is likely the waste stream being disposed will be primarily wasted sludge and/or the CIP discharge stream. This would likely trigger a different product charge at the discharge site compared to the blended waste stream. Please contact Council's Trade Waste Supervisor, Mr Andrew Passafaro (4350 5515) to discuss Solo Water's future plans for the discharges to Toukley. Andrew will be in contact shortly to organise a site visit to the plant at Catherine Hill Bay for Council's information purposes.
- Council is currently finalising its next IPART pricing submission, with the next determination due to commence 1 June 2019. Details of the progress of the pricing review will be available on IPART's website as the process unfolds.

For any further information please contact Luke Drury, Section Manager Water Services and Design, in the first instance. However, for any enquiries relating to the preparation of the development application for the private rising main, please contact Mr Ken Gerschler as described above.

Cheers,

From: Ian Brown [mailto:ianb@adwjohnson.com.au]
Sent: Thursday, 23 August 2018 8:11 PM
To: Luke Drury
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi Luke,

Just following up from our meeting, I understand you were going to send through a couple of notes regarding the rationale around Council accepting the excess recycled water from CHBWU and/or some information on what flows the Gwandalan treatment plant can accept?

Please excuse my lack of terminology as the sewer/water infrastructure space isn't my strong suit. Happy to discuss if required.

Thanks,

THE MARK AND AND AN ADDRESS A STAR CONTROL & MARKEN AND ADDRESS AND AD

Apple seral entry in this ermal unces yourgary need to a

From: Luke Drury <Luke.Drury@centralcoast.nsw.gov.au>

Sent: Tuesday, 7 August 2018 12:44 PM

To: Brad Irwin <brad.irwin@solowater.com.au>; Ian Brown <ianb@adwjohnson.com.au>
Cc: Nick Jackman <njackman@rosegroup.com.au>; Nathan Delaney <nathand@adwjohnson.com.au>; Tass Meli
<Tass.Meli@centralcoast.nsw.gov.au>; Mark Coleman <Mark.Coleman@centralcoast.nsw.gov.au>
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Thanks Brad,

We are actually interested if there are any opportunities for beneficial use of a portion of the effluent stream within Central Coast area as we currently operate recycled water plants for internal (STP) and external usage rather than just putting it all into the treatment process. We understand we are not the regulators of your treatment process.

I can see that your PFD for the plant shows a U.V and chlorine treatment process for effluent used in the dual reticulation scheme which is what I assume you are referring to with the AGWR log reduction verification. Can you confirm whether the water currently approved to be disposed of by centralised irrigation is also required to undergo UV and chlorine treatment?

Cheers,

Luke Drury Section Manager Water Services and Design Water Planning and Development Central Coast Council P.O. Box 20 Wyong, NSW 2259 t: 02 4350 5109 m: 0400 734 217 e: Luke.Drury@centralcoast.nsw.gov.au

A Please consider the environment before printing this email

From: Brad Irwin [mailto:brad.irwin@solowater.com.au]
Sent: Tuesday, 7 August 2018 10:17 AM
To: Luke Drury
Cc: 'Ian Brown'; Nick Jackman; Nathan Delaney
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi Luke,

Thank you for arranging this meeting to discuss the options for the transfer of surplus recycled water from our CHB scheme across to your Gwandalan WWTP for final effluent disposal.

I have put some preliminary answers to your questions below in green.

I have also attached the latest PFD showing the potential offtake to CCC from the plant.

Note that CCC do not need to approve the treatment processes or anything else inside the CHB scheme, this is all approved by IPART under WICA.

The only thing that CCC would need to approve is the surplus recycled water main and connection onto your network in a volumetric trade waste type arrangement. I imagine we would do DA for this. Similar to how CCC approved the bulk water pump station and transfer main inside CCC region but IPART approved the works inside the scheme.

I look forward to catching up on Thursday.

If you have any further questions in the mean time please send them through.

Can you provide a process flow diagram for the treatment system including the additional treatment (if any) provided to effluent used in the dual reticulation scheme. Can you include the proposed offtake for discharge to Central Coast Council.

See attached PFD of the overall scheme, including the options for offsite transfer of surplus water to Gwandalan WWTP.

The proposed offtake is shown in green in the PFD.

The surplus water is MBR permeate and contains little or no free chlorine that could potentially upset the Gwandalan WWTP processes.

The offtake would use variable speed drive pumps so we can control flows being transferred.

Can you confirm the status of the approvals for the effluent reuse scheme including:

Who is the regulator and under what act are the approvals granted?

IPART/Minister for Utilities is the main regulator and have approved the current scheme under the WIC Act and Part 5 of EP&A Act.

CCC also approved a DA for the potable water pump station and transfer main located in CCC area, which was under Part 4 of EP&A Act.

The current WICA approval is based on irrigation of surplus recycled water and needs to be updated to include an offsite discharge.

It is likely that a DA with CCC would be undertaken for the surplus recycled water main works located in CCC region, if this proves feasible.

CCC would also need to approve the discharge as a volumetric & pollutant load based trade waste discharge type arrangement.

Once this is done we would update our WICA licence with IPART, which will be reasonably straight forward if CCC approved the DA and Trade Waste Permits.

What approvals have been obtained to date?

The scheme is approved under WICA based on all surplus recycled water being irrigated. This approval needs to be updated to include an offsite discharge if this is feasible.

What framework/guidelines was the scheme assessed under? The treatment process was assessed under AGWR (2006). Water and sewer networks are assessed under the WSAA codes.

Has the treatment system been validated/verified to achieve a certain log reduction for pathogen removal or production of a certain class of effluent (depends on assessment framework relevant to the site). The overall process is verified to be compliant with the AGWR (2006) and exceeds the Log Reduction Targets required in this guideline.

The treatment process is currently being commissioned.

The process will be audited by IPART accredited auditors at the end of commissioning.

The treatment process itself does not require approval from CCC. It is only the surplus recycled water offsite discharge pipeline and connection to CCC system.

Please give me a call if you wish to discuss.

Cheers

Brad

Brad Irwin | Environmental Engineer

Solo Water Pty Ltd

A: 86-88 Chinderah Bay Drive Chinderah NSW 2487

P: 1300 765 698

E: brad.irwin@solowater.com.au

W: www.solowater.com.au

Confidentiality

This message, including any attachments, is intended for the sole use of the addressee(s) and may contain information that is privileged, confidential and/or subject to copyright. Any other use, distribution, copying or disclosure is strictly prohibited. If you are not the intended recipient or have received this message in error, please notify us immediately by reply e-mail and permanently delete this message, including any attachments, without reading, or distributing it or making a copy.

From: Ian Brown [mailto:ianb@adwjohnson.com.au] Sent: Monday, 6 August 2018 10:13 AM To: Brad Irwin; Nick Jackman; Nathan Delaney Subject: FW: External invitation - Catherine Hill Bay Effluent Discharge

Hi all,

Please see below confirmation from Central Coast Council that the Thursday meeting time is now locked in.

Brad,

Are you able to provide further details on the items that Luke has requested below?

Thanks,

adw	Ian Brown SENIOR CIVIL ENGINEER Central Coast Office 02 4305 4300 Email : janb@adwjohnson.com.au	
johnson	Website: www.adwjohnson.com.au	
ADW Johnson Pty	r Limited	
SYDNEY	Level 35 One International Towers, 100 Barangarop, Avenue, Sydney NSW 2000	Ph. 02 8046 7411
CENTRAL COAST	5 Pioneer Avenue. Tuggerah NSW 2259	Ph. 02 4305 4300
HUNTER	7/335 Hillsborough Road. Warners Bay NSW 2282	Ph. 02 4978 5100

THIS WESSAGE AND ANY FLESTRANS/ ITED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE FUR FORESS OF OUR CLIENTS INSTRUCTIONS, ANY F HEREWITH ARE COPYRIGHT OF ADWILLSHIGHT FHURE, AND ARE NOT TO BE CIOPIED FOR ANY OTHER FUR FORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRIT FERMISSION OF ADWILLSHIGHT FHURE.

🚓 pielase a on tipototoris e-mail un essivicultea Nineea to.

From: Luke Drury <<u>Luke.Drury@centralcoast.nsw.gov.au</u>>
Sent: Monday, 6 August 2018 9:54 AM
To: lan Brown <<u>ianb@adwjohnson.com.au</u>>
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi lan,

I have my manager confirmed for the meeting so will remove the tentative status from the meeting invitation.

Can you also follow up the following information which helps inform our review of the proposed discharge:

- Can you provide a process flow diagram for the treatment system including the additional treatment (if any)
 provided to effluent used in the dual reticulation scheme. Can you include the proposed offtake for discharge
 to Central Coast Council.
- Can you confirm the status of the approvals for the effluent reuse scheme including:
 - Who is the regulator and under what act are the approvals granted?
 - What approvals have been obtained to date?
 - What framework/guidelines was the scheme assessed under?
 - Has the treatment system been validated/verified to achieve a certain log reduction for pathogen removal or production of a certain class of effluent (depends on assessment framework relevant to the site).

Cheers,

Luke Drury Section Manager Water Services and Design Water Planning and Development

🚓 Please consider the environment before printing this email

From: Ian Brown [mailto:ianb@adwjohnson.com.au]
Sent: Monday, 6 August 2018 8:59 AM
To: Luke Drury
Subject: RE: External invitation - Catherine Hill Bay Effluent Discharge

Hi Luke,

Just wanted to follow up regarding the meeting on Thursday, has this date and time been confirmed? The water utility contact needs to travel down from Brisbane for the meeting so I just want to make sure he can book flights confidently.

Thanks,

FERMISSION OF ADVV. shread Fraund.

🚔 pielase a on tipt not not ser mail un essiviou real vin essito.

-----Original Appointment-----From: Ian Brown Sent: Tuesday, 31 July 2018 5:08 PM To: Luke Drury Subject: Accepted: External invitation - Catherine Hill Bay Effluent Discharge When: Thursday, 9 August 2018 1:00 PM-2:00 PM (UTC+10:00) Canberra, Melbourne, Sydney. Where: Central Coast Council - Hely Street Wyong Office

Thanks Luke,

I have forwarded the invite to the client, water utility contact, as well as Nathan D in our office who will also attend. Noted that this is a preliminary meeting time at the moment, feel free to send through an update if required once you have confirmation from Council staff.

Rhys Johns

From:
Sent:
То:
Subject:
Attachments:

lan Brown Friday, 27 July 2018 2:04 PM Luke Drury Catherine Hill Bay - surplus recycled water 211688(13)-ESK-(012-013)-B.pdf

Hi Luke,

Thanks very much for your time on the phone yesterday. As discussed, we would like to arrange a meeting with Council to discuss the feasibility of discharging the surplus recycled water from the Catherine Hill Bay Water Utility (CHBWU) facility, into the Gwandalan treatment plant. To give you a better understanding of the details around the surplus recycled water, the operators of the facility have provided me with the following information:

The pumps would also use VSDs so we can control the flows and pressures.

Material to be Pumped

Surplus Recycled Water with no solids or biological material that can go septic.

The pumps would also use VSDs so we can control the flows and pressures.

Indicative Water Quality SS<5 mg/L BOD<10 mg/L TN<10 mg/L TP<0.5 mg/L TDS<1000 mg/L

<u>Flows</u>

Average Day Surplus = nominal 100 kL/day Peak Day Surplus = nominal 300 kL/day (which is a standby measure required if for some reason the Recycled water plant has failed or is down for maintenance and all of the water is considered surplus)

For a 22 hour pump cycle the flow will be say 4 L/s, or for say 8 hours per day the flow rate would be say 11 L/s.

Wet weather peaking factor

Not applicable because we use a pressure sewer system before the plant and the surplus recycled water will be pumped from a 2 ML storage tank downstream of the MBR, which provides adequate flow balancing.

The 300 kL/day peak during failure of the plant would be the peak design flow for hydraulics.

I have also attached a high level concept plan of the proposed pipeline to give Council some perspective. Could you please review the above information and advise a time that would be suitable for Council to meet with the client and CHBWU operator. At this stage the only dates over

the next 2 weeks that are unavailable to our project team are Thur 2nd Aug (all day), Fri 3rd Aug (morning), and Tues 7th Aug (all day). Could you please advise a time outside of these dates that would be suitable for Council. If you would like any further information with regards to our proposal please let me know and I will be happy to source the required information.

Thanks again, look forward to hearing from you.

Ian Brown SENIOR CIVIL ENGINEER Central Coast Office 02 4305 4300 Email : janb@adwjohnson.com.au Website: www.adwjohnson.com.au

ADW Johnson Pty Limited

SYDNEY Level 35 One International Towers, 100 Barangarop Avenue, Sydney NSW	2000 Ph. 02 8046 7411
CENTRAL COAST 5 Picheer Avenue, Tuggerah NSW 2259	Ph. 02 4305 4300
HUNTER 7/335 Hillsborough Road, Warners Bay NSW 2282	Ph. 02 4978 5100
THE MEETING INDIAN SHEETEINS WITH TICENTENDED FOR THE IDDERCEE ON VINDICE TO BE SED ON VEROTHED BOOK	THE OFFICE OF FRATE INSTEAD OF THE AREA SHOWN

THE MESSAGE AND ANY FLESTRANS/INTED WITH INARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FORTHE FURFORSS OF OUR QUENTS INSTRUCTIONS, ANY F HEREINITH ARE CORMRIGHT OF ADIVIDENTION FRUINE, AND ARE NOT TO BE CORIED FOR ANY OTHER FURFORE OR STORED ON A RETREVIAU SYSTEM WITHOUT THE EXPRESS WRIT FERMISSION OF ADIVIDENTION FRUINS.

🖂 pielase a primitaria serma i un essivipurea invineea no.

MINUTES OF MEETING

DATE: 16/05/2019

ATTENDEES: Cameron Black, Rhys Johns (ADW Johnson) Luke Drury, Johnson Zhang (Central Coast Council)

MEETING – CATHERINE HILL BAY CONNECTION DESIGN DISCUSSION

INTRODUCTION:

Meeting held between ADW Johnson (ADWJ) and Central Coast Council (CCC) regarding design development for the proposed recycled water transfer main (RWTM) from Catherine Hill Bay Water Utility (CHBWU) to Gwandalan Sewage Treatment Plant (STP) Inlet Works. The aim is to discuss matters for consideration as part of the design development and understand Council's design requirements.

DISCUSSION POINTS:

• ADWJ raised the opportunity to include a section of gravity main at the final section of the pipeline from the roundabout intersection of Kanangra Drive and Summerland Road to the Gwandalan STP Inlet Works in order to provide a dedicated high discharge point.

CCC had preference for the pipeline to operate as a variable grade sewer (VGS) through the final section, rather than being a dedicated gravity line.

• ADWJ raised opportunity to connect into the proposed Gwandalan 9 Sewer Pumping Station (SPS) Rising Main (RM).

CCC were satisfied with connection and provided comment on the space constraint in order to include the proposed flowmeter and isolation valve.

- CCC requested the proposed flowmeter and isolation valve be located within the Gwandalan STP site boundary, preferably located within close proximity to the inlet works for ease of access for CCC operations staff.
- ADWJ introduced the potential flowrate change from the initially proposed ~10 L/s adopting a maximum pump duration of 8 hours, to 7.5 L/s adopting a maximum pump duration of 12 hours.

CCC had no issues with the change as there is capacity at the Gwandalan STP to accommodate for up to 10 L/s, in line with the initial proposal.

- CCC were keen to understand the space constraints around the connection details into the Gwandalan STP Inlet Works i.e. the existing asbestos cement (AC) rising mains and thrust block details. CCC has provided ADWJ (GW09 project) with GIS information of the existing rising mains, but no WAC information has been provided.
- CCC had a preference to use the A.R.I D-Series Combination Air Valve along the RWTM pipeline at dedicated high points.
- CCC to issue 306 Certificate for the CHB RWTM. Luke Drury mentioned that not necessary to have all final details in place, rather the Certificate will outline outstanding requirements to be incorporated.
- CCC interested in understanding the timeframes for both the GW09 SPS RM and CHB RWTM projects, both being designed by ADWJ. CCC require to modify the Gwandalan STP Inlet Works to provide additional capacity in the channel walls to allow sufficient freeboard capacity before connection of proposed infrastructure.

ADWJ offered preliminary estimate of timing for the CHB RWTM with design expecting to take a further 2 months and Solo Water have quoted at least 8 months for approval by the Independent Pricing and Regulatory Tribunal (IPART).

ADWJ did not offer timeframes for the GW09 SPS RM project, CCC should consult directly with ADWJ's Project Manager, Jason Yeo, for more information.

• ADWJ to provide CCC with further information following selection and details of the proposed automatic control valve.

CCC offered internal review of the valve selection by their mechanical engineering department.

ACTIONS:

ADWJ are to provide details of the automatic control valve and details on the risk assessment of failure which has the potential for operational issues at the Gwandalan STP re: VGS. After details provided by ADWJ, CCC to provide review comments and preference of the arrangement at the CCC Gwandalan STP site boundary.

AWDJ to provide CCC with the draft design plans and design report for comment. Review comments will be incorporated, as best they can, into the final design.

Our Ref: DOC19/529851 Your Ref: 28/6/19

Mr Nick Jackman Senior Development Manager Coastal Hamlets Pty LTD 51 Riley Street Woolloomooloo NSW 2300

Dear Mr Jackman

Re: Review of Environmental Factors – Proposed Catherine Hill Bay Recycled Water Main

I refer to Coastal Hamlet's application to the NSW National Parks and Wildlife Service (NPWS) to install the Catherine Hill Bay Recycled Water Main through Lake Macquarie and Munmorah State Conservation Areas.

NPWS received your application in the form of a Review of Environmental Factors (REF) on 23rd November 2018. The REF could not be determined because the document was not complete and failed to comply with the statutory requirements of Part 5 of the *Environmental Planning and Assessment Act 1979* (EP&A Act).

Additional information was received in a revised REF on 13th May 2019 and this version is currently being determined.

A meeting with yourself and Ranger, Andrew Hampstead was held on Thursday 20th June 2019 regarding the proposed gate and bollard locations specified in the REF. After inspecting the proposed locations onsite, it was agreed that you would complete fencing sections along Kanangra Drive that amounted to 300-400 metres which would prevent illegal access in that area. A map indicating the proposed fence location is outlined in **Attachment 1** to this letter. Amendments to the REF that reflect the fencing agreement will need to be completed.

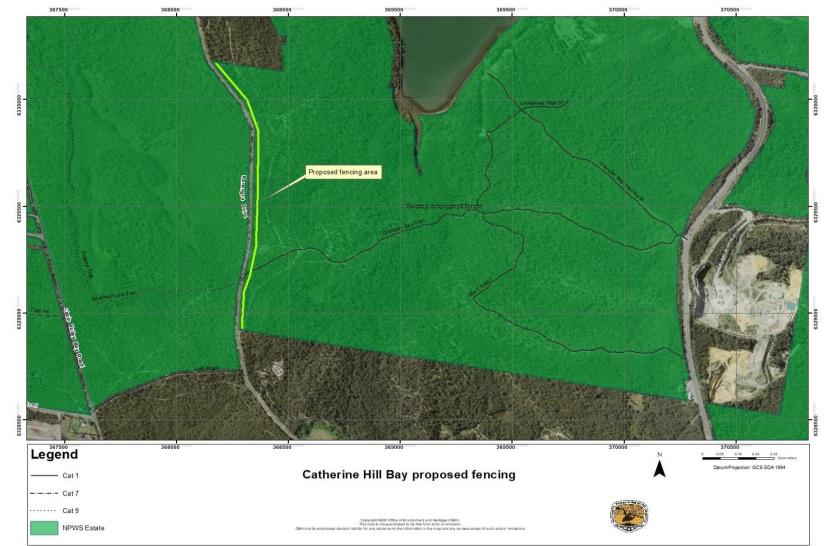
The following amendments to the REF will include:

- 1. Amendments to the drawings specified in Attachment 9 sheet 16 and 17
- 2. An addendum to the REF specifying the proposed fence location and fencing design specification
- 3. Reference to gate installation on page 22, 24 and 46 are not required

Please note that NPWS has stopped the determination 'clock' on the REF until such time as the proposed amendments to the fencing location plan and design specifications are completed and received.

Should you require further information please contact Ranger Andrew Hampstead on 4972 9007 or at andrew.hampstead@environment.nsw.gov.au.

PO Box 8068, Summerland Point NSW 2259 Blue Wren Drive WYBUNG NSW 2259 Tel: (02) 4974 9000 Fax: (02) 4972 9055 ABN 30 841 387 271 www.environment.nsw.gov.au Yours sincerely


's

STEVE ATKINS Manager, Central Coast Area Hunter Central Coast Branch National Parks and Wildlife Service

28 June 2019

Enclosure: Attachment 1 - Fencing map for the Catherine Hill Bay Recycled Water Main Review of Environmental Factors

Attachment 1: Fencing location map Catherine Hill Bay Recycled Water Main Review of Environmental Factors

i. Catherine Hill Bay Proposed Fencing Map

MINUTES OF MEETING

DATE: 23/01/2019

ATTENDEES: Ian Brown, Cameron Black, Rhys Johns (ADW Johnson) Brad Irwin, Craig Heininger, Alan Irving (Solo Water)

SURPLUS RECYCLED WATER TRANSFER PIPELINE – START UP DESIGN MEETING

INTRODUCTION:

Meeting held between ADW Johnson (ADWJ) and Solo Water regarding design of the surplus recycled water transfer main and recycled water pump station (RWPS) from Catherine Hill Bay (CHB) Recycled Water Treatment Plant (RWTP) operated by Solo Water to Gwandalan Wastewater Treatment Works (WWTW) operated by Central Coast Council. The aim is to discuss matters for consideration as part of the design and planning process. Agenda is to discuss items listed in ADWJ's RFI #1 (attached), with reference to Solo Water's initial responses, and any other issues and information requirements.

DISCUSSION POINTS:

The dot points for each ADWJ RFI #1 is listed below with discussion points added below:

- 1. Preferable pump run times and duration of pumping in order to determine pump flow rates.
- 8 hours per day
- Due to operational flexibility, flow balancing and risk management in consultation with Council
- 2. Information on future flows for ultimate staging.
- Design loads to be provided by Rose Group/AWDJ to Solo Water for design purposes
- Solo Water noted potential inclusion of 200 ET development at Middle Camp that should be considered in the design development along with existing villages at CHB and Middle Camp
- Solo outlined that the recycled water main must provide for the same ET loading as the potable bulk water meter design and Solo Water operational approval i.e.
 650 ET. This does not include the potential additional development of Middle Camp of 200 ET but it does include the Council and State Government requirement to

connect the existing Coastal Hamlets development to CHB and Middle Camp if required in the future.

3. Details of upstream tank

- 2 x 1 ML permeate irrigation water reservoirs which will be used to draw surplus recycled water from to avoid going through unnecessary processes i.e. Chlorine and UV, to send to Gwandalan WWTW
- Council agreed to surplus recycled water being drawn from the permeate irrigation water reservoir as they don't want free chlorine entering the plant process as it is a waste of energy and chemical
- 1 x 1 ML recycled water reservoir
- 1 x 1 ML potable water reservoir
- Permeate reservoir storage allows for approx. 10 days emergency storage depending on operational scenario - TBC
- Potable Water reservoir provides around 5 days storage (TBC). Must maintain at least 500 kL in potable water reservoir for firefighting purposes. Any required outage of the existing potable water line during construction of the recycled water line must be co-ordinated with Solo Water to allow for contingency measures to be put in place for potable water supply.
- WAE and other necessary details to be sent through by Solo Water

4. Allocated area on site for RWPS

- Solo Water have preference for the new RWPS to be located in the same area as the existing irrigation pump inside the RWTP building alongside the existing recycled and potable water pump skids in order to minimise cost for Rose Group
- ADW Johnson to check whether existing irrigation pump has capability to be reused as RWPS pump
- Location of new RWPS will need to be mindful of switchboard setback and other constraints inside the RWTP building
- Discussion was had around the need for a duty-standby pumping arrangement for contingency or whether a spare pump would suffice for design purposes
- Pumping arrangement to be assessed on a risk-based approach during design and pump selection

5. Details on the electrical power supply available on site

- Solo Water can provide electrical drawings for the RWTP site
- Required that Solo Water use their electrical subcontractor who understands the site to undertake electrical works, including electrical design and installation
- During pump selection process, Solo Water will consult with their electrical subcontractor to determine electrical requirements and foreseeable capacity constraints with the current switchboard
- Solo Water noted there is plenty of capacity and space in the current switchboards

6. Noise requirements on CHB RWTP site

- Current REF covers noise of the RWTP
- If pumps are located in the RWTP building, REF addendum to be prepared to assess new RWPS, however not seen to be issue considering other plant in the vicinity

 Solo Water raised who would be preparing the REF addendum outside the RWTP footprint where Solo Water would prepare documentation – ADWJ to confirm with Rose Group as this is needed to complete the IPART approval process that can take up to 12 months after lodgement

7. Drawings that show access arrangements to the proposed RWPS site

- As previously mentioned, preference for the new RWPS to be located in the same area as the existing irrigation pump inside the RWTP building
- Access arrangement will be considered as part of the design, although not likely to be an issue

8. Is telemetry currently provided on site for remote monitoring via Central Coast Council's existing SCADA system

- Solo Water have an existing SCADA system
- No link currently exists between the CHB RWTP site and Central Coast Council SCADA and preference is to keep it that way
- There is some read-only permission i.e. bulk water pump station mag flow meter, can be viewed on Solo Water SCADA. Envisaged that a similar system would be provided for the recycled water meter located at the Gwandalan WWTP.
- Solo Water noted that they would not allow Council direct access to their SCADA system for network security reasons, but would rather send or accept signals or alerts if needed
- Solo Water raised concerns about the provision of an electronically controlled automated control valve proposed to be located at Gwandalan WWTW. Noted that some type of control valve is required but Solo Water's preference is for the control valve to be mechanical only and not automated.
- Discussed use of a pressure sustaining valve (PSV) rather than an electronic control
 valve as a mechanical solution to avoid reliance on a signal as they currently
 experience issues with signals originating from Gwandalan
- ADWJ to consider inclusion of PSV for purposes of design, noting the potable bulk water main includes PSV for the same design reason

9. Security requirements for the RWPS

- Ideally the RWPS will be located inside the current RWTP building, replacing the existing irrigation pump, hence requiring no additional security
- In the case it does not fit in the location proposed, alternative security arrangements may need to be considered

10. WAE information of the existing watermain and any other private mains Solo Water maintain

- Solo Water to provide any WAE information on the existing recycled water, irrigation water, potable water and any other private mains for the purposes of the design
- Potential to re-use the existing DN125 PE100 PN16 irrigation main as part of the design to minimise cost to Rose Group pending hydraulic characteristics
- Solo Water showed the easiest location to cut-in to the main to minimise costs

11. Standard drawings or technical specifications that Solo Water will require the asset to be constructed to

- Solo Water noted to adopt Hunter Water's version of the WSAA Code as all other water and sewer on site at CHB was designed to that standard
- ADW Johnson noted Central Coast Council adopt Sydney Water's version of the WSAA Code – with key difference being the closing direction of valves
- Solo Water directed to adopt Hunter Water's convention for valve closure i.e. clockwise closing for convenience as they will be operating the assets, not Central Coast Council

12. Route preferences through existing and proposed stages

- Proposed alignment to follow the existing potable bulk water main corridor
- Design issues around the crossing of the Pacific Highway
- Solo Water have CCTV footage of culvert crossing showing the potable bulk water main threaded through. Solo Water to provide CCTV footage of the culvert crossing
- Potential to consider alternative alignment options i.e. Montefiore Street
- Solo Water mentioned that National Parks and Wildlife Services (NPWS) are to be consulted with during the design process and mentioned a Construction Risk Assessment (CRA) was developed for the previous potable bulk water main design which was sufficient for NPWS to assess.

13. Approved suppliers list i.e. for the pumps, if Solo Water have any

- Solo Water requested to be involved in the selection process for all mech/elec items including pumps, equipment and instrumentation
- Solo Water advised preference to use Grundfos for pump selection as they have a relationship with the supplier and hold critical spares of their parts
- Solo Water to install marker plates, everything else as per WSAA Code

14. Solo documentation review / approval process

- Solo Water to undertake design review for concept and detail design and equipment lists
- Solo Water to sign off on REF to cover works within Solo Area of operations only. Separate approval process for section of recycled water main through NPWS land and along Kanangra Drive.
- Design deliverables to be determined during the design process
- Solo Water nominated themselves to undertake construction review inspections for quality assurance

ACTIONS:

Solo Water to provide the following information:

- CCTV footage of the culvert crossing
- Construction photos, including those taken during concrete pier and footings near Pacific Highway crossing
- WAE of existing bulk water main

- WAE of existing recycled water (irrigation) main
- WAE of storage tanks (permeate and potable)
- Pump details of current recycled water (irrigation) pump
- Grundfos contact to consult with for pump selection

ADW Johnson to follow up on the following information from Rose Group

- Loadings and ET to be used for the design
- Who to prepare the REF addendum outside the RWTP site (Solo Water)

PRESSURE SUSTAINING VALVE CORRESPONDENCE

Rhys Johns

From:	Charlie Chow < charlie@bermad.com.au>
Sent:	Tuesday, 9 July 2019 11:03 AM
То:	Rhys Johns
Cc:	'Colin Kirkland'
Subject:	FW: RFI - Automatic Control Valve

G'Day Rhys,

Thank you for your email. I apologise for the delay in coming back to you but I have been snowed under with work. I sought a second opinion from our Colleague and he has also confirmed that the location you have chosen is sound. Please proceed as you would.

Thanks and regards Charlie Chow

Charlie Chow

New South Wales / Australian Capital Territory State Manager Phone (02) 9746 1788 Fax (02) 9746 1838 Mobile 0419 741 156 www.bermad.com.au

From: Colin Kirkland <colin@bermad.com.au> Sent: Tuesday, 9 July 2019 10:05 AM To: 'Charlie Chow' <charlie@bermad.com.au> Subject: RE: RFI - Automatic Control Valve

Charlie

There is no issue in fitting the pressure sustaining valve at this location and the HGL and static flow condition look correct.

Best regards

From: Charlie Chow <<u>charlie@bermad.com.au</u>> Sent: Monday, 8 July 2019 2:05 PM To: 'Colin Kirkland' <<u>colin@bermad.com.au</u>> Subject: FW: RFI - Automatic Control Valve

Hi Colin,

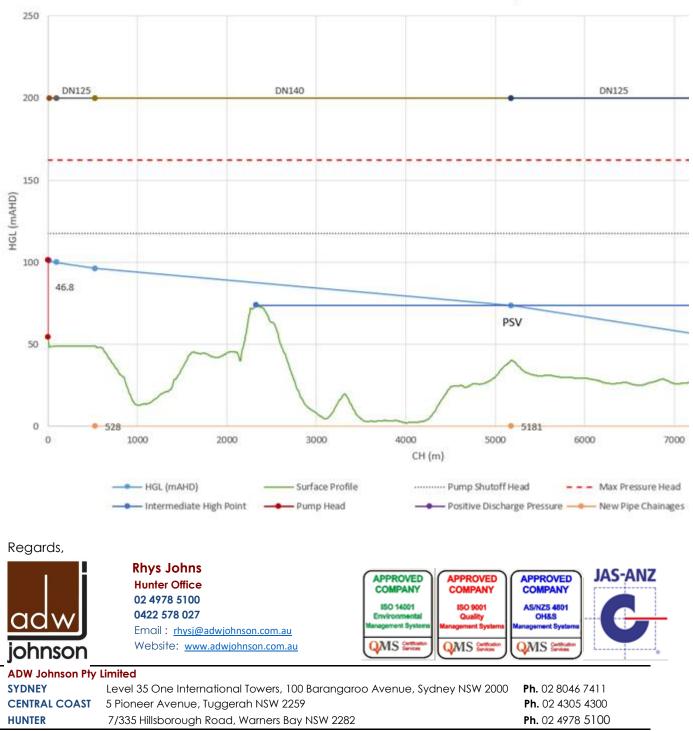
Can you please cast your eye over this email. Rhys Johns wants to mount the Air Valve at Chainage 5180. I see no problems.

Can you confirm or with your experience offer a a better location and any other pertinent comments that I can pass on.

Thanks and regards

Charlie

From: Rhys Johns <<u>rhysj@adwjohnson.com.au</u>>
Sent: Friday, 5 July 2019 2:19 PM
To: Charlie Chow <<u>charlie@bermad.com.au</u>>; <u>colin@bermad.com.au</u>
Cc: Cameron Black <<u>cameronb@adwjohnson.com.au</u>>
Subject: RE: RFI - Automatic Control Valve


Hi Charlie,

ADW Johnson are close to completing the draft detailed design package. We have proposed location of the valve at an accessible location along the alignment at approx. chainage 5180m.

I am hoping for some clarity around the operation, hydraulics and HGL at the PSV. Below I have produced screen shots from the (1) WATHAM modelling package showing the steady state analysis and (2) spreadsheet model analysis for steady state. Could you please provide comment on the likely steady state HGL, noting the difference in the two modelled scenarios?

(2) SPREADSHEET

Overflow Water Level HGL - 7.45L/s

THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

A please don't print this e-mail unless you really need to.

From: Charlie Chow <<u>charlie@bermad.com.au</u>>
Sent: Thursday, 23 May 2019 1:32 PM
To: Rhys Johns <<u>rhysj@adwjohnson.com.au</u>>
Cc: Cameron Black <<u>cameronb@adwjohnson.com.au</u>>
Subject: RE: RFI - Automatic Control Valve

G'Day Rys, Thank you for your email and the contents are noted. We still believe that the location of the Pressure sustaining valve at approx. Chainage 7000 is our preferred location. However, you as Designer has the final say.

The valve will be a Series 700, PN16 rated valve with Table D or Table E flanges trimmed with Copper tubing and Brass fittings.

Based on the following valve performance Criteria, we can confirm that there is no Cavitation concern and the expected life expectancy of the valve is 46,440 hours before a major overhaul provided the recommended maintenance is carried out at regular intervals.

As for the setting of the Pressure Sustaining valve, I suggest that we set the valve at approx.550 kpa. This means that when the pump starts up, the valve will open when the upstream pressure hits 550 kpa and remains open until the pump shuts down. When this occurs, the line pressure will drop and the valve will close when it senses the 550 kpa pressure. The Pressure Sustaining valve is built with a adjustable Pilot and you can vary the setting as you wish.

I hope this will assist you. Thanks and regards

Charlie Chow

 Charlie Chow

 New South Wales / Australian Capital Territory State Manager

 Phone (02) 9746 1788
 Fax (02) 9746 1838
 Mobile 0419 741 156

 www.bermad.com.au

From: Rhys Johns <<u>rhysj@adwjohnson.com.au</u>>
Sent: Wednesday, 22 May 2019 10:28 AM
To: Charlie Chow <<u>charlie@bermad.com.au</u>>
Cc: Cameron Black <<u>cameronb@adwjohnson.com.au</u>>
Subject: RE: RFI - Automatic Control Valve

Hi Charlie,

Thank you for sending through the information on the PSV. I understand the Bermad 700 Series Model 730 is being recommended for 'Preventing Line Emptying', as shown in the data sheet (attached) for scenario A.

Could I request more information in order to gain better understanding and confidence in the option proposed. I have attached a scan with some scribbled notes to demonstrate my concerns with more detail.

In the attachment 'Automatic Control Valve' I have shown the following information:

- Surface Profile (Green)
- Normal Operating HGL when the pumps are on (Blue)

Please note the client has preference for an automatic control valve (ACV) to avoid the need for any unwarranted telemetry and power supply infrastructure, also noting signal issues currently experienced due to the site location.

The purpose of implementing an automatic control valve (ACV) is to prevent the line from emptying and undesirable air entering into the pipeline for operational reasons. In order to achieve this I understand that the ACV needs to be located upstream of the discharge location either at ACV Location 1 or 2, as noted on the attachment. As expressed previously, my main concern is the operation of the ACV dependent on the location. The following zones for ACV Location 1 and 2 note the following operation:

- ACV Location 1 is characterised by zone 1 where the normal operating HGL (pump on) pressure > static HGL (pump off, valve closed) pressure. ACV Location 1 seems logical whereby the pilot setting would be set higher than 73.7 m AHD so that when the pump turns off, the valve will see a drop in pressure triggering the valve to close. Conversely, when the pumps turn on the valve will see a rise in pressure triggering the valve to open.
- 2. ACV Location 2 is characterised by zone 2 where the normal operating HGL (pump on) pressure < static HGL (pump off, valve closed) pressure. My concern with ACV Location 2 is that the pilot setting to close the valve is higher than the normal operating HGL.

Could you please respond to this email with some more information on the valve operation and how the Bermad 700 Series Model 730 located at chainage 7000, as initially proposed, will operate as intended? Could I also request some further information on cavitation and headloss through the valve in the open and closed (or 70% closed) position for the flowrate i.e. \sim 7.5 L/s or 27 m³/hr.

Your help is much appreciated.

aaw) johnson	Rhys Johns Hunter Office 02 4978 5100 0422 578 027 Email : rhysi@adwjohnson.com.au Website: www.adwjohnson.com.au	APPROVED COMPANY ASINZS 4801 OH&S Management Systems
ADW Johnson Pty	Limited	
SYDNEY	Level 35 One International Towers, 100 Barangaroo Avenue, Sydney NSW 2000	Ph. 02 8046 7411
CENTRAL COAST	5 Pioneer Avenue, Tuggerah NSW 2259	Ph. 02 4305 4300
HUNTER	7/335 Hillsborough Road, Warners Bay NSW 2282	Ph. 02 4978 5100

this message and any files transmitted with it are intended for the addressee only and are to be used only for the purposes of our clients INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

splease don't print this e-mail unless you really need to.

From: Charlie Chow <charlie@bermad.com.au> Sent: Tuesday, 21 May 2019 7:28 PM To: Rhys Johns <rhysj@adwjohnson.com.au> Subject: RE: RFI - Automatic Control Valve

G'Day Rys,

My apologies for the mis-understanding. I thought we have discussed the use of a Pressure Sustaining valve built as a Double Chamber, Fast action valve and to be located at approx. chainage 7000. Data Link:

https://www.bermad.com.au/products/730-pressure-reliefsustaining-valve/

We recommend that 50mm Combination Air Valves, PN16 rated should be mounted at all the three peaks as seen on the Profile of the pipeline.

Data link:

https://www.bermad.com.au/products/waterworks-air-release-valve-combination-ww-c30/

I hope this is sufficient information to assist you. If I can offer further assistance, please do not hesitate to call. Thanks and regards

Charlie Chow

Charlie Chow

New South Wales / Australian Capital Territory State Manager Phone (02) 9746 1788 Fax (02) 9746 1838 Mobile 0419 741 156 www.bermad.com.au

From: Rhys Johns <<u>rhysj@adwjohnson.com.au</u>> Sent: Tuesday, 21 May 2019 8:47 AM To: charlie@bermad.com.au Subject: RE: RFI - Automatic Control Valve

Hi Charlie,

How are you progressing with the details of the Automatic Control Valve for the proposed recycled water main application?

It would be great to receive something this week so we can continue with the design documentation.

Your help is much appreciated.

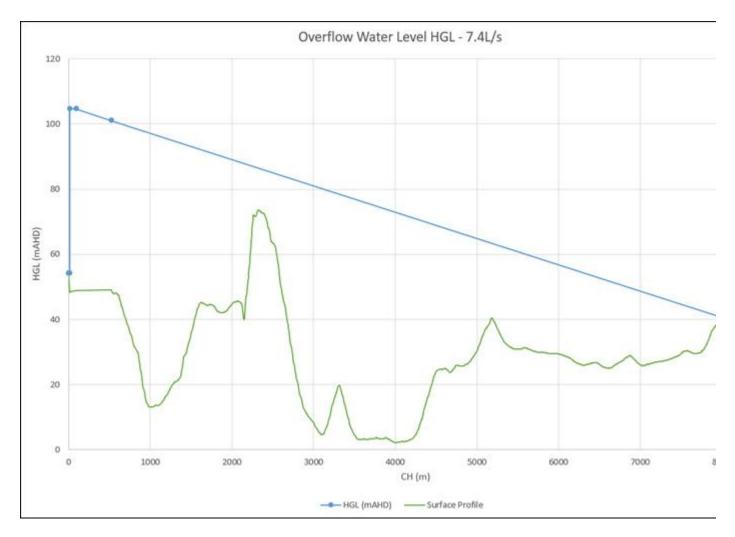
ad w johnson	Rhys Johns Hunter Office 02 4978 5100 0422 578 027 Email : rhysi@adwiohnson.com.au Website: www.adwiohnson.com.au	APPROVED COMPANY ASINZS 4801 OH&S Management Systems
ADW Johnson Pty	Limited	
SYDNEY	Level 35 One International Towers, 100 Barangaroo Avenue, Sydney NSW 2000	Ph. 02 8046 7411
CENTRAL COAST	5 Pioneer Avenue, Tuggerah NSW 2259	Ph. 02 4305 4300
HUNTER	7/335 Hillsborough Road, Warners Bay NSW 2282	Ph. 02 4978 5100

THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

splease don't print this e-mail unless you really need to.

From: Rhys Johns
Sent: Tuesday, 14 May 2019 3:13 PM
To: 'charlie@bermad.com.au' <<u>charlie@bermad.com.au</u>>
Subject: RFI - Automatic Control Valve

Hi Charlie,


We've received your contact details from Solo Water. ADW Johnson has been engaged to undertake the design of a proposed 8 km recycled water transfer main and pumping station in the Lake Macquarie region in NSW.

The system includes pumping over an intermediate high point being the Pacific Highway over to the discharge location being Council's wastewater treatment plant (WWTP).

We are looking at a solution for an automatic control valve i.e. not requiring power supply or telemetry requirements, to allow the following operating scenarios:

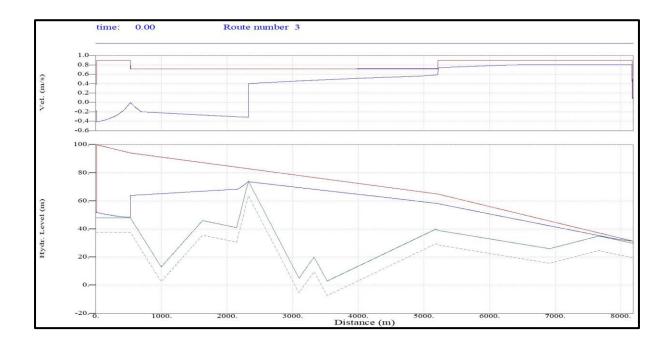
- 1. Under normal operating conditions the pipeline and valve will allow full flow while pumps are running; and
- 2. When the pump is idle, the valve would be required to close to prevent the main from draining the section of pipe between the intermediate high point and the discharge location.

Could you please assist with selecting the optimum product for the application? I've attached a screenshot of hydraulic calculations (noting no inclusion of head loss through the proposed ACV) in order to give you an appreciation for the project and hydraulic design parameters:

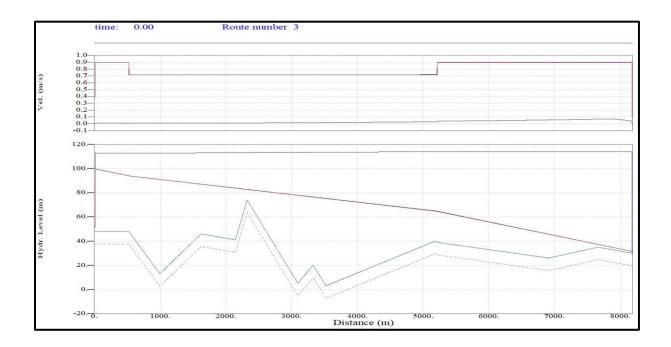
Do not hesitate to contact on the details provided below if you wish to discuss further. It would be ideal to meet in person if you have the time to discuss the project.

Regards,

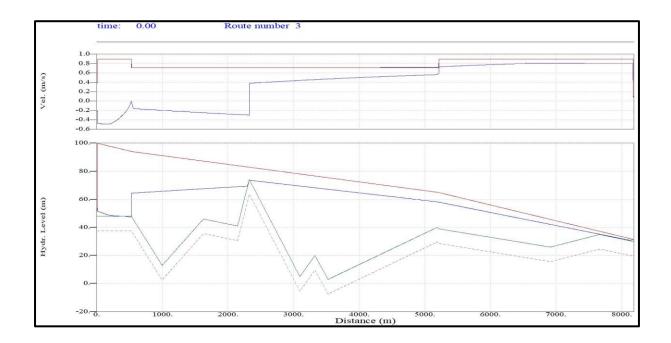
ad w johnson	Rhys Johns Hunter Office 02 4978 5100 0422 578 027 Email : <u>rhysj@adwjohnson.com.au</u> Website: <u>www.adwjohnson.com.au</u>	APPROVED COMPANY ISO 14001 Environmental Management Systems QMIS Contactor	APPROVED COMPANY ISO 9001 Quality Management Systems QMIS Centrator	APPROVED COMPANY AS/NZS 4801 OH&8 Managament Systems QMIS Cartes	JAS-ANZ
ADW Johnson Pty	Limited				
SYDNEY	Level 35 One International Towers, 100 Barangara	o Avenue, Syc	dney NSW 2000	Ph. 02 8046	7411
CENTRAL COAST	5 Pioneer Avenue, Tuggerah NSW 2259			Ph. 02 4305	4300
HUNTER	7/335 Hillsborough Road, Warners Bay NSW 2282			Ph. 02 4978	5100

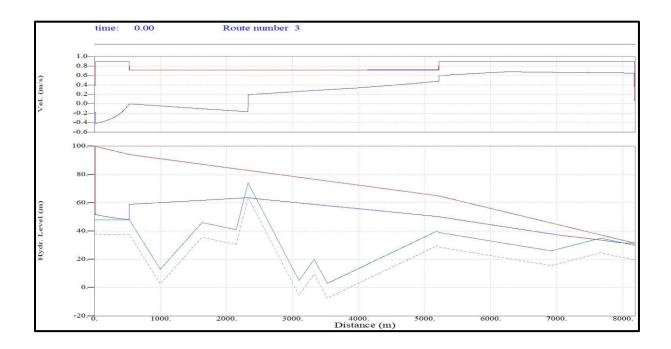

THIS MESSAGE AND ANY FILES TRANSMITTED WITH IT ARE INTENDED FOR THE ADDRESSEE ONLY AND ARE TO BE USED ONLY FOR THE PURPOSES OF OUR CLIENTS INSTRUCTIONS. ANY FILES HEREWITH ARE COPYRIGHT OF ADW Johnson Pty Ltd. AND ARE NOT TO BE COPIED FOR ANY OTHER PURPOSE OR STORED ON A RETRIEVAL SYSTEM WITHOUT THE EXPRESS WRITTEN PERMISSION OF ADW Johnson Pty Ltd.

A please don't print this e-mail unless you really need to.



WATHAM MODELLING RESULTS


<u>1 – Normal Pump Start</u>


<u>2 – Discharge Valve Closure</u>

<u>3 – Power Failure</u>

<u> 4 – Air Valve Failure</u>

PUMP INFORMATION

Company name: Created by: Phone:

02/07/2019

Qty. | Description

1

CRIE 20-3 NV-FGJ-A-E-HQQE

Note! Product picture may differ from actual product

Product No.: 99245018

Vertical, multistage centrifugal pump with inlet and outlet ports on same the level (inline). Pump materials in contact with the liquid are in stainless steel. A cartridge shaft seal ensures high reliability, safe handling, and easy access and service. Power transmission is via a rigid split coupling. Pipe connection is via combined DIN-ANSI-JIS flanges.

The pump is fitted with a 3-phase, fan-cooled, permanent-magnet, synchronous motor.

The motor efficiency is classified as IE5 in accordance with IEC 60034-30-2.

The motor includes a frequency converter and PI controller in the motor terminal box. This enables continuously variable control of the motor speed, which again enables adaptation of the performance to a given requirement. The operating panel on the motor terminal box features a four-inch TFT display, push-buttons and the Grundfos Eye indicator.

The display gives an intuitive and user-friendly interface to all functions. The push-buttons are used to navigate through the menu structure to access pump and performance data on site and enable setting of required setpoint as well as setting of pump to "Min." or "Max." operation or to "Stop".

Communication with the pump is also possible by means of Grundfos GO Remote (accessory). The remote control enables further settings as well as reading out of a number of parameters such as "Actual value", "Speed", "Power input" and total "Power consumption".

The Grundfos Eye indicator on the operating panel provides visual indication of pump status:

"Power on": Motor is running (rotating green indicator lights) or not running (permanently green indicator lights)

"Warning": Motor is still running (rotating yellow indicator lights) or has stopped (permanently yellow indicator lights)

"Alarm": Motor has stopped (flashing red indicator lights).

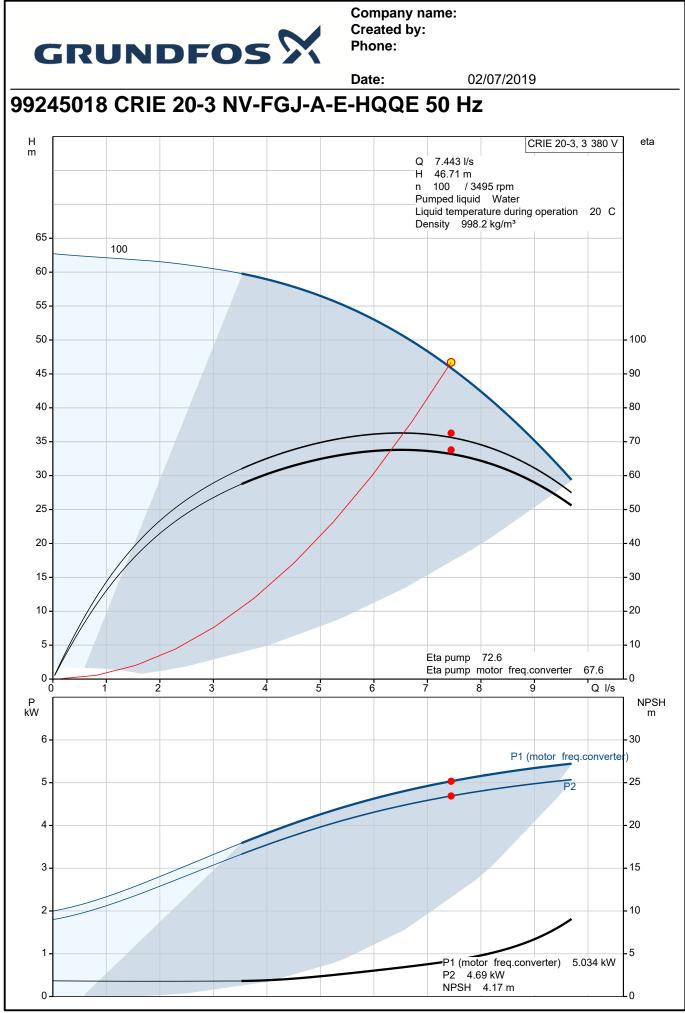
The terminal box has a number of inputs and outputs enabling the motor to be used in advanced applications where many inputs and outputs are required:

two dedicated digital inputs three analog inputs, 0(4)-20 mA, 0-5 V, 0-10 V, 0.5 - 3.5 V the factory-fitted pressure sensor is connected to one of these inputs 5 V voltage supply to potentiometer and sensor one analog output, 0-10 V, 0(4)-20 mA two configurable digital inputs or open-collector outputs

two Pt100/Pt1000 inputs

LiqTec, dry-running protection sensor input

Grundfos Digital Sensor input and output


Company name: Created by: Phone:

		Date:	02/07/2019	
Description				
24 V voltage supply for				
two signal-relay outputs	(potential-free contacts	s)		
GENIbus connection				
interface for Grundfos C	IM fieldbus module.			
Controls:				
Frequency converter:	Built-in			
Pressure sensor:	Y			
	•			
Liquid:				
Pumped liquid:	Water			
Liquid temperature range:	-20 120 C			
Selected liquid temperature:	20 C			
Density at selected liquid temp	erature: 998.2 kg/m ³			
Technical: Pump speed on which pump da	ata are based. 2526 r	nm		
Actual calculated flow:	7.443 l/s	hiii		
Rated flow:	7.028 l/s			
Resulting head of the pump:	46.71 m			
Pump orientation:				
•	Vertical			
Shaft seal arrangement: Code for shaft seal:	Single			
	HQQE			
Approvals on nameplate: Curve tolerance:	CE, EAC,ACS ISO9906:2012 3B			
Curve tolerance:	ISO9906:2012 3B			
Materials:				
Base:	Stainless steel			
	EN 1.4408			
	AISI 316			
Impeller:	Stainless steel			
	EN 1.4301			
	AISI 304			
Bearing:	SIC			
Installation:				
Maximum ambient temperature				
Maximum operating pressure:	16 bar			
Max pressure at stated temp:	16 bar / 120 C			
	16 bar / -20 C			
Type of connection:	DIN / ANSI / JIS			
Si e of inlet connection:	DN 50			
	2 inch			
Si e of outlet connection:	DN 50			
	2 inch			
Pressure rating for pipe connect				
Flange rating inlet:	300 lb			
Flange si e for motor:	FF265			
Electrical data:				
Motor standard:	IEC			
Motor type:	132SE			
IE Efficiency class:	IE5			
Rated power - P2:	1⊑5 5.5 kW			
Power (P2) required by pump:	5.5 kW			
	5.5 KW 50 H			
Mains frequency:	50 H 3 x 380-500 V			
Rated voltage: Rated current:				
I Raleo current:	10.3-8.20 A			

Company name: Created by:

	GRUNDFO	2sX	Created by: Phone:		
			Date:	02/07/2019	
Qty.	Description Rated speed: Efficiency:	360-4000 rpm 92.7			
	Motor efficiency at full load: Enclosure class (IEC 34-5): Insulation class (IEC 85): Motor No:	92.7 IP55 F 99137056			
	Others: Minimum efficiency index, MEI Net weight: Gross weight: Shipping volume:	: 0.70 81 kg 109 kg 0.37 m³			

Printed from Grundfos Product Centre [2019.03.001]

Company name: Created by: Phone:

		— ,, r			1		1		C = · -		г .
Description	Value	H				~	7 4 40 11		CRIE	20-3, 3 380 V	
General information:		_					7.443 l/s 46.71 m				
Product name:	CRIE 20-3 NV-FGJ-A-E-HQQE	65 -				n Pum	100 / 34 nped liquid	Water			
Product No:	99245018			100		Liqu Don	id tempera sity 998.	ture dur 2 ka/m ³	ing oper	ation 20 C	
EAN number:	5712609404381	60 -				Den	Sity 990.	2 Kg/III			
Technical:	57 12000404001	55 -									
Pump speed on which pump data are based:	3526 rpm	50 -									- 100
	7 440 1/-	45 -							\mathbf{X}		- 90
Actual calculated flow:	7.443 l/s	40 -									- 80
Rated flow:	7.028 l/s	35 -							-		70
Resulting head of the pump:	46.71 m					/		+			
Head max:	63.3 m	30 -			/						- 60
Stages:	3	25 -					/	·			- 50
Impellers:	3	20 -									40
Number of reduced-diameter impellers:	0	 15 -									- 30
Low NPSH:	Ν	10 -				/					- 20
Pump orientation:	Vertical	5-						_			10
Shaft seal arrangement:	Single						ta pump ta pump m		a.conve	rter 67.6	
Code for shaft seal:	HQQE			1 2	3		1 1 1 5	-	7 8	9 Q I/s	T ⁰
Approvals on nameplate:	CE, EAC,ACS	P [. 2	5			<u> </u>] N
Curve tolerance:	ISO9906:2012 3B	kW									
Pump version:	NV								P1 (I	notor freq.co	nverte
Model:	A	5 -								P2	- 25
Materials:	<i>/</i>									-	0.00
Base:	Stainless steel	4 -									- 20
Dase.	EN 1.4408	3-									- 15
	AISI 316		_								
Impollori		2-								/	10
Impeller:	Stainless steel	1-							onverter) 5.034 kW	-5
	EN 1.4301					_	P2 4.6				
	AISI 304	L 0									L ₀
Material code:	A										
Code for rubber:	E										
Bearing:	SIC										
Installation:											
Maximum ambient temperature:	50 C										
Maximum operating pressure:	16 bar										
Max pressure at stated temp:	16 bar / 120 C										
	16 bar / -20 C										
Type of connection:	DIN / ANSI / JIS										
Si e of inlet connection:	DN 50										
	2 inch										
Si e of outlet connection:	DN 50										
	2 inch										
Pressure rating for pipe connection:	PN 25										
Flange rating inlet:	300 lb										
Flange si e for motor:	FF265										
Connect code:	FGJ										
Liquid:											
Pumped liquid:	Water										
Liquid temperature range:	-20120 C										
Selected liquid temperature:	20 C										
Density at selected liquid temperature:	998.2 kg/m³										
Electrical data:											
Motor standard:	IEC										
Motor type:	132SE										
IE Efficiency class:	IE5										
Rated power - P2:	5.5 kW										
Power (P2) required by pump:	5.5 kW										

Printed from Grundfos Product Centre [2019.03.001]

Company name: Created by: Phone:

		Date:	02/07/2019
Description	Value		
Mains frequency:	50 H	-	
Rated voltage:	3 x 380-500 V		
Rated current:	10.3-8.20 A		
Cos phi - power factor:	0.92-0.88		
Rated speed:	360-4000 rpm		
Efficiency:	92.7		
Motor efficiency at full load:	92.7		
Enclosure class (IEC 34-5):	IP55		
Insulation class (IEC 85):	F		
Motor protec:	YES		
Motor No:	99137056		
Controls:			
Control panel:	Graphical		
Function Module:	FM300 - Advanced		
Frequency converter:	Built-in		
Pressure sensor:	Y		
Others:			
Minimum efficiency index, MEI :	0.70		
Net weight:	81 kg		
Gross weight:	109 kg		
Shipping volume:	0.37 m³		
Sales region:	Australia		

DRAFT FUNCTIONAL SPECIFICATION

Surplus Recycled Water Transfer Scheme – Draft Functional Design Description

PARENT EQUIPMENT NUMBER: XXXXX

1.0 INTRODUCTION

The Surplus Recycled Water Transfer Scheme (SRWTS) will comprise of components:

- 1. A pump station located within the CHB AWTP building;
- 2. A transfer pipeline of variable diameter ranging between DN125 and DN140 HDPE;
- 3. A pressure sustaining valve located within a pit adjacent to Kanagra Drive;
- 4. Various air valve and scour hydrants located along the transfer pipeline;
- 5. An isolation valve located at the boundary of the Gwandalan WWTP; and
- 6. Various pipework and fittings within the Gwandalan WWTP which will be owned, operated and maintained by Central Coast Council.

2.0 PUMPING STATION

The pumping station will comprise the existing Grundfos CRIE 20-3 vertical, multistage centrifugal pump (PMP-9300). The pump shall remain as a Variable Speed Drive pump programmed to ramp up to 100% speed over a 30 second period. The pump shall also be programmed to ramp down from 100% speed to off over a similar 30 second period. The ramp up and down time frame should be programable via the Danfoss VSD located on the MCC02- PLC2 switchboard.

A standby pump will be provided as a 'hot spare' which will require installation and change over in the scenario the lead duty pump is offline.

Pumping will be based on the amount of surplus recycled water generated by the AWTP on a daily basis based over a 12-hour maximum pumping duration. The lead duty pump is nominally rated at 7.36 L/s @ 46.4 m head for the motor's 100% synchronous speed (3530 rpm).

Suction will be from the existing outlet pipe from the MBR Permeate Storage Tank on slab level 48.621 m AHD. The suction HGL varies between the Tanks High-High or Overflow Level RL 53.929 m AHD and the Low-Low or Bottom Water Level (BWL) RL 48.796 m AHD.

The RWTP Site is already provided with PLC control c/w battery backup and an emergency standby generator with auto changeover switch for use in the event of loss of normal power supply.

Under normal pump operational mode, the pump will be in automatic mode and controlled via the PLC set points.

3.0 PUMP STATION ELECTRICAL CONTROLS

The pump station existing configuration is being retained as part of the scheme. The following WAE documentation is to be referred to for the pump station electrical controls:

- Switchboard Recycled Water Pump Station & Potable Water Pump Station (MCC02– PLC03)
- PMP-9300 Discharge Pump
- Danfoss 5.0kW 11kW VSD 10A switchboard mounted
- RWPSPS switchboard supplied by 3 phase 415VAC supply from Main Switchboard (MSB01)

Refer to Control System Network Diagram (SW-56-CSN-E-001) for details.

4.0 OPERATING MODES

The modes of operation for the SRWTPS include:

- 1. Remote Automatic Mode
- 2. Remote -Manual
- 3. Local Mode
- 4. Sequence Control (N/A)

'Remote - Automatic Mode' where Solo Water is not restricted by Central Coast Council.

This mode is the normal mode of operation for the plant. The pump will operate under the following operational mode:

- 1. Level in tank is greater than the operator adjustable <u>set point SRWTPS pump cut-in</u> <u>level;</u>
- 2. <u>Set point time</u> (operator adjustable) is met (to coincide with off-peak power supply periods i.e. 20:00 hrs through to 08:00 hrs); and
- 3. The level in tank is greater than the SRWTPS pump stop level and the Permeate Tank Low-Low <u>set point minimum level</u>.
- 4. The equipment must have all fault conditions healthy to be able to start and run. In addition, all process interlocks are also required to be healthy in this mode. The fault conditions and process interlocks are to be defined during detailed design in accordance with SW PLC standards.

The pumps will cease operation given the following conditions are met:

- 1. Level in the tank falls below the SRWTPS *pump stop level set point*;
- 2. A *pump stop alarm* is raised due to any fault condition or process interlock failure; and
- 3. Time of operation falls outside the <u>Set Point Time</u> period.

The following operational parameters under this mode of operation include:

- Ability to operate the pump on an adjustable timer/duration control when the water level is within the acceptable operational BWL/TWL band;
- Adjustable normal operation TWL to ensure available storage to accept incoming flows from the MBR tank;

- Adjustable normal operating BWL override to shut the pump down to ensure a minimum volume of water for later recycling;
- Low-low level shutoff; and
- High-high level override to pump outside the Set Point Time period.

'Remote – Inhibit Mode' where Solo Water inhibit pump operation as directed by Central Coast Council or other.

The following operational parameters under this mode of operation include:

- Mode to be manually selected from SCADA following direction from Central Coast Council;
- This operational scenario will require the provision of an additional alarm set point to the 'normal operation' alarm set points. The additional alarm would be trigger if the recycled water permeate tank reaches XX% full (operator adjustable). This would then allow sufficient time for the plant operators to arrange for tankering of permeate water if required; and
- No pump override is available in this operation scenario.

'Remote – Manual' Operation Mode where Solo Water operate the system manually not automated. This mode allows the equipment to be remotely controlled manually on the SCADA system.

'Local Mode' where Solo Water operators will be able to start and stop the equipment at the equipment site independently of the SCADA system while in this mode (usually via pushbuttons on the switchboard).

The pump may only be started locally from the switchboard via the Variable Speed Drive keypad located on the switchboard panel if required.

5.0 PUMP CONTROL SCADA SET POINTS

The control system is to be designed in accordance with SW PLC Code Standard and SCADA Standards.

The PLC shall be programmed to receive the following signals:

- Control Mode: Remote Automatic / Remote Inhibit / Remote Manual / Local Control;
- Tank level: high / high-high / low / low-low;
- Suction pressure: high / low;
- Downstream pressure: high / low;
- Flowmeter output: total flow / instantaneous flow / no-flow / high-flow; and
- Pump: healthy / not healthy.

The PLC shall be programmed to allow the following user adjustable set points:

- Pump normal cut-in level;
- Pump normal cut-out level;
- Pump time start;
- Pump time stop; and
- Pump speed set point.

Review and optimisation of the PLC system configuration and process interlocks will be undertaken during development of the function specification as part of SCADA detailed design process by Solo Water.

Recycled Water Transfer pump system operating levels are provided in existing RWTS functional description and below in **Table 1**.

Table 1: RWTS operating set point

Description	SCADA Setpoint	Reduced Level (m AHD)
Excess Recycled Discharge Start Level	ТВС	TBC
Low-Low	ТВС	ТВС
Low	TBC	ТВС
High	ТВС	TBC
High High (Overflow)	ТВС	TBC
Excess Recycled Discharge Stop Level	ТВС	TBC

An extract from the current RWTP Functional Description is shown below for reference.

1.5.2 TNK-9200 Permeate Discharge Reservoir - Operating Levels

TAG PREFIX	TAG SUFFIX	STD	ADDITIONAL FUNCTIONALITY	ALARM CAT	VALUE	RL TO GROUND	UNITS
LIT-9200	Range	YES	Instrument Range (20mA – 4mA)	-	6.000	6.000	m
LIT-9200	Overflow		Level of overflow	-	5.330	5.330	
LSA-9202	HighLS	YES	High-High Level Switch Alarm (independent of LIT-9202)	1	5.280	5.280	m
LIT-9200	HighHigh	YES	High-High Level Alarm	1	4.800	4.800	m
LIT-9200	High	YES	High Level Alarm	2	4.600	4.600	m
LIT-9200	Low	YES	Low Level Alarm	2	0.800	0.800	m
LIT-9200	LowLow	YES	Low-Low Level Alarm	1	0.500	0.500	m
LSA-9201	LowLS	YES	Low Level Switch Alarm (Independent of LIT-9201)	1	0.300	0.300	m
LIT-9200	Zero	YES	Hanging height of the probe from bottom	-	0.200	0.200	m

6.0 MONITORING

Two existing pressure transmitters are already installed, one connected to the suction manifold and one connected to the delivery manifold. The pressure transmitters are directly mounted to the pipe fittings and are used for monitoring purposes via the SCADA and to raise alarms for *low suction pressure* and *low delivery pressure*. The signals from the transmitters are displayed in SCADA and on the transmitter panel.

The delivery pipeline is fitted with an electromagnetic flowmeter (FIT-9301) at the Solo RWTP. This will be for monitoring *instantaneous* and *totalised flows* with output signals displayed on SCADA. Totalised flows are to be made available on SCADA. These can be manually compared with the totalised flows generated by the Central Coast Council flowmeter at the end of the delivery main to identify any potential leakage issues or anomalies along the pipeline.

<u>Pump speed as %</u> of full speed on the VSD is to be displayed on the SCADA and is to be operator adjustable remotely via the SCADA.

7.0 ALARMS AND PUMP PROTECTION

Alarms and pump protection are to be in place for pump faults, power failure, change in pressure, excessive pump run times, excessive pump starts and high flow. The full list of alarms and protection will be confirmed upon finalisation of the functional description. An example if alarms and protection triggers are outlined below.

Alarm Description	Alarm Trigger	Alarm Priority						
LOW SUCTION PRESSURE	Suction Pressure drops below set level for a sustained period as measured by the suction pressure transmitter	MEDIUM SCADA Alarm raised						
MINIMUM SUCTION PRESSURE/PUMP STOP	Suction pressure drops below set level for a sustained period as measured by the suction pressure transmitter	MEDIUM SCADA Alarm raised Pump is to automatically stop						
LOW DELIVERY PRESSURE	Delivery pressure falls below set level for a sustained period as measured by the delivery pressure transmitter	MEDIUM SCADA Alarm raised						
MINIMUM DELIVERY PRESSURE/PUMP STOP	Delivery pressure falls below set level for a sustained period as measured by the delivery pressure transmitter	MEDIUM SCADA Alarm raised Pump is to automatically stop						
NO FLOW	If the flow switch or flow meter does not detect flow after 2 minutes from when the pump starts or is running	HIGH SCADA Alarm raised Pump run inhibited						
SURPLUS RECYCLED HIGH LEVEL OVERRIDE	If the SWRP starts operating during a high tank level override event	HIGH SCADA Alarm raised						
HIGH TANK LEVEL	If the high level indicator in the tank is reached while pumps are running	HIGH SCADA Alarm raised						
LOW TANK LEVEL	If the low level indicator in the tank is reached while pumps are running	HIGH SCADA Alarm raised						

Minimum suction pressure pump protection is to apply during manual operation of the pumps.

An extract from the current RWTP Functional Description is shown below for reference.

Tag	Instrument	On Delay	Off Delay
RWTP-P-9000	WATER STORAGE TANKS		
LSA-9101	Class A+ Recycled Water Reservoir (Res-9100) - Level Switch - Low	2 sec	5 sec
LSA-9102	Class A+ Recycled Water Reservoir (Res-9100) - Level Switch - High	2 sec	5 sec
LSA-9201	Permeate Discharge Reservoir (Res-9200) - Level Switch - Low	2 sec	5 sec
LSA-9202	Permeate Discharge Reservoir (Res-9200) - Level Switch - High	2 sec	5 sec
LSA-9301	Permeate Reservoir (Res-9300) - Level Switch - Low	2 sec	5 sec
LSA-9302	Permeate Reservoir (Res-9300) - Level Switch - High	2 sec	5 sec
LSA-9401	Potable Water Reservoir (Res-9400) - Level Switch - Low	2 sec	5 sec
LSA-9402	Potable Water Reservoir (Res-9400) - Level Switch - High	2 sec	5 sec
RWTP-P-9100	COMMON PROCESS STORAGE TANKS		
LSA-9100	Storage Tank Sump - Level Switch - High	2 sec	5 sec

Taa	Instrument	Range II		Unite	Low-	Low	High	High-	Vol	Vol	ROC
Tag	insiromeni	Min	Max	Units	Low	LOW	пign	High	KI/d	kL	RUC
· · · · ·	TIESSUIE					(<u> </u>	1	· · · · · ·	·	·
AIT-9200	Permeate Discharge Reservoir (Res-9200) - TDS	5	2000	u\$/cm	1	2	1180	1200	-	-	-
LIT-9100	Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor	0.00	6.0	m	0.500	0.800	4.600	4.8	-	~	~
LIT-9200	Permeate Discharge Reservoir (Res-9200) - Level Sensor	0.00	6.0	m	0.500	0.800	4.600	4.8	-	~	~
LIT-9300	Permeate Reservoir (Res- 9300) - Level Sensor	0.00	6.0	m	0.500	0.800	4.600	4.8	-	~	~
LIT-9400	Permeate Reservoir (Res- 9400) - Level Sensor	0.00	6.0	m	0.500	0.800	4.600	4.8	-	~	~
FIT-9301	Discharge Pump (PMP- 9300) - Discharge Flow	0.00	20.0	l/s	0.0	0.0	4.0	5.0	~	-	-
PIT-9301	Discharge Pump (PMP- 9300) - Suction Main Pressure	0.000	1000	kPA	10	50	100	250	-	-	-
PIT-9302	Discharge Pump (PMP- 9300) - Discharge Main Pressure	0.000	1000	kPA	10	50	100	250	-	-	-
	LIT-9100 LIT-9200 LIT-9300 LIT-9400 FIT-9301 PIT-9301	AIT-9200 Permeate Discharge Reservoir (Res-9200) - TDS LIT-9100 Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor LIT-9200 Permeate Discharge Reservoir (Res-9200) - Level Sensor LIT-9200 Permeate Reservoir (Res- 9300) - Level Sensor LIT-9300 Permeate Reservoir (Res- 9300) - Level Sensor LIT-9400 Permeate Reservoir (Res- 9400) - Level Sensor FIT-9301 Discharge Pump (PMP- 9300) - Discharge Flow PIT-9301 Discharge Pump (PMP- 9300) - Suction Main Pressure Discharge Pump (PMP- 9300) - Discharge Pump (PMP- 9300) - Discharge Pump (PMP- 9300) - Discharge Main	TagInstrumentMinAIT-9200Permeate Discharge Reservoir (Res-9200) - TDS5LIT-9100Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor0.00LIT-9200Permeate Discharge Reservoir (Res-9200) - Level Sensor0.00LIT-9200Permeate Discharge Reservoir (Res-9200) - Level Sensor0.00LIT-9300Permeate Reservoir (Res- 9300) - Level Sensor0.00LIT-9400Permeate Reservoir (Res- 9400) - Level Sensor0.00FIT-9301Discharge Pump (PMP- 9300) - Discharge Flow0.00FIT-9301Discharge Pump (PMP- 9300) - Suction Main Pressure0.000PIT-9302Discharge Pump (PMP- 9300) - Discharge Main Pressure0.000	TagInstrumentMinMaxAIT-9200Permeate Discharge Reservoir (Res-9200) - TDS52000LIT-9100Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor0.006.0LIT-9200Permeate Discharge Reservoir (Res-9200) - Level Sensor0.006.0LIT-9200Permeate Reservoir (Res-9200) - Level Sensor0.006.0LIT-9200Permeate Reservoir (Res- 9300) - Level Sensor0.006.0LIT-9300Permeate Reservoir (Res- 9400) - Level Sensor0.006.0LIT-9400Permeate Reservoir (Res- 9400) - Level Sensor0.006.0FIT-9301Discharge Pump (PMP- 9300) - Discharge Flow0.001000PIT-9301Discharge Pump (PMP- 9300) - Suction Main Pressure0.0001000PIT-9302Discharge Pump (PMP- 9300) - Discharge Main Pressure0.0001000	TagInstrumentMinMaxUnitsAIT-9200Permeate Discharge Reservoir (Res-9200) - TDS52000uS/cmLIT-9100Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor0.006.0mLIT-9200Permeate Discharge Reservoir (Res-9200) - Level Sensor0.006.0mLIT-9200Permeate Reservoir (Res-9200) - Level Sensor0.006.0mLIT-9200Permeate Reservoir (Res- 9300) - Level Sensor0.006.0mLIT-9300Permeate Reservoir (Res- 9400) - Level Sensor0.006.0mLIT-9400Permeate Reservoir (Res- 9400) - Level Sensor0.006.0mFIT-9301Discharge Pump (PMP- 	TagInstrumentMinMaxUnitsLowAIT-9200Permeate Discharge Reservoir (Res-9200) - TDS52000uS/cm1LIT-9100Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor0.006.0m0.500LIT-9200Permeate Discharge Reservoir (Res-9200) - Level Sensor0.006.0m0.500LIT-9200Permeate Discharge Reservoir (Res-9200) - Level Sensor0.006.0m0.500LIT-9200Permeate Reservoir (Res- 9300) - Level Sensor0.006.0m0.500LIT-9300Permeate Reservoir (Res- 9400) - Level Sensor0.006.0m0.500LIT-9400Permeate Reservoir (Res- 9400) - Level Sensor0.006.0m0.500FIT-9301Discharge Pump (PMP- 9300) - Discharge Flow0.001000kPA10PIT-9302Discharge Pump (PMP- 9300) - Discharge Main Pressure0.0001000kPA10PIT-9302Discharge Pump (PMP- 9300) - Discharge Main Pressure0.0001000kPA10	Tag Instrument Min Max Units Low Low AIT-9200 Permeate Discharge Reservoir (Res-9200) - TDS 5 2000 uS/cm 1 2 LIT-9100 Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor 0.00 6.0 m 0.500 0.800 LIT-9200 Permeate Discharge Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 LIT-9200 Permeate Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 LIT-9200 Permeate Reservoir (Res- 9300) - Level Sensor 0.00 6.0 m 0.500 0.800 LIT-9400 Permeate Reservoir (Res- 9400) - Level Sensor 0.00 6.0 m 0.500 0.800 FIT-9301 Discharge Pump (PMP- 9300) - Discharge Flow 0.00 20.0 1/s 0.0 0.0 PIT-9302 Discharge Pump (PMP- 9300) - Suction Main Pressure 0.000 1000 kPA 10 50	Tag Instrument Min Max Units Low Low High AIT-9200 Permeate Discharge Reservoir (Res-9200) - TDS 5 2000 uS/cm 1 2 1180 LIT-9200 Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 LIT-9200 Permeate Discharge Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 LIT-9200 Permeate Discharge Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 LIT-9300 Permeate Reservoir (Res- 9300) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 LIT-9400 Permeate Reservoir (Res- 9400) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 FIT-9301 Discharge Pump (PMP- 9300) - Discharge Flow 0.00 20.0 I/s 0.0 0.0 4.0 PIT-9302 Discharge Pump (PMP- 9300) - Discharge Main Pressure 0.000 1000	Tag Instrument Min Max Units Low Low High <	Tag Instrument Min Max Units Low Low High Migh KI/d AIT-9200 Permeate Discharge Reservoir (Res-9200) - TDS 5 2000 uS/cm 1 2 1180 1200 - LIT-9200 Permeate Discharge Reservoir (Res-9200) - TDS 5 2000 uS/cm 1 2 1180 1200 - LIT-9100 Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - LIT-9200 Permeate Discharge Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - LIT-9200 Permeate Reservoir (Res- 9300) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - LIT-9400 Permeate Reservoir (Res- 9400) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - FIT-9301 Discharge Pump (PMP- 9300) - Discharge Flow 0.00	Tag Instrument Min Max Units Low Low High High KI/d kL AIT-9200 Permeate Discharge Reservoir (Res-9200) - TDS 5 2000 uS/cm 1 2 1180 1200 - - UT-9100 Class A+ Recycled Water Reservoir (Res-9100) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - ✓ UT-9100 Permeate Discharge Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - ✓ UT-9200 Permeate Discharge Reservoir (Res-9200) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - ✓ UT-9200 Permeate Reservoir (Res- 9300) - Level Sensor 0.00 6.0 m 0.500 0.800 4.600 4.8 - ✓ UT-9400 Permeate Reservoir (Res- 9400) - Level Sensor 0.00 20.0 I/s 0.0 0.00 4.600 4.8 -

LIT-9200	dsHiHi	Permeate Water Reservoir 1 Level Sensor - High High Alarm	HIGH
LIT-9200	dsHi	Permeate Water Reservoir 1 Level Sensor - High Alarm	MEDIUM
LIT-9200	dsLo	Permeate Water Reservoir 1 Level Sensor - Low Alarm	LOW
LIT-9200	dsLoLo	Permeate Water Reservoir 1 Level Sensor - Low Low Alarm	MEDIUM
LIT-9200	dsLoopFlt	Permeate Water Reservoir 1 Level Sensor - Invalid Alarm	HIGH
			1

100	LSA-9202	dsFault	CRITICAL	
101	LSA-9202	dsProbeFault	Permeate Water Reservoir 1 - Level Sensor Probe Fault Alarm	MEDIUM
102	LSA-9202	dsFault	Permeate Water Reservoir 1 - Level Sensor Fault Alarm	MEDIUM
	I			1

SAFETY IN DESIGN REPORT

	DESIGNERS SAFETY REPORT									
	ADW JOHNSON PTY LTD SURVEYING, ENGINEERING & PLANNING CONSULTANTS				Project:	Recycled Water Main Catherine Hill Bay	Project No:	211688(13)		
	Hunter Region Office //335 Hillsborough Road Warners Bay						Revision:	A		
aaw					Description:	Recycled Water Main	Page No:	1 of 1		
IODDCOD	rax: 4978 5199 Email: hunter@adwjohnson.com.au	Client:	Rose Group Pty Ltd	Date:	15/07/2019					
	RECIPIENTS					1				
Organisation	Attention	Method	Copies	Format	Reason					
Rose Group	Nick Jackman	E	1	A4]				
			DOCU	MENTS						
Document Reference	Document Title	Revision	Date		Document Reference	Document Title	Revision	Date		
11688(13)-RWAT-001	Cover Sheet, Locality Plan and Drawing Index	E								
11688(13)-RWAT-002	Overall Site Plan	E		4				-		
11688(13)-RWAT-003	Recycled Water Main Alignment Plan – Sheet 1	E		4			+			
11688(13)-RWAT-004	Recycled Water Main Alignment Plan – Sheet 2	E		4			+	+		
11688(13)-RWAT-005 11688(13)-RWAT-006	Recycled Water Main Alignment Plan – Sheet 3 Recycled Water Main Alignment Plan – Sheet 4	E		4			+	+		
11688(13)-RWAT-006	Recycled Water Main Alignment Plan – Sheet 4 Recycled Water Main Alignment Plan – Sheet 5	F	1	1			1	+		
11688(13)-RWAT-008	Recycled Water Main Alignment Plan – Sheet 6	Ē						-		
11688(13)-RWAT-009	Recycled Water Main Alignment Plan – Sheet 7	Ē								
11688(13)-RWAT-010	Recycled Water Main Alignment Plan – Sheet 8	E		1				1		
11688(13)-RWAT-011	Recycled Water Main Alignment Plan – Sheet 9	E								
11688(13)-RWAT-012	Recycled Water Main Alignment Plan – Sheet 10	E								
11688(13)-RWAT-013	Recycled Water Main Alignment Plan – Sheet 11	E								
11688(13)-RWAT-014	Recycled Water Main Alignment Plan – Sheet 12	E		-						
11688(13)-RWAT-015 11688(13)-RWAT-016	Recycled Water Main Alignment Plan – Sheet 13 Recycled Water Main Alignment Plan – Sheet 14	F		-						
11688(13)-RWAT-017	Recycled Water Main Alignment Plan – Sheet 14 Recycled Water Main Alignment Plan – Sheet 15	E		-				-		
11688(13)-RWAT-018	Recycled Water Main Alignment Plan – Sheet 16	Ē						1		
11688(13)-RWAT-019	Recycled Water Main Alignment Plan – Sheet 17	E								
11688(13)-RWAT-020	Recycled Water Main Alignment Plan – Sheet 18	E		1				1		
11688(13)-RWAT-021	Recycled Water Main Alignment Plan – Sheet 19	E								
11688(13)-RWAT-022	Recycled Water Main Alignment Plan – Sheet 20	E								
11688(13)-RWAT-023	Recycled Water Main Alignment Plan – Sheet 21	E								
11688(13)-RWAT-024	Recycled Water Main Alignment Plan – Sheet 22	E		-						
11688(13)-RWAT-025	Recycled Water Main Alignment Plan – Sheet 23 Recycled Water Main Setout Table	E F		-						
11688(13)-RWAT-026 11688(13)-RWAT-027	Recycled Water Main Setout Table Recycled Water Main Longitudinal Section – Sheet 1	F		-				-		
11688(13)-RWAT-027 11688(13)-RWAT-028	Recycled Water Main Longitudinal Section – Sneet 1 Recycled Water Main Longitudinal Section – Sheet 2	E	1	1			+	+		
11688(13)-RWAT-028	Recycled Water Main Longitudinal Section – Sheet 2	Ē	1	1			1	+		
11688(13)-RWAT-030	Recycled Water Main Longitudinal Section – Sheet 4	Ē	1	1			1	1		
11688(13)-RWAT-031	Recycled Water Main Longitudinal Section – Sheet 5	E		1				1		
11688(13)-RWAT-032	Recycled Water Main Longitudinal Section - Sheet 6	E]						
11688(13)-RWAT-033	Recycled Water Main Longitudinal Section – Sheet 7	E		1						
11688(13)-RWAT-034	Recycled Water Main Longitudinal Section – Sheet 8	E		4			_	<u> </u>		
11688(13)-RWAT-0235	Recycled Water Main Longitudinal Section – Sheet 9	E		4			+	+		
11688(13)-RWAT-036	Recycled Water Main Longitudinal Section – Sheet 10	E		4			+	+		
11688(13)-RWAT-037 11688(13)-RWAT-038	Re1cycled Water Main Longitudinal Section – Sheet 11 Recycled Water Main Longitudinal Section – Sheet 12	F	<u> </u>	-				+		
11688(13)-RWAT-038 11688(13)-RWAT-039	Recycled Water Main Longitudinal Section – Sheet 12 Recycled Water Main Longitudinal Section – Sheet 13	F	ł	4			+	+		
11688(13)-RWAT-040	Inlet Works Connection Details	F	<u> </u>	1			-	+		
11688(13)-RWAT-041	Typical Pump Out Scour and Air Valve Installation Details	Ē	1	1			1	1		
11688(13)-RWAT-042	Typical Cross Bank Rollover Details	E	İ	1			1	1		
11688(13)-RWAT-043	Typical Cross Sections for NPWS Fire Trail	E]						
11688(13)-RWAT-044	Erosion and Sediment Control Plan	E]						
11688(13)-RWAT-045	Erosion and Sediment Control Details	E		1						
11688(13)-RWAT-046	Pressure Sustaining Valve Installation Details	E		1						
11688(13)-RWAT-047	Typical Concrete Encasement Keying and Thrust Block Details	E		4			_	<u> </u>		
11688(13)-RWAT-048	Approval Delineation Plan	E			J			<u> </u>		

 Method of delivery
 M - Mail, C - Courlier, H - Hand, P - Client pick up, E - email

 Information Format
 A0,A1,42,A3,44 - Oraving media, R - Report, E - Electronic, CD - Burnt

 Reason for transmital
 A - Approval, C - Construction, I - Information, R - Review, T. Tender, P - Preliminary, O - Other

SITE SPECIFIC HAZARDS

johnson												
Guide Word	Hazard	Detail of Hazard	What are the consequences?	Who is at risk?		Potential Risk		RISK REDUCTION MEASURES	SMP	CRITICAL DESIGN ELEMENTS	RELEVANT REGS AND STANDARDS	OTHER
		Likelihood Severity Risl		Risk	1	Арр		s marked wi	th an X			
UTILITIES	Underground water mains	Flooding, In the case of high pressure mains potential for blasts causing injury to personnel and damage to machinery and infrastructure	Serious injury or fatality	Construction workers & general public	С	IV	5	Liaise with utility authority to carefully locate water mains using service locator and non destructive excavation methods in the vicinity of the water mains prior to commencing works. Make site workers and visitors aware of hazards during induction and daily toolbox talk	X			
UTILITIES	Overhead power lines	Potential electrocution of personnel, ignition point for fire or explosion. Potential collapse of power poles & support structures	Serious injury or fatality	Construction workers and site visitors	В	II	2	Provide warning signage of hazard, use spotters when working in the vicinity of overhead power lines make site workers and visitors aware of hazard during induction and daily toolbox talk	X		x	
UTILITIES	Underground gas mains	Potential for explosion, fire or poisoning if ruptured	Serious injury or fatality	Construction workers & general public	В	I	1	Liaise with utility authority to carefully locate gas mains using service locator and non destructive excavation methods in the vicinity of gas mains prior to commencing works. Make site workers and visitors aware of hazards during induction and daily toolbox talk	X			
UTILITIES		Damage to services may result in substantial fines and penalties	Serious injury or fatality	Construction workers	В	Ш	3	Liaise with utility authority to carefully locate telecommunications cabling using service locator and non destructive excavation methods in the vicinity of telecommunications cabling prior to commencing works. Make site workers and visitors aware of hazards during induction and daily toolbox talk	X			
ENVIRONMENT	Trees & Vegetation	Excavation close to an existing tree may cause the tree to become unstable particularly during strong winds. If the tree falls there is the potential for crush injuries or death of personnel as well as damage to machinery and plant	Serious injury or fatality	Construction workers and site visitors	A	111	2	Fence off and provide warning signage of hazard make site workers and visitors aware of hazard during induction and daily toolbox talk	X			

SITE SPECIFIC HAZARDS

johnson												
Guide Word	Hazard	Detail of Hazard	What are the consequences?	Who is at risk?		Potential Risk		RISK REDUCTION MEASURES	dWIS	CRITICAL DESIGN ELEMENTS	RELEVANT REGS AND STANDARDS	OTHER
ENVIRONMENT	Poor ground conditions	Personnel injured due to slips & falls, machinery roll over. Poor slope stability may result in landslips or avalanches	Serious injury or fatality	Construction workers and site visitors	A	Ш	2	Fence off and provide warning signage of hazard make site workers and visitors aware of hazard during induction and daily toolbox talk. Site remediation works including drying or slope stability works	X			
ENVIRONMENT	Working on or in close proximity to existing roads	Potential injury or death of site workers and/or general public (pedestrians/drivers) due to changed traffic conditions	Serious injury or fatality	Construction workers & general public	A	I	1	Implementation of a Traffic Management Plan to provide safe passage of vehicles pedestrians and site workers during construction	Х		x	
ENVIRONMENT	Sun exposure	Sun related illnesses eg melanoma, heat exhaustion	Illness or in some cases fatality	Construction workers and site visitors	A	111	2	Contractor to include information for workers and visitors in SMP	Χ			
ENVIRONMENT	Public access to site	Thegeneral public may be unaware or unable to identify potential dangers on a construction site resulting in injury or potential death	Serious injury or fatality	General public	В	III	3	Securely fence off work area and closely monitor site during works for unauthorised visitors	X			

	3.1A - RISK ASSESSMENT CALCULATOR									
	SEV	/ERITY	LIKELIHOOD							
LEVEL	DESCRIPTIVE	OUTCOMES	A IMMINENT	B VERY LIKELY	C LIKELY	D UNLIKELY				
I	Catastrophic	Death, permanent disability, huge financial loss, could lead to closure of the business	1	1	2	3				
II	Critical	Lost-time injuries, major financial loss, major disruption to business activities	1	2	3	4				
111	Marginal	Medical treatment or first- aid treatment required, moderate financial loss, disruption to a job	2	3	4	5				
IV	Warning	No injury, illness or property damage, nuisance interruption, low financial loss, minor breakdown that can be fixed immediately	3	4	5	6				

RISK LEVEL

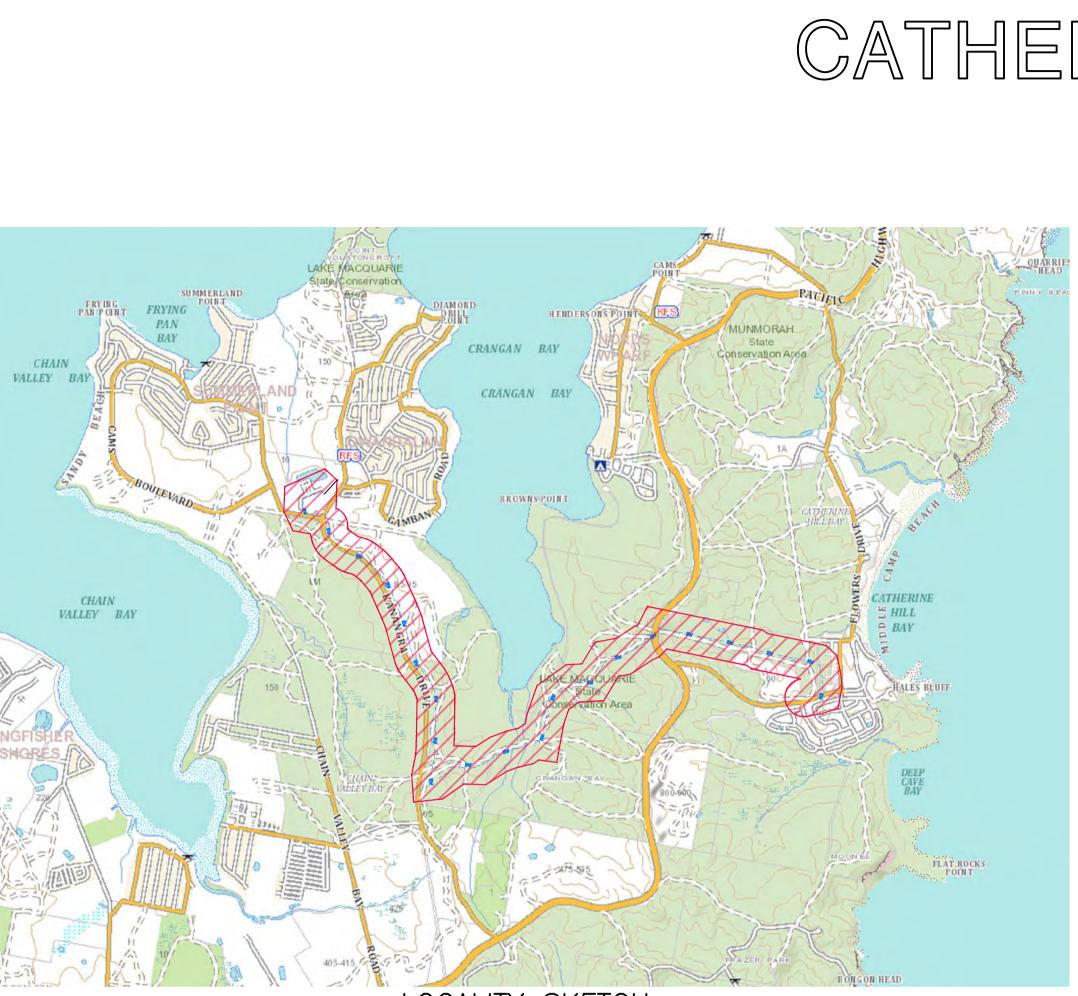
1 Very high risk, consider discontinuing activity until hazard eliminated or appropriate controls are implemented

2 High risk, immediate corrective action required to reduce risk

3 Substantial risk, correction required

4 Moderate risk, need for attention indicated

5 Low priority risk, do something when possible

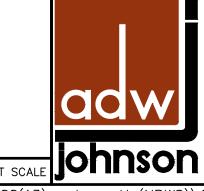

6 Low risk, risk perhaps acceptable, monitor as appropriate

<u>aaw</u> johnson	phnson																	
Guide Word	Hazard	Detail of Hazard	What are the consequences?			Potential Risk								RISK REDUCTION MEASURES	SMP	CRITICAL DESIGN ELEMENTS	RELEVANT REGS AND STANDARDS	OTHER
					Likelihood	Severity	Risk		Appl	licable item	marked w	ith an X						
GENERAL	Working plant and equipment	Noise, falling objects, amage to existing surfaces, material spillage hit by moving plant	Serious injury or fatality	Construction workers site visitors & general public	с	11	3	Suitable PPE, operator assistant/spotter and construction planning	х									
POST CONSTRUCTION	Failure of existing pipelines/services during conection	Risk of flooding, drowning, excavation collapse	Serious injury or fatality	Construction workers	A	Ш	1	Review of existing WAE documentation & consultation with utility owner to determine size, material and operational conditions	Х									
GENERAL	Lifting Components & materials	Lifting injuries, crushing	Serious injury or fatality	Construction workers	с	ш	4	Suitable lifting equipment and procedure and construction planning	Х			1						
POST CONSTRUCTION	Public access trips and falls	Potential injury to general public due to trips and falls	Serious injury or fatality	General Public	D	ш	5	Infrastructure is to be designed & constructed with lids, grates and surrounds flush with surrounding surface levels	Х			l						
EARTHWORKS	Trenching	Collapse of trench walls or embankments has the potential to cause injury or death to construction workers eg crush injuries or asphyxiation	Serious injury or fatality	Construction workers	с	Ш	3	Suitably designed/installed trench support systems/ props/ benching of excavation	х									
EARTHWORKS	Open Excavations, Pits or Infrastructure	Risk of fall or injury	Serious injury or fatality	Construction workers site visitors & general public	в	I	1	Suitable fencing or visual indicators eg signage & warning tape	Х		х							
GENERAL	Failure of existing pipelines/services during conection	Risk of flooding,drowning, excavation collapse	Serious injury or fatality	Construction workers	D	ш	5	Review of existing WAE documentation & consultation with utility owner to determine size, material and operational conditions	х									
ROAD	Working on or in close proximity to existing roads	Potential injury or death of site workers and/or general public (pedestrians/drivers) due to changed traffic conditions	Serious injury or fatality	Construction workers & general public	В	I	1	Implementation of a Traffic Management Plan to provide safe passage of vehicles pedestrians and site workers during construction	х		x							
GENERAL	Use of Cutting equipment	Cutting injuries, debris, inhalation of dust/foreign material	Serious injury or fatality	Construction workers	А	ш	2	Suitable PPE, operator assistant/spotter and construction planning	Х			1						

GENERAL CONDITIONS

ohnson								
Assumed Conditions	Comments							
Onsite safety inductions	Onsite safety inductions, including hazards identified in this report, should be conducted for all staff and site visitors							
Preparation of safety management plans	Safety Management Plans should be prepared for the hazards identified in this report							
Adherence to design requirements (no substitution)	There should be no variation on design requirements without consultation with the designers							
Handover procedures to avoid hazard creation (ie open trenches)	Onsite management of contractors to ensure that hazards that arise through starting/completion of jobs does not occur							
Design interface	This design may interface with other plans and account should be taken of any interface issues							
Preparation of a traffic Management plan	The civil works contractor is to prepare a traffic management plan for works subject to vehicular and pedestrian traffic to ensure construction workers, site staff and general public safety							
Adherance to manufacturers guidelines & instructions	All materials and products used during construction should be handled, stored and installed in accordance with the manufacturers guidelines and instructions							

LOCALITY SKETCH


WATER PIPE DATA								
PIPE SIZE (mm)	PIPE MATERIAL	TOTAL LENGTH (m)						
DN140	PE100 SDR11	4647.15						
DN125	PE100 SDR11	3293.66						

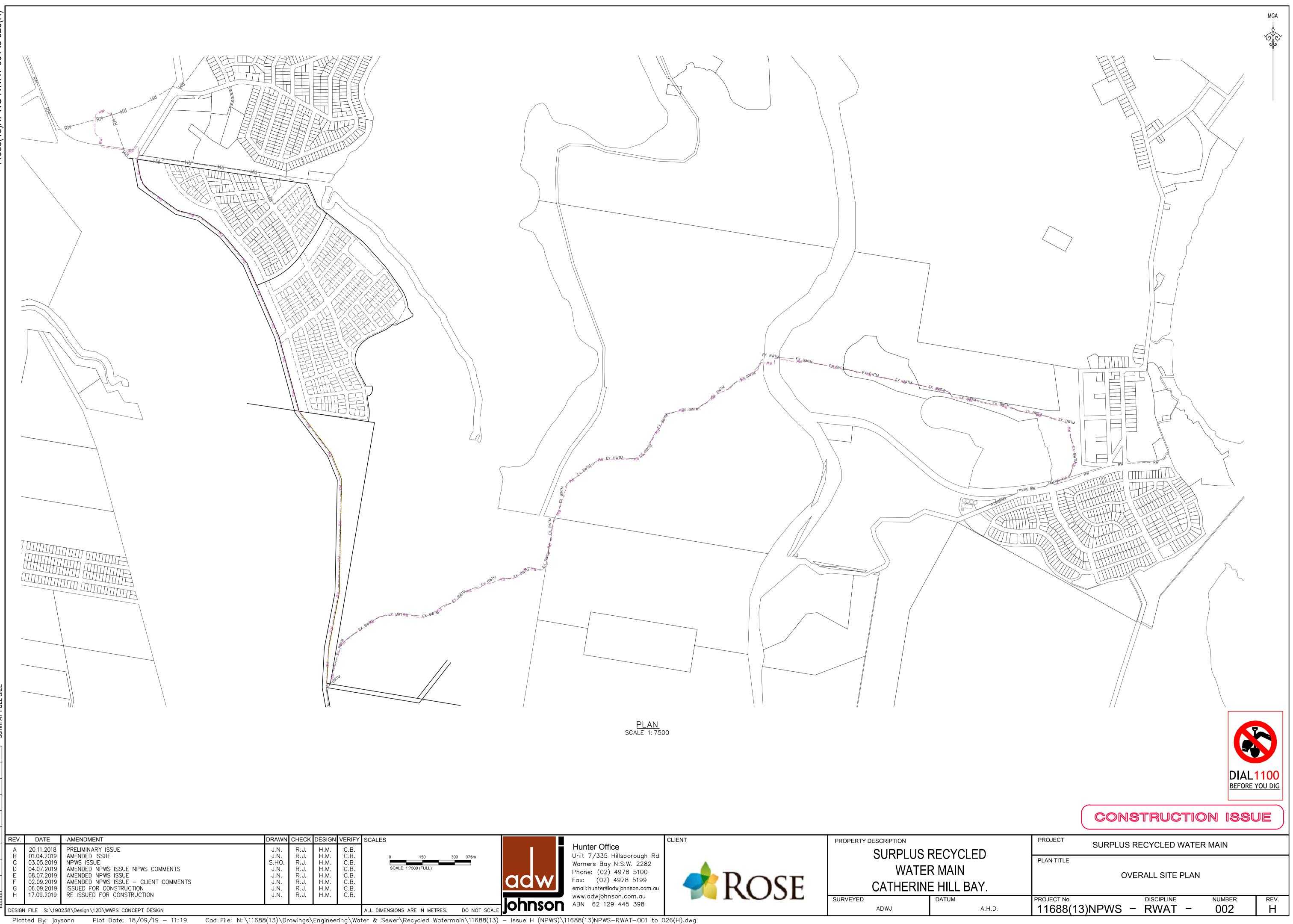
CONSTRUCTION NOTES

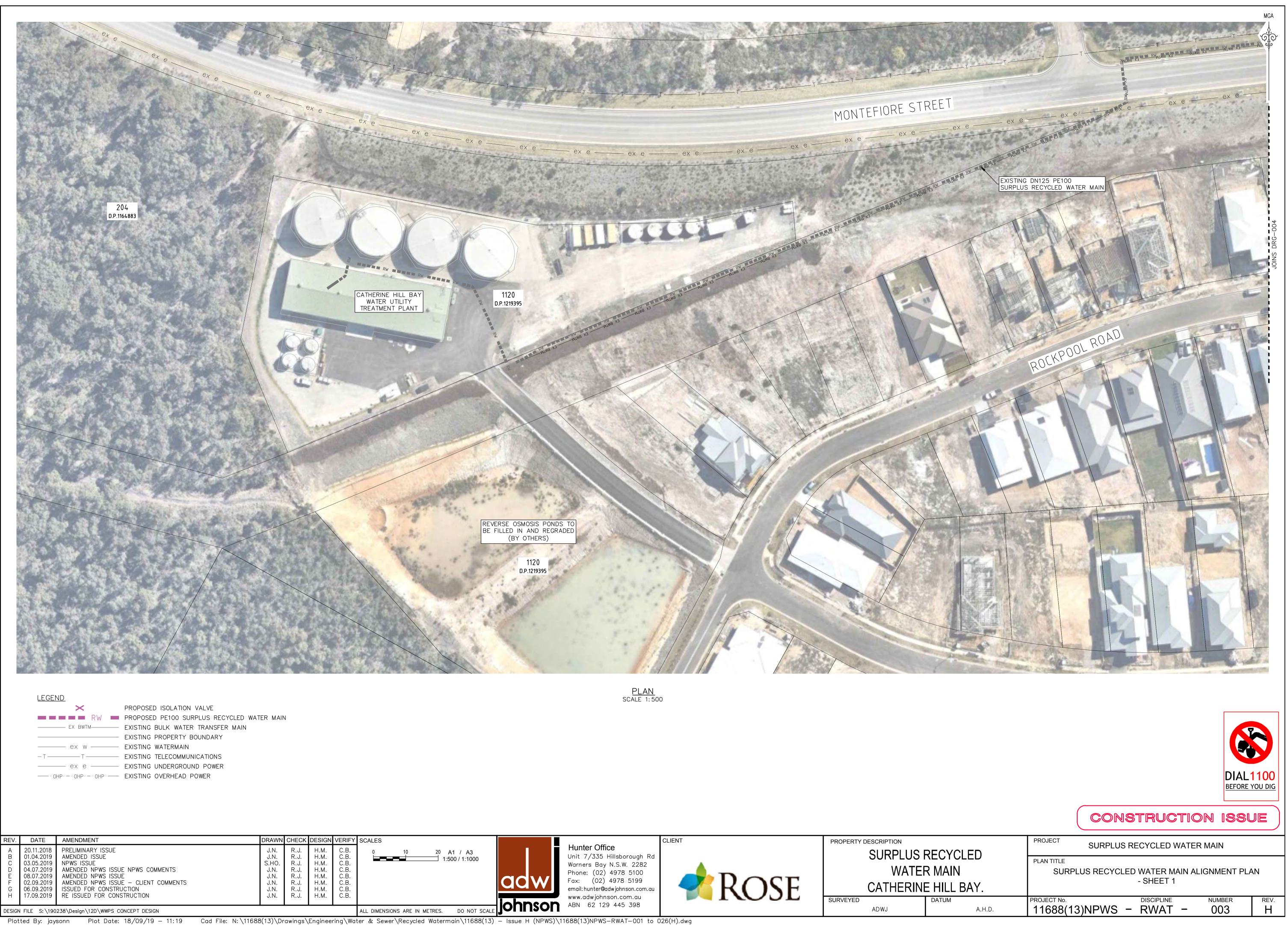
	<u>CONSTRUCTION NOTES:</u> 1. WORKS MUST BE CONSTRUCTED IN ACCORDANCE WITH THE DESIGN DRAWINGS,						SERVICE CLEARANCES					
	CONSTRUCTION SPECIFICATION, WSA 03-2011					F	SERVICE	HORIZONTAL (mm)	VERTI	CAL (mm)		
	DRAWINGS.					F	WATERMAIN > DN375	600		300		
		 THE CONSTRUCTOR IS TO VERIFY THE POSITIONS AND LEVELS OF ALL EXISTING AND PROPOSED BOUNDARIES, SERVICES, PIPES, CABLES AND CONDUITS. HYDRANTS, STOP VALVES AND ALL OTHER FITTINGS TO BE THE SAME SIZE AS THE THROUGH SURPLUS RECYCLED WATER MAIN, AND IN ACCORDANCE WITH 						300		150		
								300		150		
	THROUGH SURPLUS RECYCLED WATER MAIN,							300		150		
	WSA03-2011-3.1.	Γ	ELECTRICITY	500		225						
	 TESTING OF RECYCLED WATER MAIN, INCLUDING SWABBING, FLUSHING AND PRESSURE SHALL BE CARRIED OUT IN STRICT ACCORDANCE WITH WSA03-2011-3.1 						SEWER (GRAVITY)	SEWER (GRAVITY) 1000		500		
	REQUIREMENTS.	F	SEWER (PRESSURE)	600		300						
ALL TESTING TO BE CARRIED OUT UNDER DIRECT SUPERVISION OF THE DESIGN CERTIFIER, SOLO WATER OR CCC REPRESENTATIVE.							STORMWATER	300		150		
A MINIMUM OF 14 DAYS NOTICE PRIOR TO TESTING BEING UNDERTAKEN IS REQUIRED. CONNECTION TO, OR OPERATION OF ANY EXISTING SYSTEM VALVES CANNOT BE						F	KERBS	150		150		
	UNDERTAKEN UNTIL THE DESIGN CERTIFIER, S HAS PASSED AND VALIDATED ALL TESTS MEN APPROVAL TO THE CONTRACTOR TO PROCEEN 5. ALL SURPLUS RECYCLED WATER PIPE, VALVE COLOUR CODED IN ACCORDANCE WITH WSA03 (DIFFERENTIATION OF DRINKING AND NON-DR	NTIONED ABOVE AN D WITH CONNECTION S AND APPURTENA 3-2011-3.1 SECTION	D GIVEN N. NCES SH N 4.2	WRITTE			SHOULD MINIMU)3-2011-3.1 PART 1 TABLE 5.5 M CLEARANCES NOT BE ACHIE TO CONSULT WITH THE SITE	VABLE THE	NT.		
EV. DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES	3					
A 20.11.2018 B 01.04.2019 C 03.05.2019 D 04.07.2019 E 08.07.2019 F 02.09.2019 G 06.09.2019 H 17.09.2019	AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.				dw	Hunter Unit 7/J Warners Phone: Fax: email:hun www.adw		
DESIGN FILE S: \19	00238\Design\12D\WWPS_CONCEPT_DESIGN	-	-	-		ALL DIME	ENSIONS ARE IN METRES.	DO NOT SCALE	11 1201	ABN 6		
Plotted By: ja	ysonn Plot Date: 18/09/19 — 11:25 Cad Fil	e: N:\11688(13)\D	rawings [\]	Enginee	⁻ing∖Wa	ter & S	ewer\Recycled Watern	nain\11688(13) — Issu	e H (NPWS)	\11688(13)		

SURPLUS RECYCLED WATER MAIN CATHERINE HILL BAY

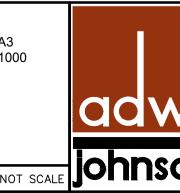
	DRAWING INDEX
Sheet Title	Sheet Description
11688(13)NPWS-RWAT-001	COVER SHEET, LOCALITY PLAN AND DRAWING INDEX
11688(13)NPWS-RWAT-002	OVERALL SITE PLAN
11688(13)NPWS-RWAT-003	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 1
11688(13)NPWS-RWAT-004	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 2
11688(13)NPWS-RWAT-005	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 3
11688(13)NPWS-RWAT-006	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 4
11688(13)NPWS-RWAT-007	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 5
11688(13)NPWS-RWAT-008	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 6
11688(13)NPWS-RWAT-009	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 7
11688(13)NPWS-RWAT-010	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 8
11688(13)NPWS-RWAT-011	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN – SHEET 9
11688(13)NPWS-RWAT-012	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 10
11688(13)NPWS-RWAT-013	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 11
11688(13)NPWS-RWAT-014	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 12
11688(13)NPWS-RWAT-015	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 13
11688(13)NPWS-RWAT-016	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 14
11688(13)NPWS-RWAT-017	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 15
11688(13)NPWS-RWAT-018	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 16
11688(13)NPWS-RWAT-019	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 17
11688(13)NPWS-RWAT-020	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 18
11688(13)NPWS-RWAT-021	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 19
11688(13)NPWS-RWAT-022	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 20
11688(13)NPWS-RWAT-023	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 21
11688(13)NPWS-RWAT-024	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 22
11688(13)NPWS-RWAT-025	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 23
11688(13)NPWS-RWAT-026	SURPLUS RECYCLED WATER MAIN SETOUT TABLE
11688(13)NPWS-RWAT-027	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 1
11688(13)NPWS-RWAT-028	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 2
11688(13)NPWS-RWAT-029	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 3
11688(13)NPWS-RWAT-030	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 4
11688(13)NPWS-RWAT-031	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 5
11688(13)NPWS-RWAT-032	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 6
11688(13)NPWS-RWAT-033	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 7
11688(13)NPWS-RWAT-034	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 8
11688(13)NPWS-RWAT-035	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 9
11688(13)NPWS-RWAT-036	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 10
11688(13)NPWS-RWAT-037	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 11
11688(13)NPWS-RWAT-038	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 12
11688(13)NPWS-RWAT-039	SURPLUS RECYCLED WATER MAIN LONGITUDINAL SECTION - SHEET 13
11688(13)NPWS-RWAT-040	INLET WORKS CONNECTION DETAILS
11688(13)NPWS-RWAT-041	TYPICAL PUMP OUT SCOUR AND AIR VALVE INSTALLATION DETAILS
11688(13)NPWS-RWAT-042	TYPICAL CROSS BANK ROLLOVER DETAILS
11688(13)NPWS-RWAT-043	TYPICAL CROSS BANK ROLLOVER DETAILS
11688(13)NPWS-RWAT-044	EROSION AND SEDIMENT CONTROL PLAN
11688(13)NPWS-RWAT-045	EROSION AND SEDIMENT CONTROL PLAN
11688(13)NPWS-RWAT-045	PRESSURE SUSTAINING VALVE INSTALLATION DETAILS
11688(13)NPWS-RWAT-047	TYPICAL CONCRETE ENCASEMENT KEYING AND THRUST BLOCK DETAILS
11688(13)NPWS-RWAT-047	APPROVAL DELINEATION PLAN

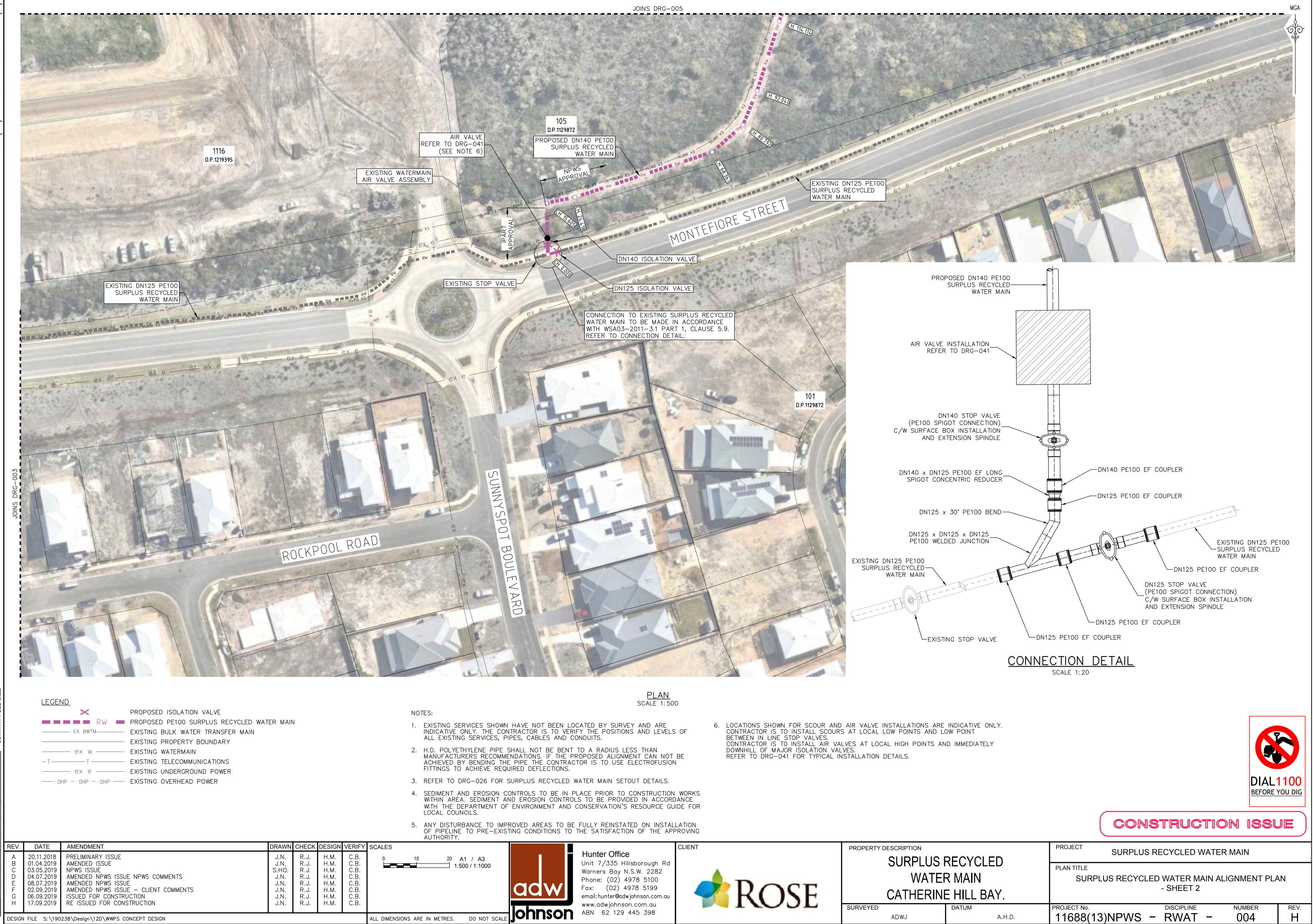
• **Office** 335 Hillsborough Rd Bay N.S.W. 2282 (02) 4978 5100 (02) 4978 5199 er@adwjohnson.com.au johnson.com.au 2 129 445 398


CLIENT

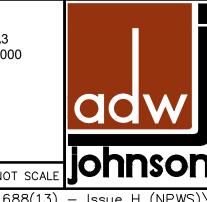

		CONSTRUCTION ISSUE
PROPERTY DESCRIPTION	RECYCLED	PROJECT SURPLUS RECYCLED WATER MAIN
WATE	ER MAIN NE HILL BAY.	PLAN TITLE COVER SHEET, LOCALITY PLAN AND DRAWING INDEX
SURVEYED ADWJ	DATUM A.H.D.	PROJECT No. DISCIPLINE NUMBER REV. 11688(13)NPWS - RWAT - 001 H
ADWJ	A.H.D.	<u>11688(13)NPWS - RWAT - 001</u> H

NPWS-RWAT-001 to 026(H).dwg un (11000(13) . Π (NFW3) (1000(13))

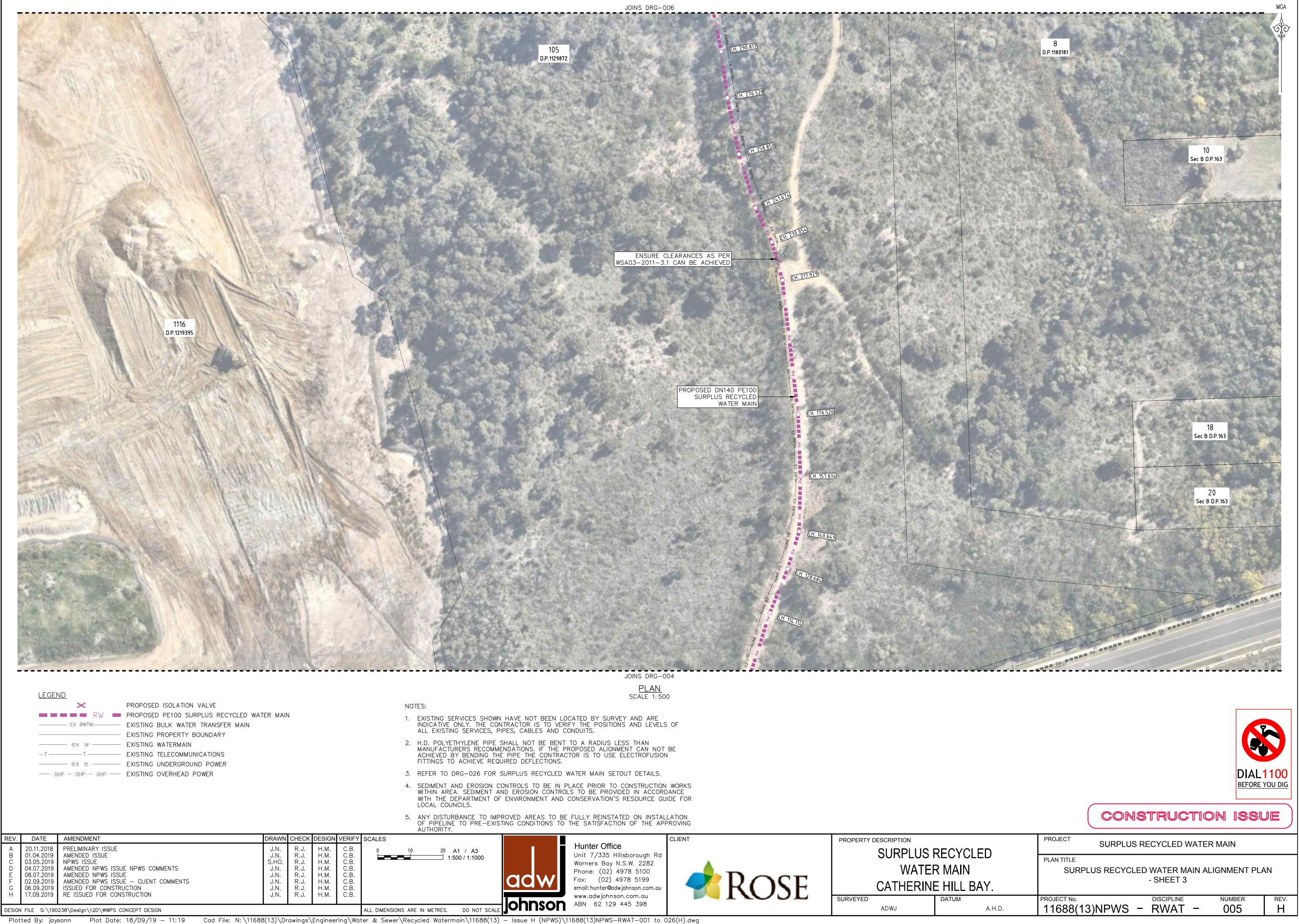



RW RW
EX BWTM
ex w
— T ——— T ———
ex e

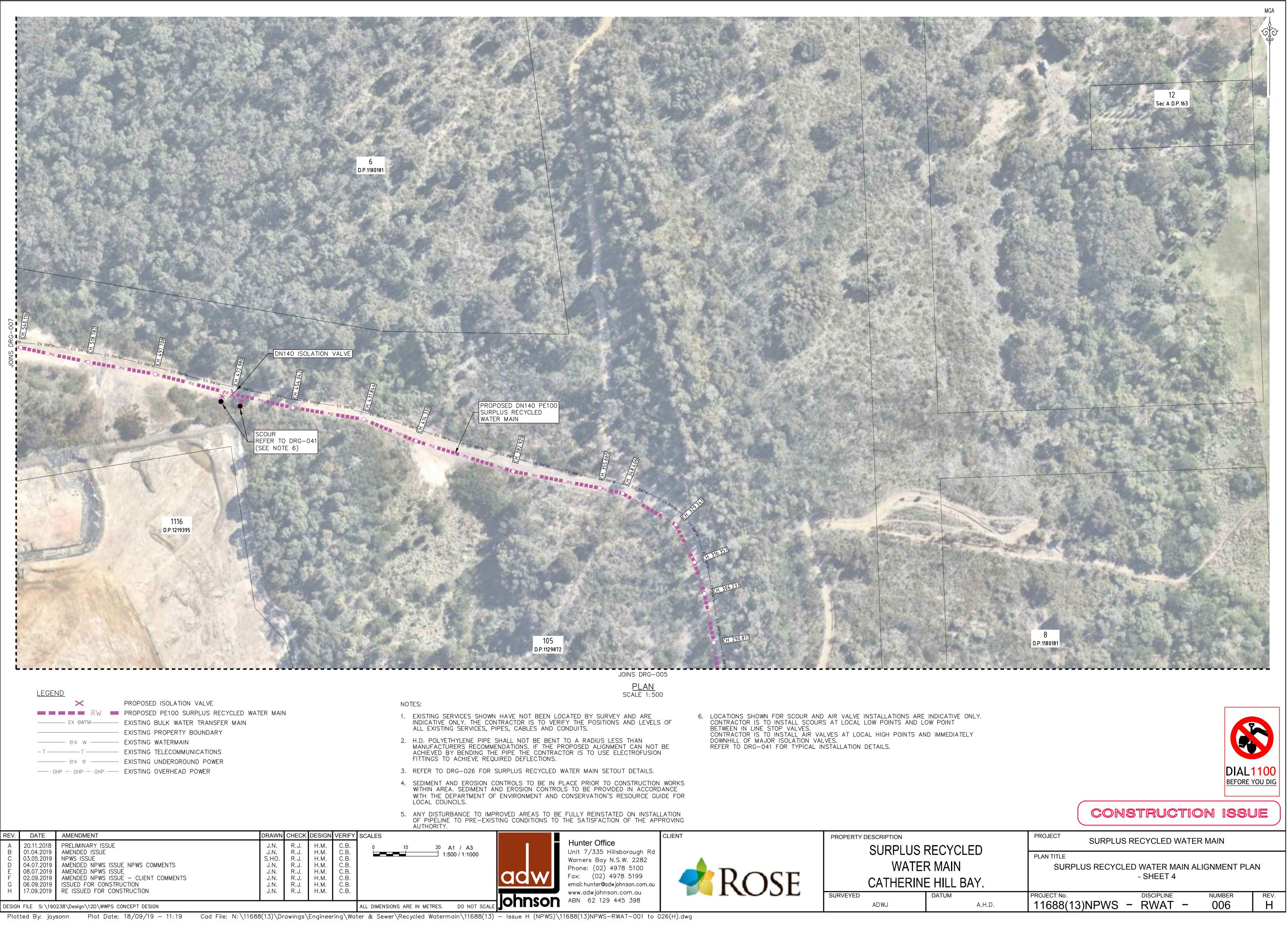
					-	-	
EV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES
A B C D E F G H	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.S. H.S. H.S. H.S. H.S. H.S. H.S. H.S.	С.В. В. В. В. В. В. В. В. В. В. В. В. В. В. В. В. В. В. В. В	
ESIGN	ALL DIMENSIONS ARE IN MET						

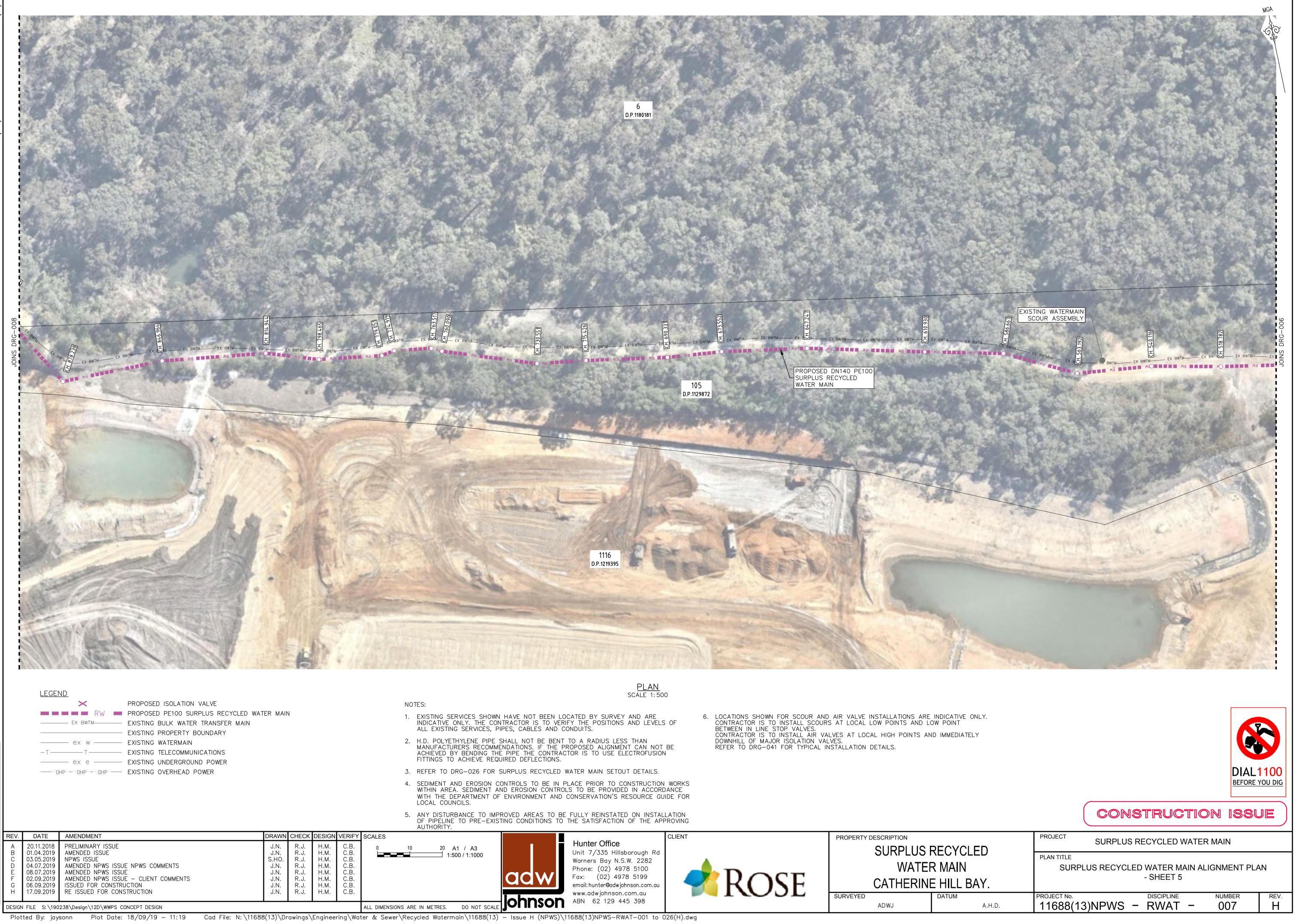


ROPERTY	DESCRIPTION								
SURPLUS RECYCLED									
WATER MAIN									
CATHERINE HILL BAY.									
RVEYED		DATUM							
	ADWJ	A.H.							

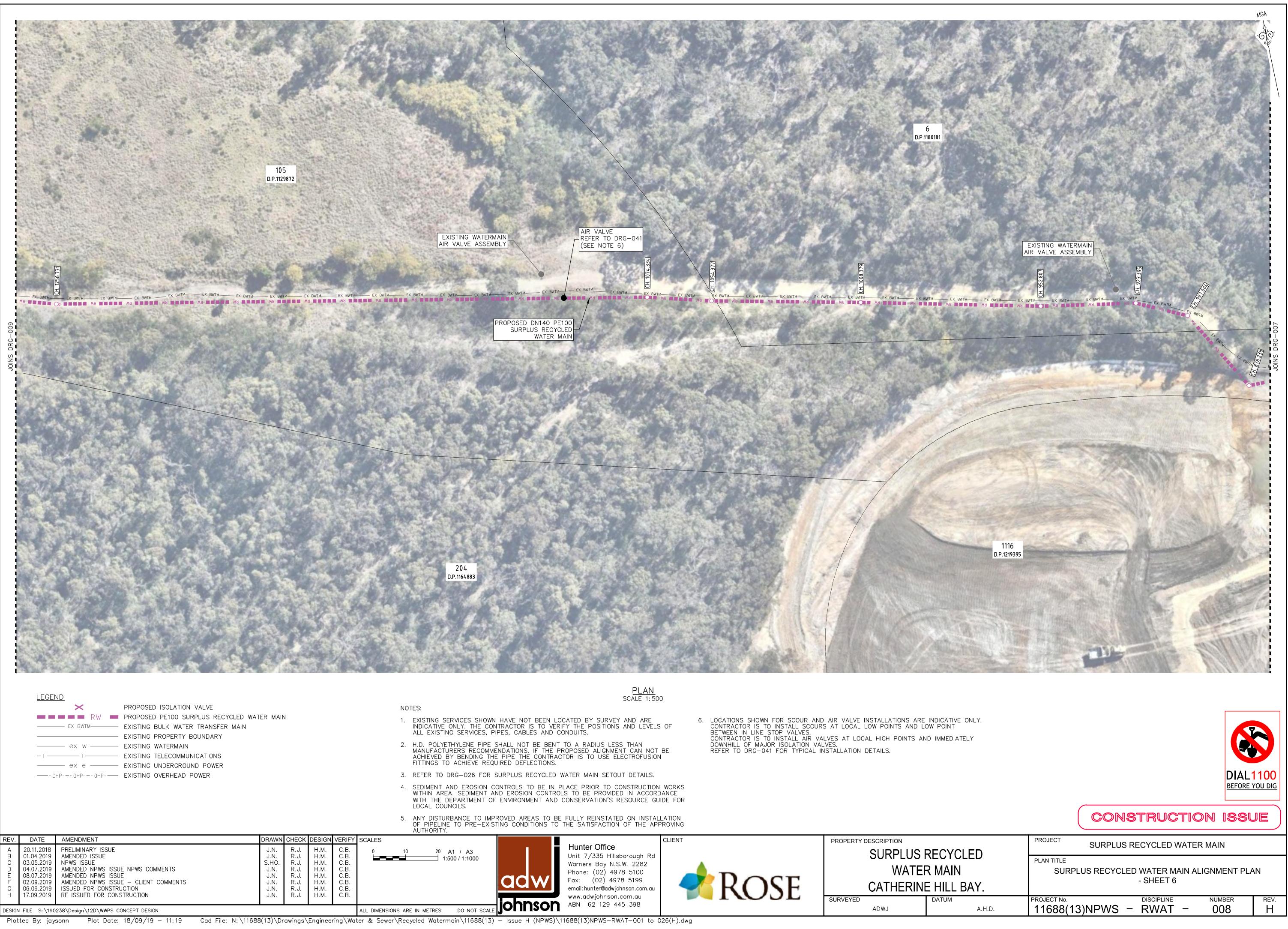

-										JTHORITY.
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES		
i i luulu	A B C D L F G H	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	20 A1 / A3

Plotted By: jaysonn Plot Date: 18/09/19 — 11:19



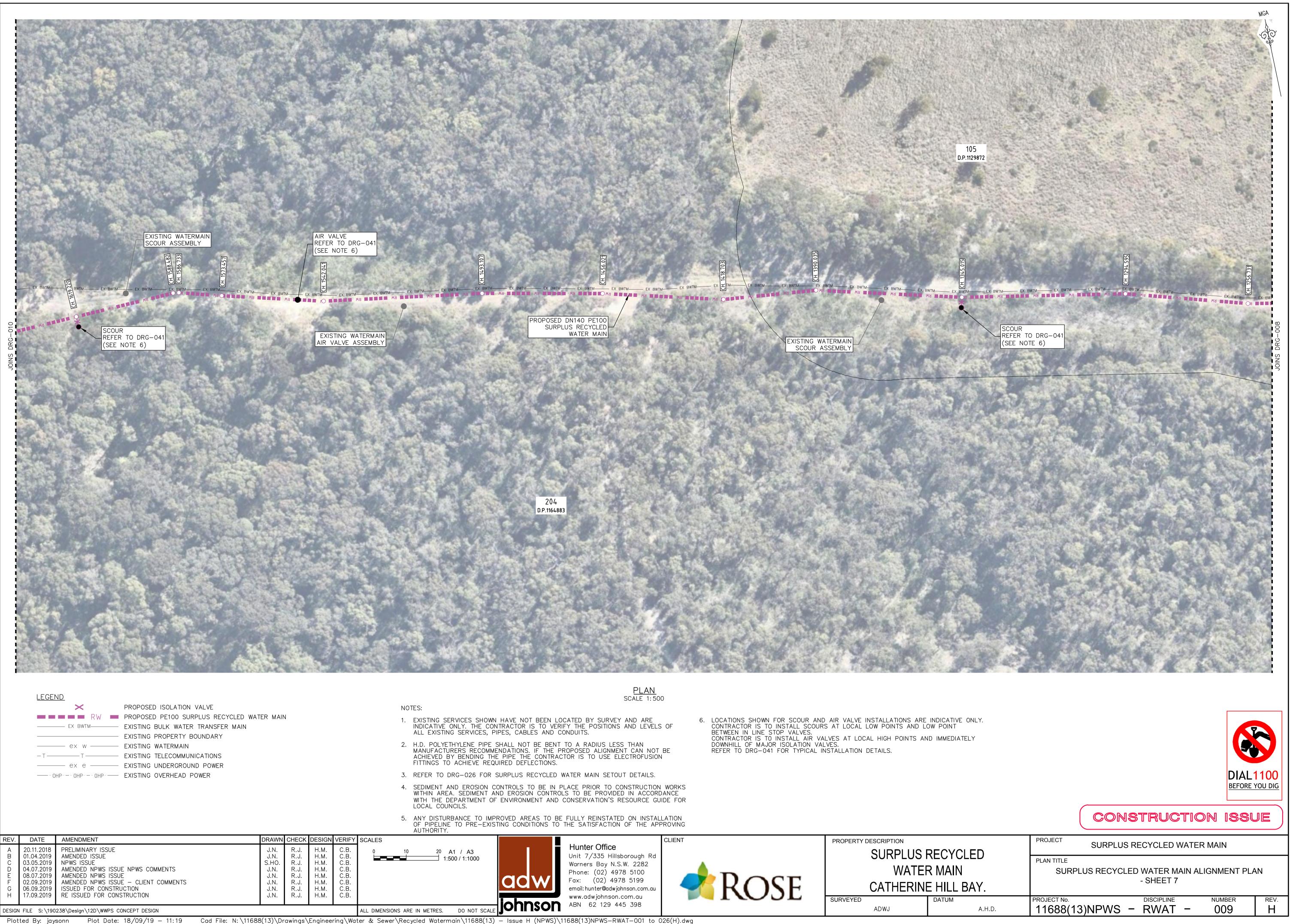


Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg

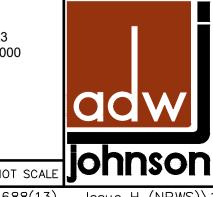


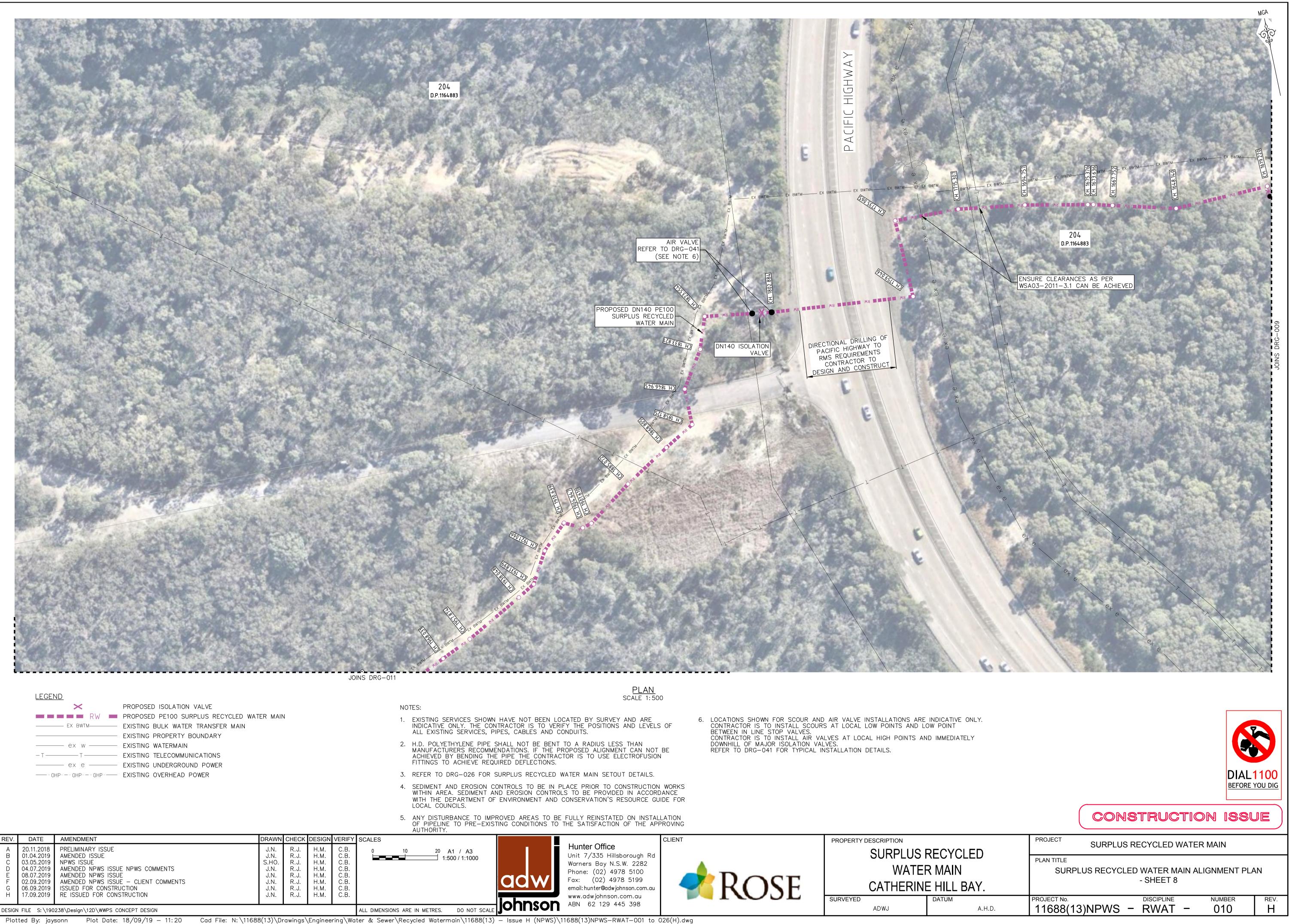
× .	ŀ
RW RW	F
EX BWTM	E
	E
——— ex w ———	E
— T ——— T ———	E
ex e	E
	E

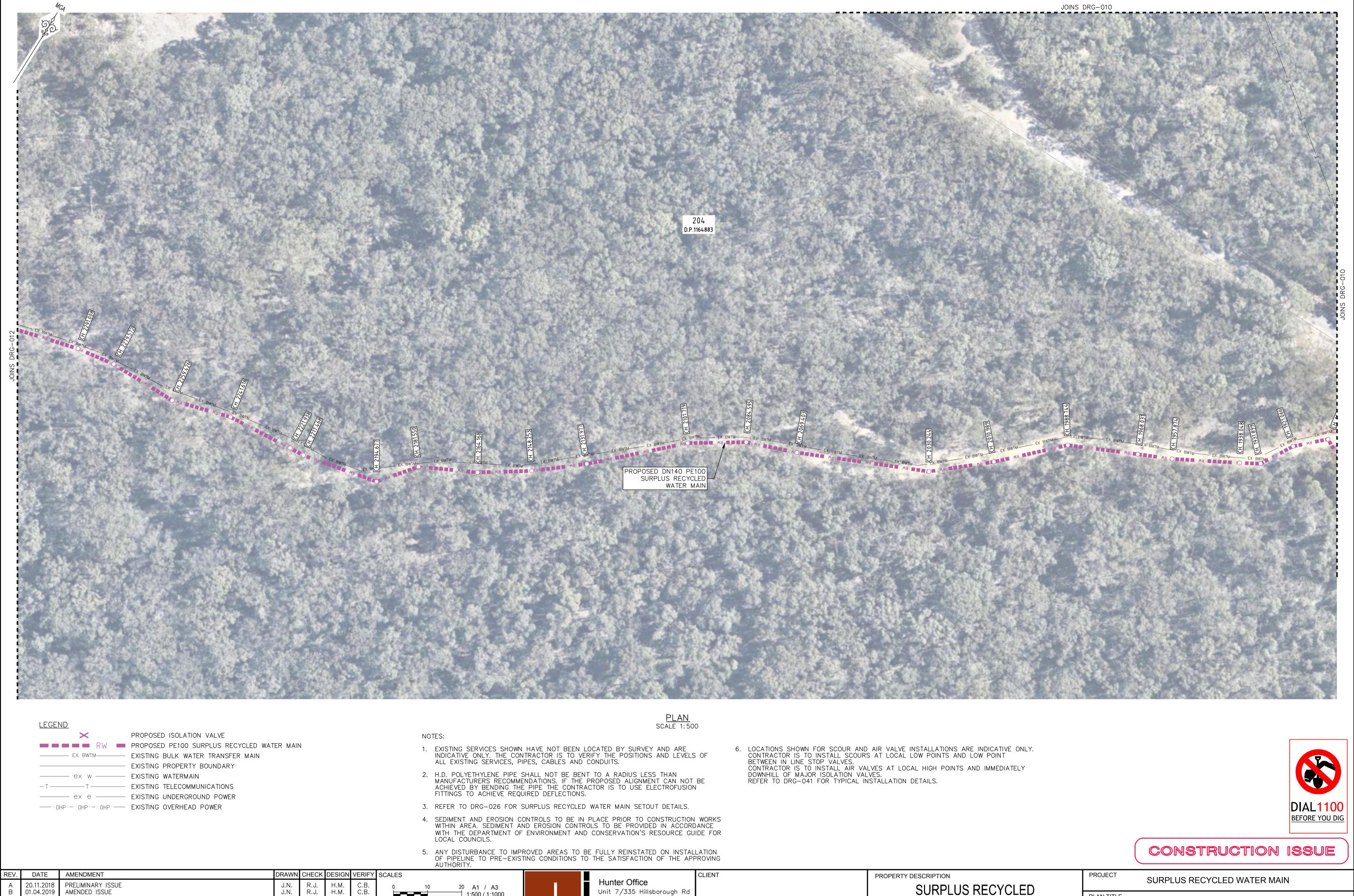
									AUTH	IORITY.	
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
	КВСОШЕОТ	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	1	.1 / A3 00 / 1:100
Ξ			238\Design\12D\WWPS_CONCEPT_DESIGN					ALL DIMENSION	S ARE IN ME	TRES	



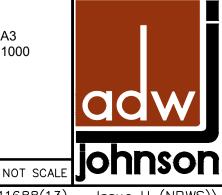
03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J.	H.N H.M H.N H.N H.N				
FILE S:\190238\Design\12D\WWPS_CONCEPT_DESIGN								


026(H 0 -001 **N**M S 1688(13)NP


×	PROPOSED ISOLATION VALVE
RW RW	PROPOSED PE100 SURPLUS RECYCLED WATER MAIN
EX BWTM	EXISTING BULK WATER TRANSFER MAIN
	EXISTING PROPERTY BOUNDARY
———— ex w ———	EXISTING WATERMAIN
- T T	EXISTING TELECOMMUNICATIONS
——— ex e ———	EXISTING UNDERGROUND POWER
	EXISTING OVERHEAD POWER


	EXISTING SERVICES
۱.	ENDING SERVICES
	INDICATIVE ONLY.
	INDICATIVE UNLT.

								-	AUTH	IORITY.	10 110
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
Imh	КВС ΩШFGI	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.S. H.S. H.S. H.S. H.S. H.S. H.S. H.S.	C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10 		\1 / A3 00 / 1:100
-	DESIGN	FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN					ALL DIMENSION	NS ARE IN ME	ETRES.	DO NO

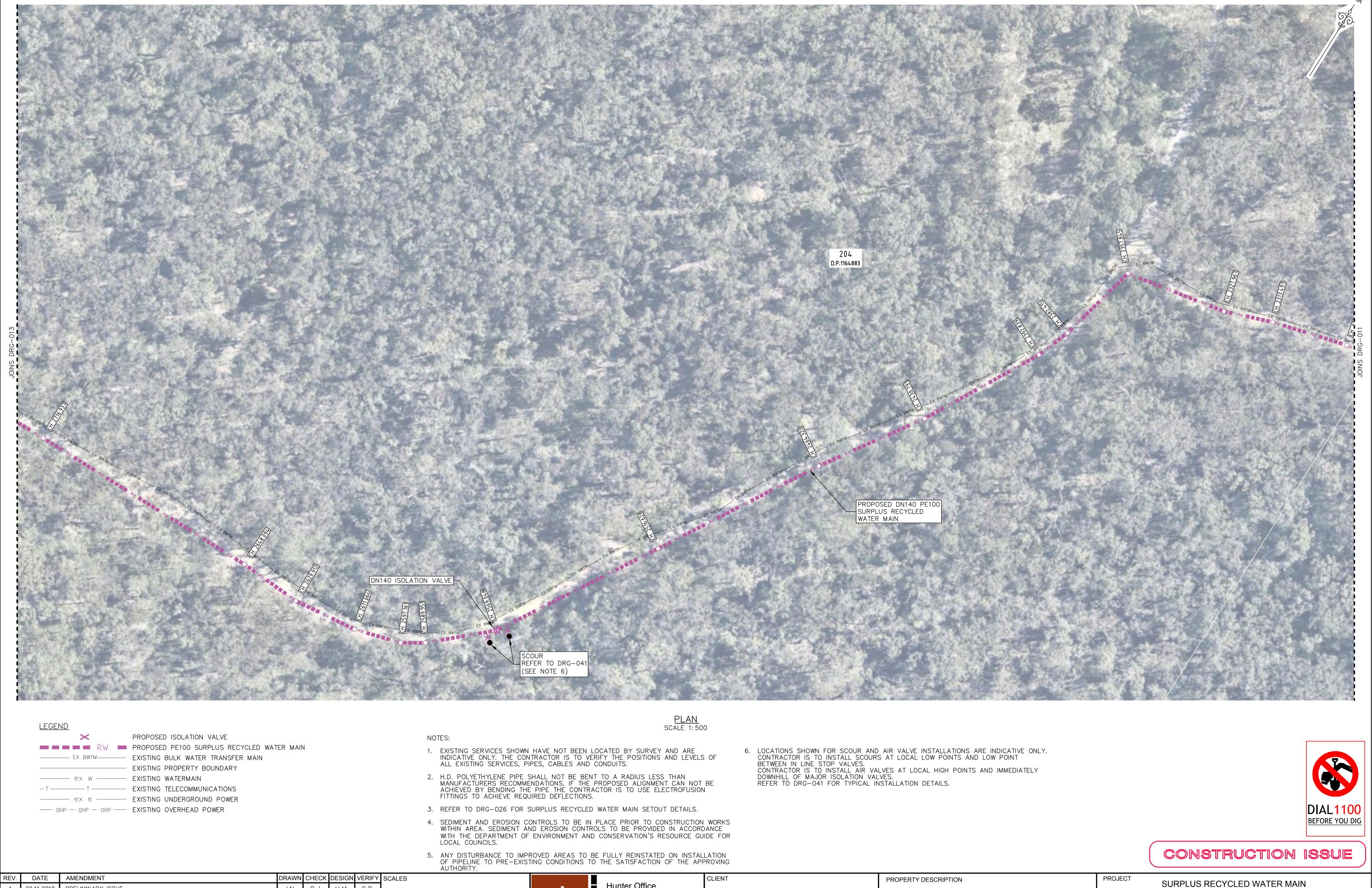


\mathbf{x}
EX BWTM
———— ex w ———
— T ——— T ———
ex e

٦									AUT	HORITY.
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES		
	А В С D LI F G T	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	20 A1 / A3
	DECION									

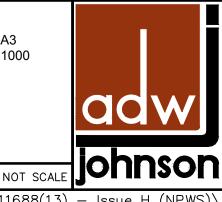
DESIGN FILE S:\190238\Design\12D\WWPS CONCEPT DESIGN

ALL DIMENSIONS ARE IN METRES. DO NOT SCALE


Warners Bay N.S.W. 2282 Phone: (02) 4978 5100 Fax: (02) 4978 5199 email:hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

SURPLUS RECYCLED WATER MAIN CATHERINE HILL BAY. SURVEYED DATUM ADWJ А.Н.

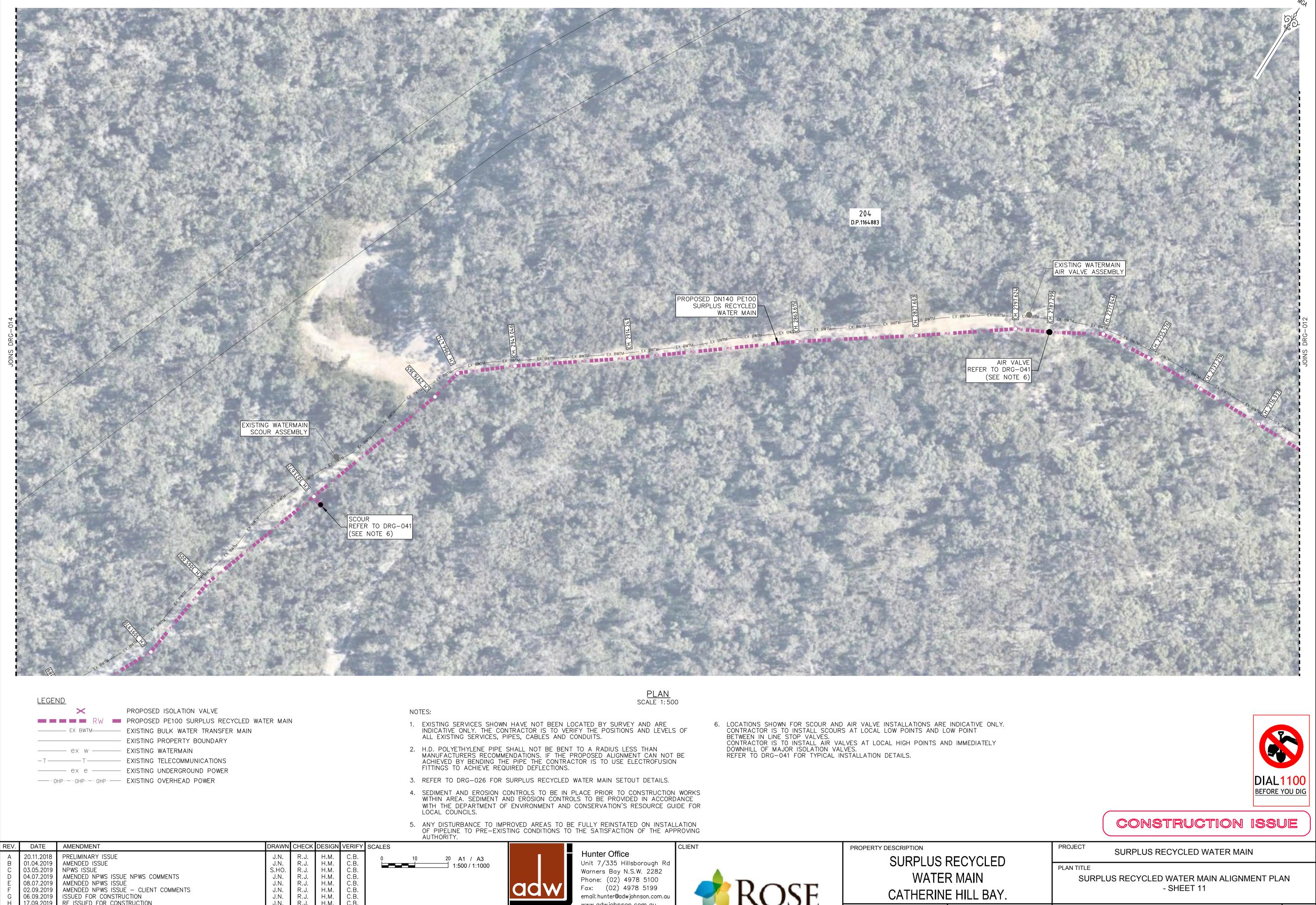
Plotted By: jaysonn Plot Date: 18/09/19 - 11:20 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg


	PLAN TITLE SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SHEET 9							
•								
	PROJECT No.	DISCIPLINE	NUMBER	REV.				
.H.D.	11688(13)NPWS	- RWAT -	011	Н				

\sim
RW
EX BWTM
ex w
- T T
ex e

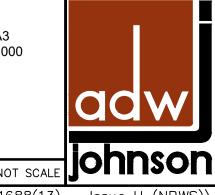
									AUT	HORITY.	
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
	А В С D ш F G T	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.S. H.S. H.S. H.S. H.S. H.S. H.S. H.S.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	1	.1 / A3 00/1:100
E	DESIGN	I FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN					ALL DIMENSIONS	ARE IN N	IETRES.	DO NO

ALL DIMENSIONS ARE IN METRES. DO NOT SCALE


Hunter Office Unit 7/335 Hillsborough Rd Warners Bay N.S.W. 2282 Phone: (02) 4978 5100 Fax: (02) 4978 5199 email:hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

SURPLUS RECYCLED WATER MAIN CATHERINE HILL BAY. SURVEYED DATUM ADWJ

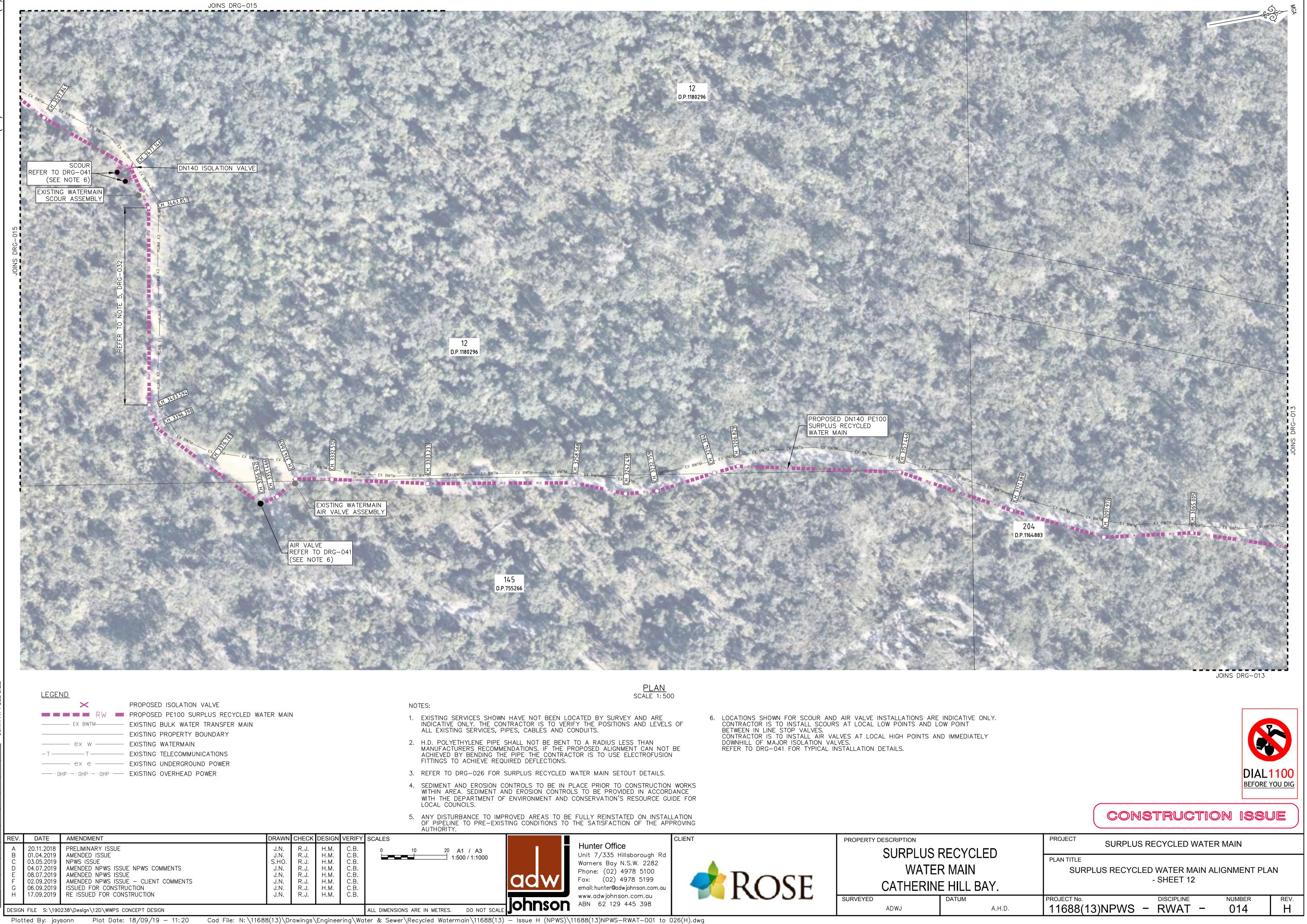
Plotted By: jaysonn Plot Date: 18/09/19 - 11:20 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg


ר	SURPLUS RECYCLED WATER MAIN									
J	PLAN TITLE									
	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN									
/	- SHEET 10									
•										
	PROJECT No. DISCIPLINE NUMBER REV.									
A.H.D.	11688(13)NPWS - RWAT - 012 H									

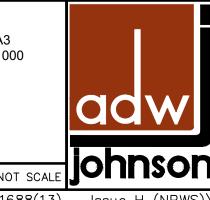
\times
EX BWTM
ex w
— T ——— T ———
ex e

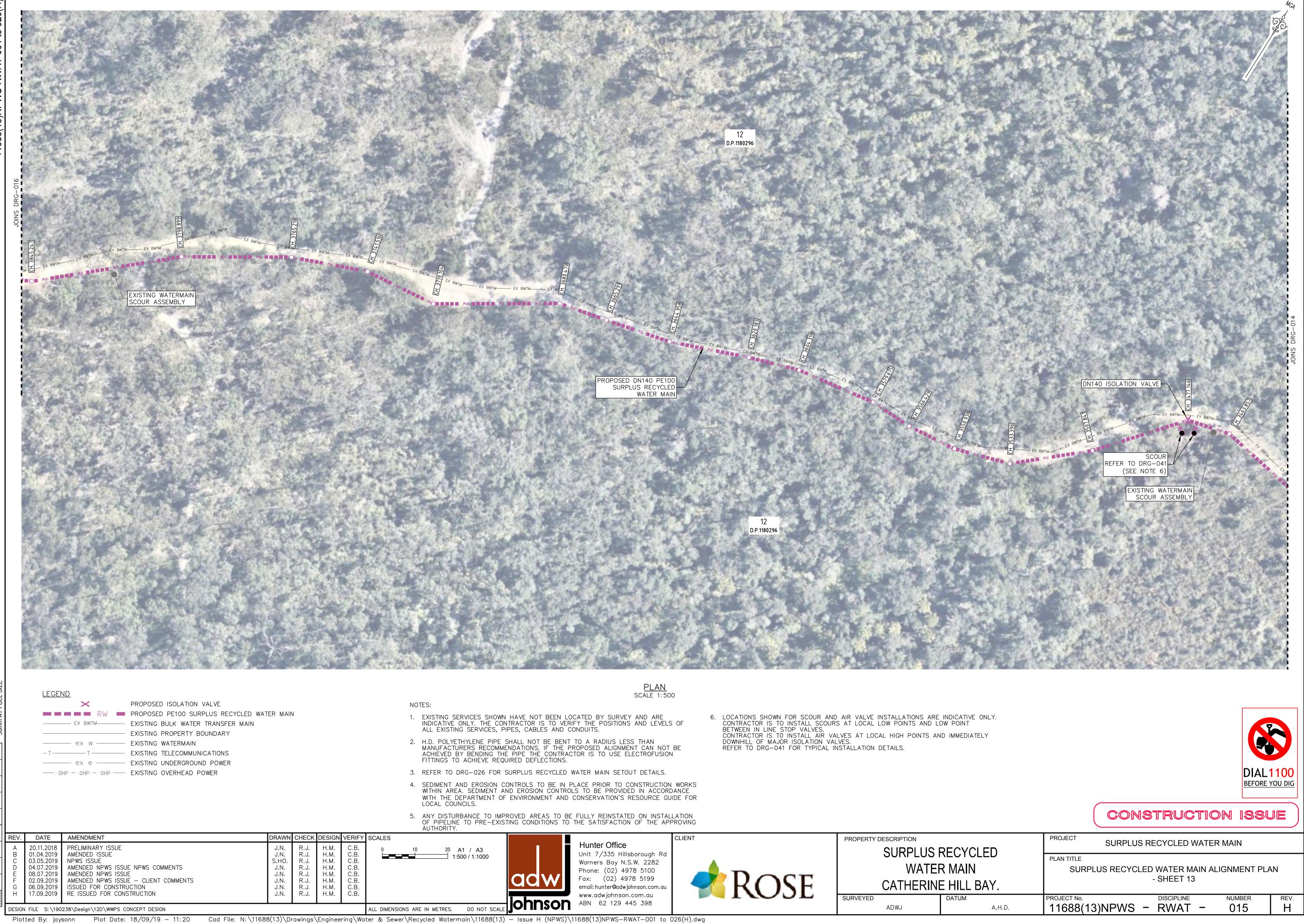
-									AUTHO		U PRE-EXIST
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
	АВСОшғот	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.R. J.RO. J.R. J.R. J.R. J.R. J.R. J.R.	R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10		/ A3 / 1:1000
Ξ	DESIGN	FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN					ALL DIMENSIONS	ARE IN MET	RES.	DO NOT SCALE

Plotted By: jaysonn Plot Date: 18/09/19 - 11:20 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg

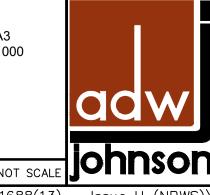

www.adwjohnson.com.au ABN 62 129 445 398

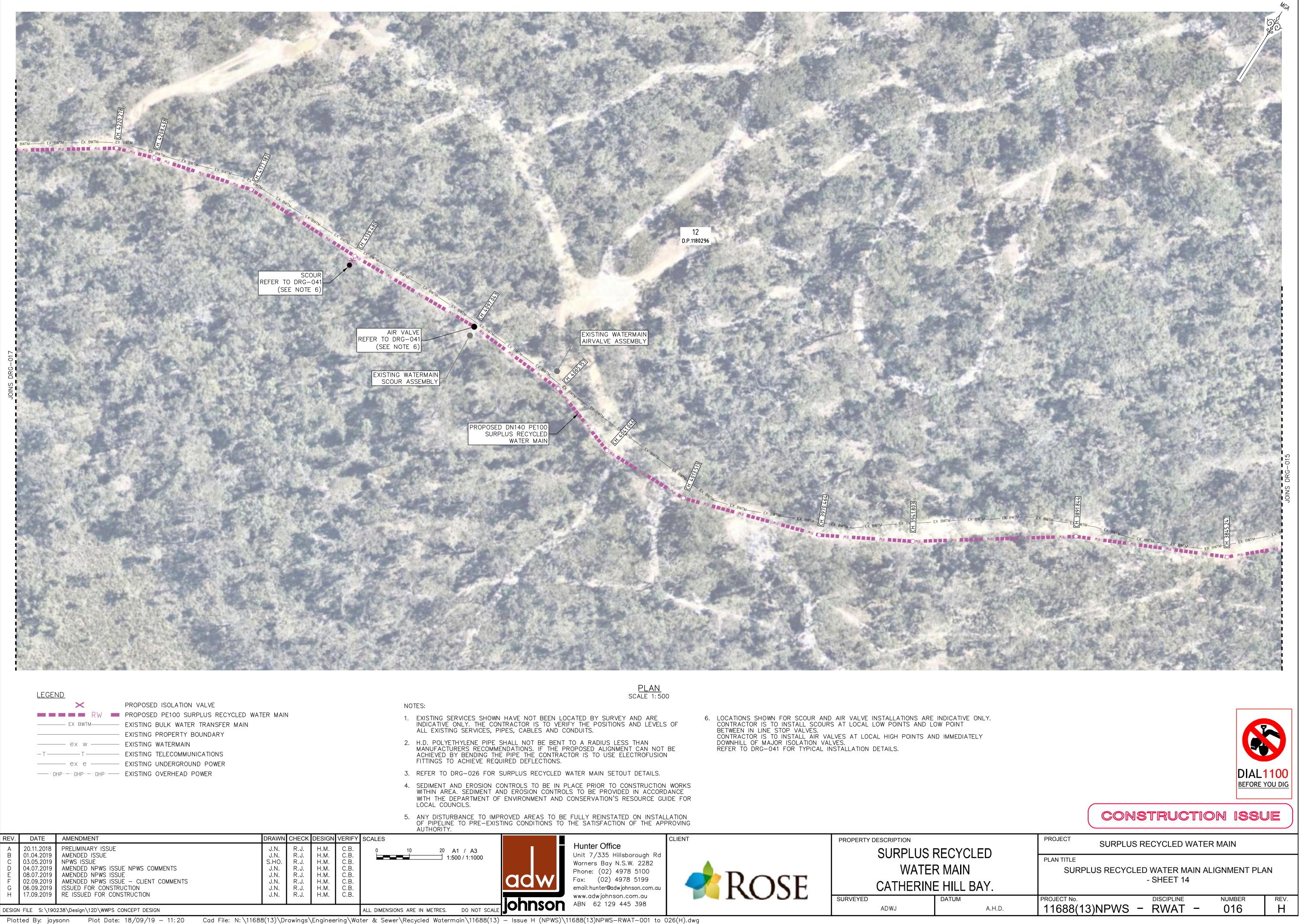
SURVEYED DATUM ADWJ A.H.E


	PROJECT No.		DISCIPLINE		NUMBER	REV.
I.D.	11688(13)NPWS	—	RWAT	-	013	H

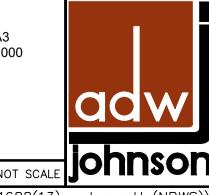

\mathbf{x}
EX BWTM
———— ex w ————
— T ——— T ———
ex e

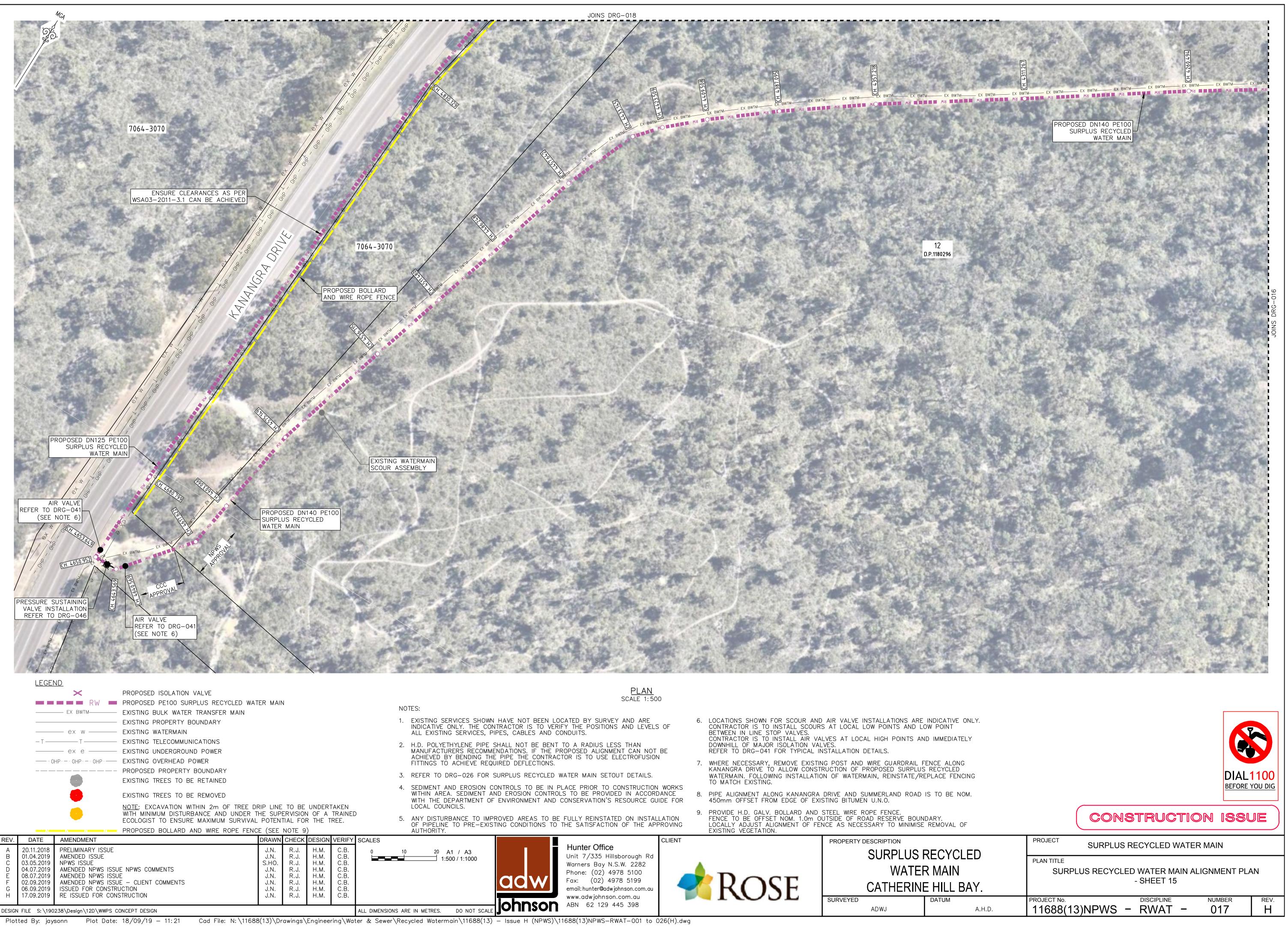
							-			THORITY.
	REV.	DATE	AMENDMENT	DRAWN	I CHECK	DESIGN	VERIFY	SCALES		
	А В С D L F G T	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.	0	10 	20 A1 / A3
-	DESIGN		238\Design\12D\WWDS_CONCEDT_DESIGN						IONS ARE IN	



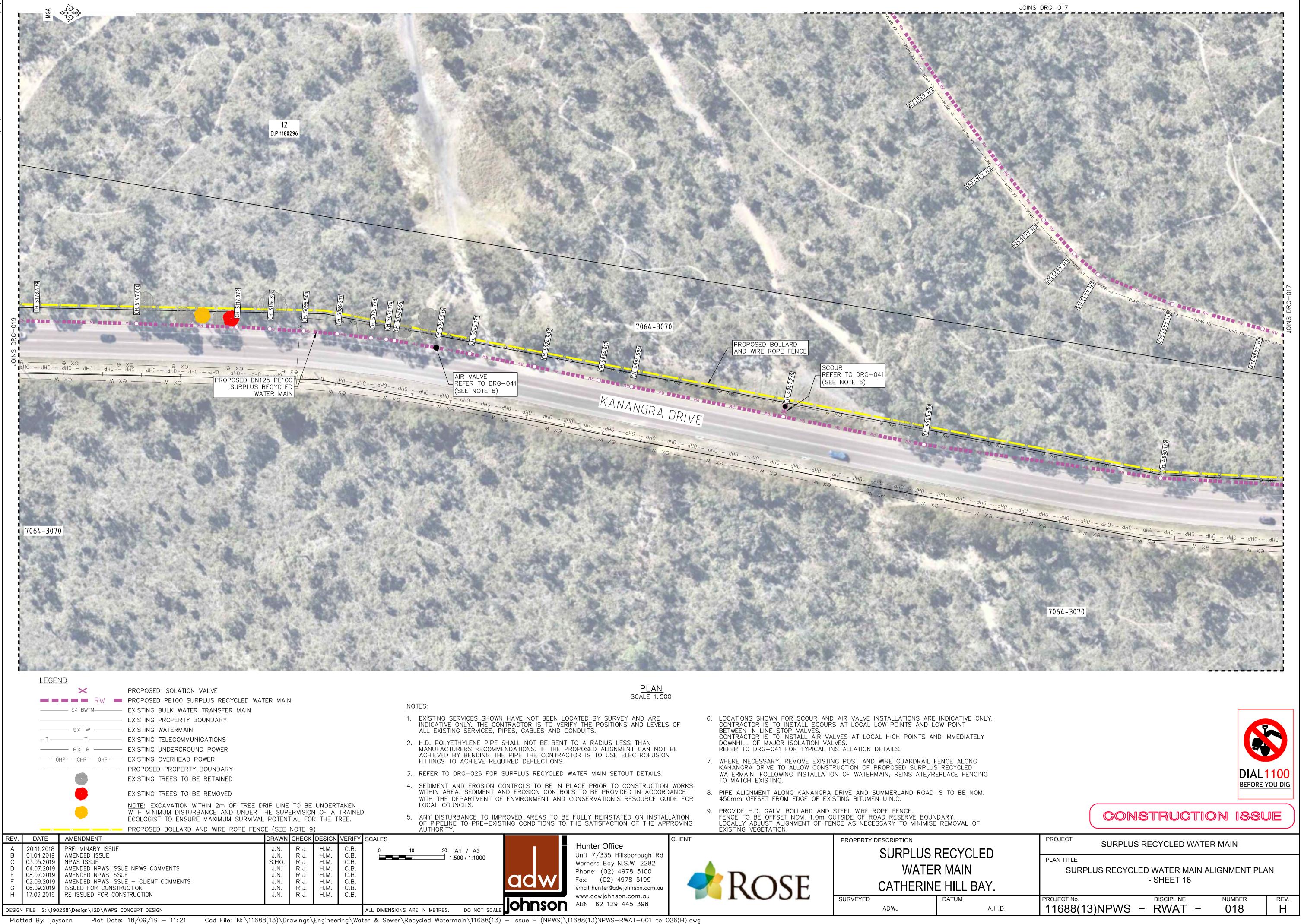


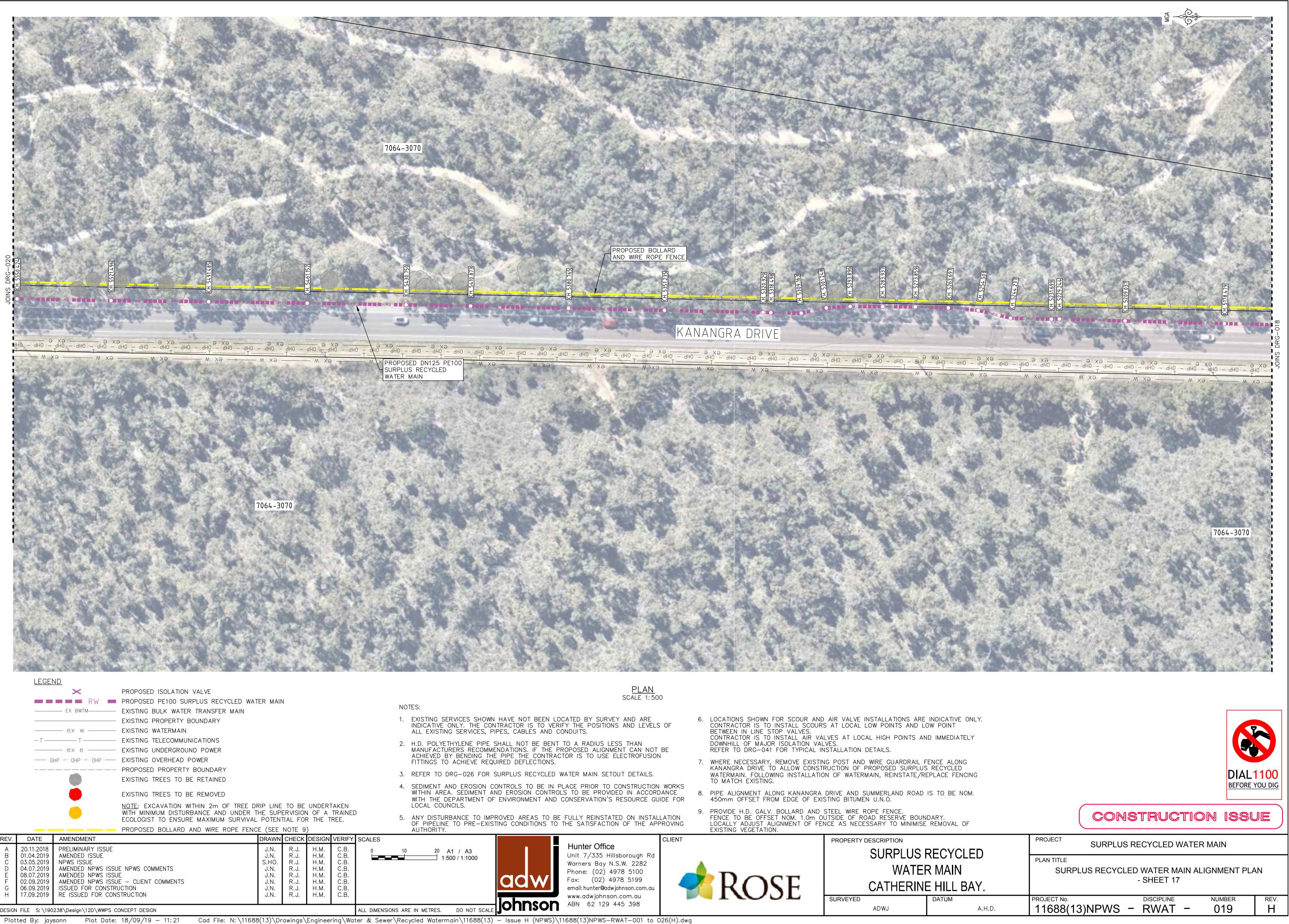
×
EX BWTM
ex w
— T ——— T ———
ex e


										IORITY.
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES		
uluuluu -	КВСDШFСΗ	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.S. H.S. H.S. H.S. H.S. H.S. H.S. H.S.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	20 A1 / A3
-	DECION									

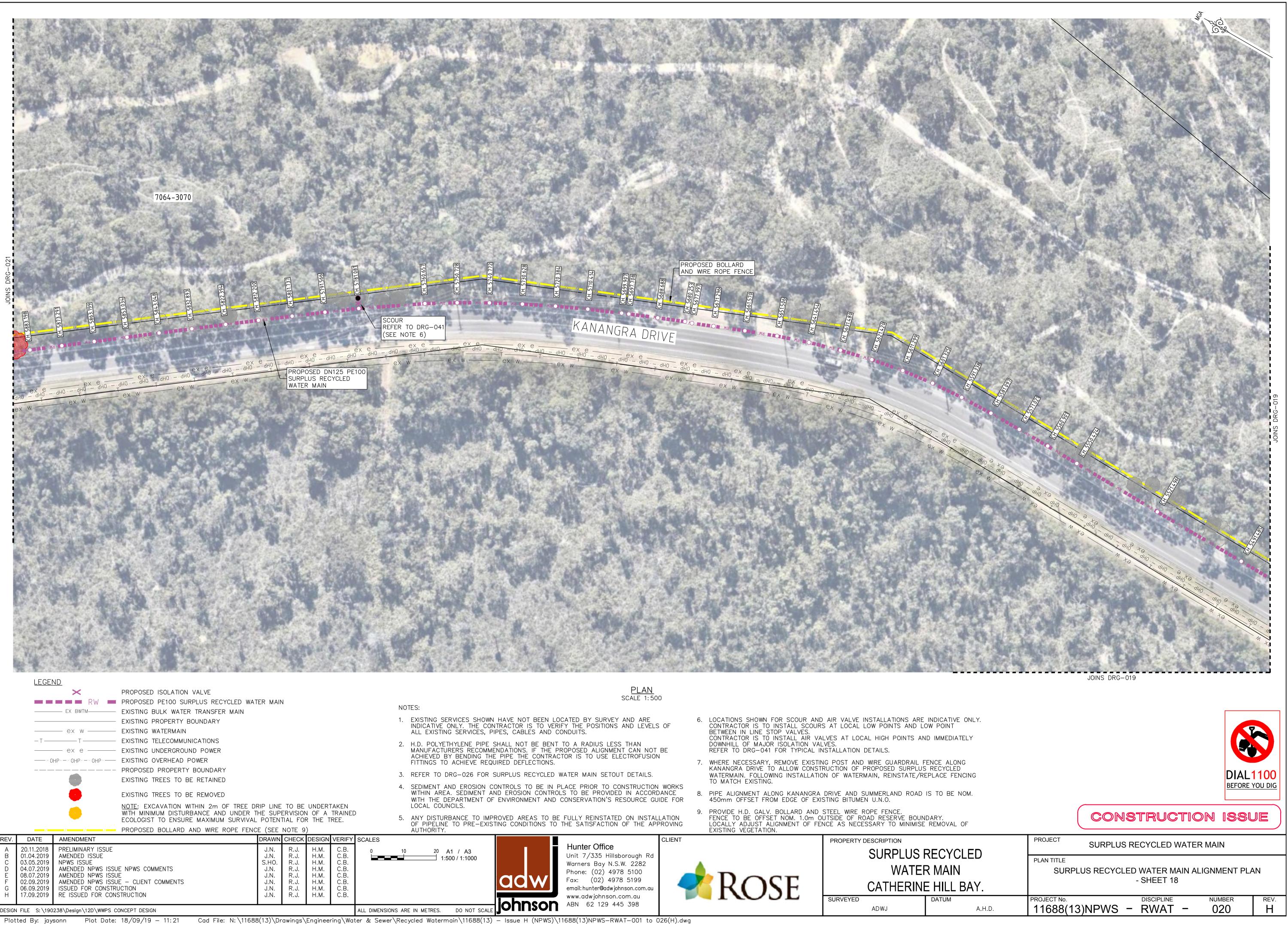


-										JTHORITY	
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
uluuluu u	КВСОШFСІ	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	20 1	A1 / A3 :500 / 1:10
Ξ	DESIGN	FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN					ALL DIMENSIC	NS ARE IN	METRES.	DO N

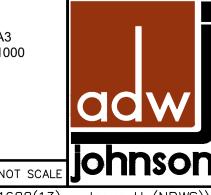


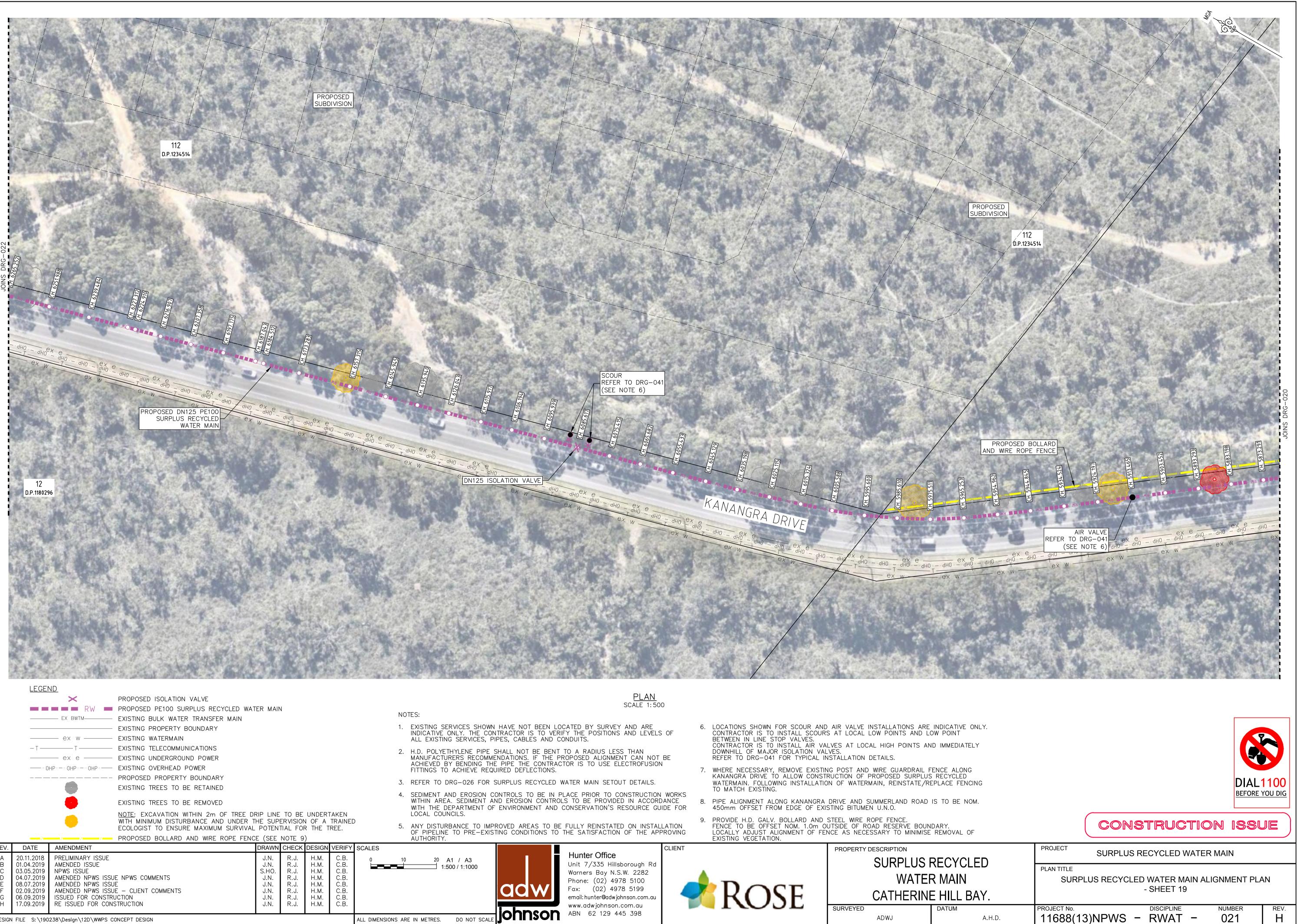




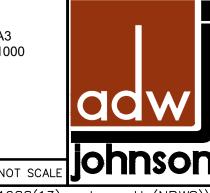


57											
50mm AT FULL			RW	PROPOSED PE100 SURPLUS RECYCL	ED WATER MAI	N				NO	TES:
ш́ Н			EX BWTM	EXISTING BULK WATER TRANSFER M.	AIN					NU	IES.
۳A				EXISTING PROPERTY BOUNDARY						1.	EXISTING SERVICES INDICATIVE ONLY. 1
			— ex w —	EXISTING WATERMAIN							ALL EXISTING SERV
()		— T ——	T	EXISTING TELECOMMUNICATIONS						2	H.D. POLYETHYLENE
			— ex e ——	EXISTING UNDERGROUND POWER						۷.	MANUFACTURERS R
-		0	HP ·· — ·· OHP ·· — ·· OHP ·· ——	EXISTING OVERHEAD POWER							ACHIEVED BY BEND FITTINGS TO ACHIE
				PROPOSED PROPERTY BOUNDARY						z	REFER TO DRG-02
				EXISTING TREES TO BE RETAINED							
				EXISTING TREES TO BE REMOVED						4.	SEDIMENT AND ERC WITHIN AREA. SEDI
											WITH THE DEPARTM
-				NOTE: EXCAVATION WITHIN 2m OF T WITH MINIMUM DISTURBANCE AND U)		LOCAL COUNCILS.
			-	ECOLOGIST TO ENSURE MAXIMUM SU						5.	ANY DISTURBANCE OF PIPELINE TO PR
		/	//	PROPOSED BOLLARD AND WIRE ROP	E FENCE (SEE	NOTE 9)				AUTHORITY.
	REV.	DATE	AMENDMENT		DRAWN	CHECK	DESIGN	VERIFY	SCALES		
		20.11.2018	PRELIMINARY ISSUE		J.N.	R.J.	Н.М.	C.B.	0	10	20 A1 / A3
-		01.04.2019 03.05.2019	AMENDED ISSUE NPWS ISSUE		J.N. S.HO.	R.J.	H.M.	C.B.			1:500 / 1:10
		03.05.2019	AMENDED NPWS ISSUE	E NEWS COMMENTS	5.п0. J.N.	R.J. R.J.	Н.М. Н.М.	C.B. C.B.			
-		08.07.2019	AMENDED NPWS ISSU		J.N.	R.J.	Н.М.	C.B.			
	_	02.09.2019		E – CLIENT COMMENTS	J.N.	R.J.	Н.М.	C.B.			
4	G	06.09.2019	ISSUED FOR CONSTRU		J.N.	R.J.	Н.М.	C.B.			
mm	Н	17.09.2019	RE ISSUED FOR CON	STRUCTION	J.N.	R.J.	Н.М.	C.B.			
E	DESIGN	FILE S: \190	238\Design\12D\WWPS C	ONCEPT DESIGN	-	-			ALL DIMENSIO	NS AR	E IN METRES. DO NO

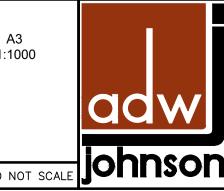




	LEGE	ND_								
		\times	PROPOSED ISOLATION VALVE							
		RW	PROPOSED PE100 SURPLUS RECYCLED WA	TER MAI	N					
		EX BWTM	EXISTING BULK WATER TRANSFER MAIN						NC)TES:
			EXISTING PROPERTY BOUNDARY						1.	EXISTING SERVICES INDICATIVE ONLY. T
		— ex w —	EXISTING WATERMAIN							ALL EXISTING SERV
	— T —	T	EXISTING TELECOMMUNICATIONS						2	H.D. POLYETHYLENE
		— ex e ——	EXISTING UNDERGROUND POWER						۷.	MANUFACTURERS R
	0	НР	EXISTING OVERHEAD POWER							ACHIEVED BY BEND FITTINGS TO ACHIEV
			PROPOSED PROPERTY BOUNDARY						7	REFER TO DRG-020
			EXISTING TREES TO BE RETAINED							
									4.	SEDIMENT AND ERC WITHIN AREA. SEDIM
			EXISTING TREES TO BE REMOVED							WITH THE DEPARTM
			NOTE: EXCAVATION WITHIN 2m OF TREE [WITH MINIMUM DISTURBANCE AND UNDER					N		LOCAL COUNCILS.
			ECOLOGIST TO ENSURE MAXIMUM SURVIVA)	5.	ANY DISTURBANCE
	/	///	PROPOSED BOLLARD AND WIRE ROPE FEN	CE (SEE	NOTE 9)				OF PIPELINE TO PR AUTHORITY.
REV.	DATE	AMENDMENT		DRAWN	CHECK	DESIGN	VERIFY	SCALES		
A B C D E	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSU AMENDED NPWS ISSU		J.N. J.N. S.HO. J.N. J.N.	R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B.	0	10	20 A1 / A3
F G H	02.09.2019 06.09.2019 17.09.2019		JE - CLIENT COMMENTS UCTION	J.N. J.N. J.N.	R.J. R.J. R.J.	H.M. H.M. H.M.	C.B. C.B. C.B. C.B.			
DESIG	N FILE S: \190	238\Design\12D\WWPS C	CONCEPT DESIGN					ALL DIMENS	ONS AF	RE IN METRES. DO NO

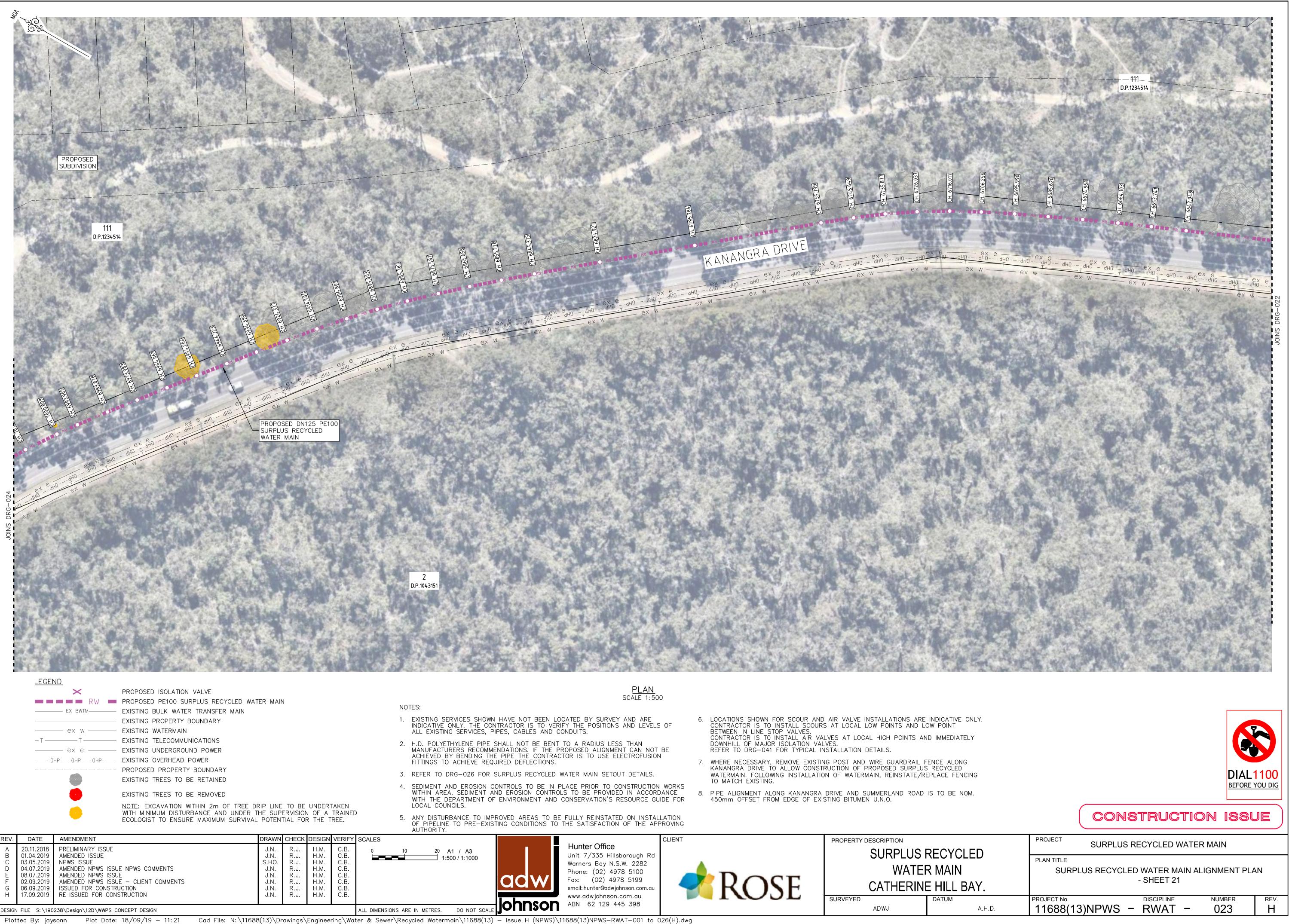


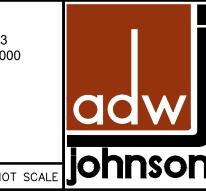
SIZ		\times	PROPOSED ISOLATION VALVE									
FULL		RW	PROPOSED PE100 SURPLUS RECYCLED WAT	FER MAII	Ν				NO	TES:		
ΤF		EX BWTM	EXISTING BULK WATER TRANSFER MAIN						NU	IES.		
m AT			EXISTING PROPERTY BOUNDARY						1.	EXISTING SERVICES		
50mm /		— ex w —	EXISTING WATERMAIN							ALL EXISTING SERV		
	— T —	T	EXISTING TELECOMMUNICATIONS						2.	H.D. POLYETHYLEN		
		— ex e — —	EXISTING UNDERGROUND POWER							MANUFACTURERS F		
-)HP ·· — ·· OHP ·· — ·· OHP ·· ——	EXISTING OVERHEAD POWER							ACHIEVED BY BENE FITTINGS TO ACHIE		
			PROPOSED PROPERTY BOUNDARY						3.	REFER TO DRG-02		
-			EXISTING TREES TO BE RETAINED									
-	EXISTING TREES TO BE REMOVED									4. SEDIMENT AND ER WITHIN AREA. SED WITH THE DEPART		
			NOTE: EXCAVATION WITHIN 2m OF TREE D							LOCAL COUNCILS.		
		-	WITH MINIMUM DISTURBANCE AND UNDER T ECOLOGIST TO ENSURE MAXIMUM SURVIVAL)	5.	ANY DISTURBANCE OF PIPELINE TO PF		
	/_	//	PROPOSED BOLLARD AND WIRE ROPE FENC	E (SEE	NOTE 9)				AUTHORITY.		
	REV. DATE	AMENDMENT		DRAWN	CHECK	DESIGN	VERIFY	SCALES				
	A 20.11.2018 B 01.04.2019 C 03.05.2019 D 04.07.2019 E 08.07.2019 F 02.09.2019 G 06.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSU AMENDED NPWS ISSU AMENDED NPWS ISSU ISSUED FOR CONSTRU	IE IE – CLIENT COMMENTS	J.N. J.N. S.HO. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	20 A1 / A3		
huluul	H 17.09.2019	RE ISSUED FOR CON	STRUCTION	J.N.	R.J.	Н.М.	C.B.	ALL DIMENSIO	NS AR	E IN METRES. DO NO		
	DESIGN THEE S. (190						• • • • • •			, viences. Do n		



Plotted By: jaysonn Plot Date: 18/09/19 - 11:21 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg

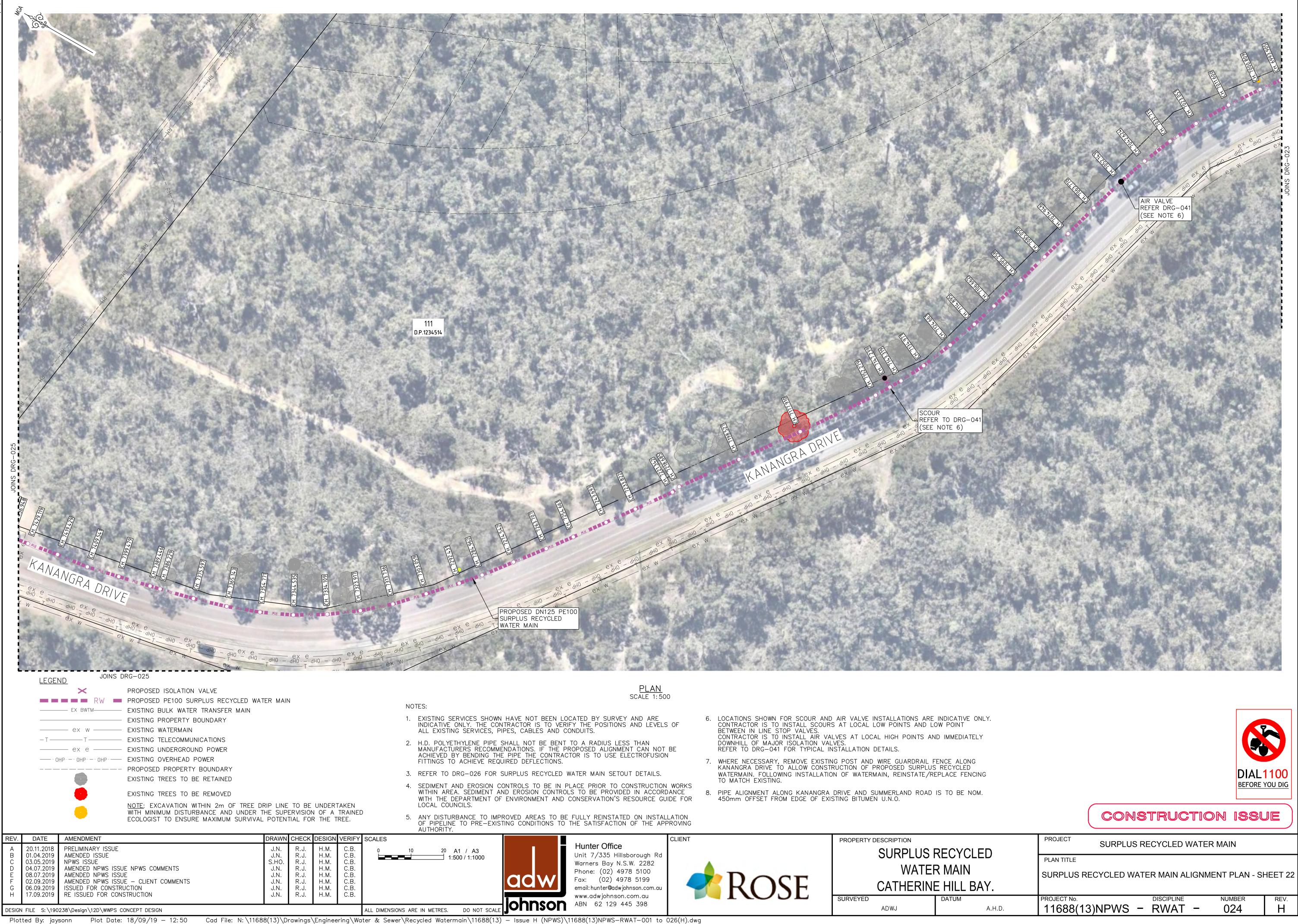
										OF PIPELIN	
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
	АВС ДШЕ О Т	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10	20	A1 / 1:500 / 1:
Ξ	DESIGN		238\Design\12D\WWPS_CONCEPT_DESIGN					ALL DIMENSIO	NS ARE I	IN METRES	DO

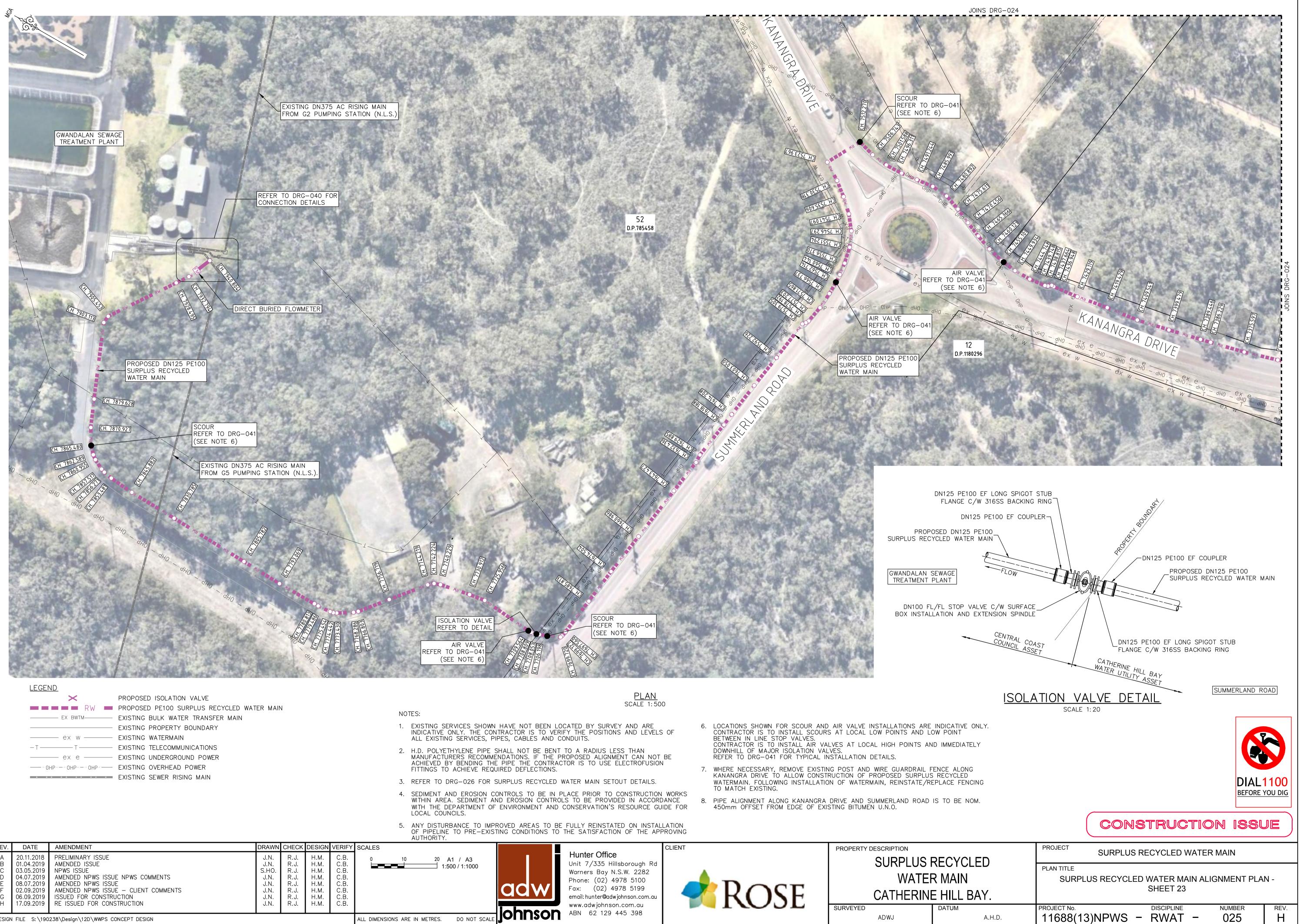

email:hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

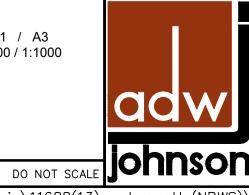

CATHERINE HILL BAY. SURVEYED DATUM ADWJ A.H.E

Plotted By: jaysonn Plot Date: 18/09/19 - 11:21 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg

	PROJECT No.	DISCIPLINE	NUMBER	REV.
.D.	11688(13)NPWS	- RWAT -	022	Н


- SIZE			\times	PROPOSED ISOLATION VALVE							
FULL			— ех вwтм—	PROPOSED PE100 SURPLUS RECYCLED WAT EXISTING BULK WATER TRANSFER MAIN	ER MAII	N				NO	TES:
50mm AT FULL			ex w	EXISTING PROPERTY BOUNDARY						1.	EXISTING SERVICES INDICATIVE ONLY. ALL EXISTING SERV
	-T T EXISTING TELECOMMUNICATIONS									2.	H.D. POLYETHYLEN MANUFACTURERS F ACHIEVED BY BENE FITTINGS TO ACHIE
_	PROPOSED PROPERTY BOUNDARY									3.	REFER TO DRG-02
-	EXISTING TREES TO BE REMOVED NOTE: EXCAVATION WITHIN 2m OF TREE DRIP LINE TO BE UNDERTAKEN								4.	SEDIMENT AND ERC WITHIN AREA. SEDI WITH THE DEPARTM LOCAL COUNCILS.	
_			-	WITH MINIMUM DISTURBANCE AND UNDER T ECOLOGIST TO ENSURE MAXIMUM SURVIVAL)	5.	ANY DISTURBANCE OF PIPELINE TO PF AUTHORITY.
_	REV.	DATE	AMENDMENT		DRAWN	CHECK	DESIGN	VERIFY	SCALES		
limbul .	B C D F G	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSU AMENDED NPWS ISSU AMENDED NPWS ISSU ISSUED FOR CONSTRU RE ISSUED FOR CONS	E E — CLIENT COMMENTS JCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.	0	10	20 A1 / A3
E	DESIGN I	FILE S: \190	238\Design\12D\WWPS CO	DNCEPT DESIGN					ALL DIMENSIO	NS AR	E IN METRES. DO NO


Plot Date: 18/09/19 - 11:21 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg


Plot Date: 18/09/19 - 12:50 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg

ſ	PROJECT SURPLUS RECYCLED WATER MAIN	
J	PLAN TITLE	
.	SURPLUS RECYCLED WATER MAIN ALIGNMENT PLAN - SH	IEET 22
A.H.D.	PROJECT No. DISCIPLINE NUMBER 11688(13)NPWS - RWAT - 024	rev. H

									AU	IHORITY.	
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
	А В С D Ш F G T	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		10		\1 / A3 00 / 1:10
Ξ	DESIGN		238\Design\12D\WWPS_CONCEPT_DESIGN						INS ARE IN	METRES	

DESIGN FILE S: \190238 \Design \12D \WWPS CONCEPT DESIGN Plotted By: jaysonn Plot Date: 18/09/19 - 11:22 ALL DIMENSIONS ARE IN METRES.

ABN 62 129 445 398

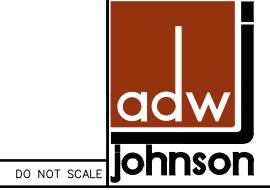
ADWJ A.H.D.

Cad File: N: \11688(13)\Drawings\Engineering\Water & Sewer\Recycled Watermain\11688(13) - Issue H (NPWS)\11688(13)NPWS-RWAT-001 to 026(H).dwg

HAINAGE	EASTING	NORTHING	TER MAIN SETOUT DESCRIPTION	CHAINAGE	SURPLUS EASTING	NORTHING	DESCRIPTION
0.000	371670.019	6329850.644	CONNECTION TO EXIST. DN125	2194.677	370008.900	6330201.008	39°28' HORIZ. DEFLECTION
15.605	371669.560	6329866.242	80°05' HORIZ. DEFLECTION	2217.468	369986.627	6330196.180	8°44' HORIZ. DEFLECTION
4.418	371678.193	6329868.016 6329881.741	INTERMEDIATE CHAINAGE 23°15' HORIZ. DEFLECTION	2221.938	369982.165	6330195.907 6330194.354	INTERMEDIATE CHAINAGE
8.363 0.792	371719.939 371729.256	6329881.741	23'15 HORIZ. DEFLECTION 26'06' HORIZ. DEFLECTION	2241.618 2259.426	369962.546 369945.435	6330194.354	11°33' HORIZ. DEFLECTION 15°42' HORIZ. DEFLECTION
2.040	371733.552	6329900.364	INTERMEDIATE CHAINAGE	2279.572	369925.290	6330189.288	8°10' HORIZ. DEFLECTION
4.114	371740.231	6329921.403	INTERMEDIATE CHAINAGE	2291.008	369913.980	6330187.588	6°12' HORIZ. DEFLECTION
28.684	371745.690	6329934.912	INTERMEDIATE CHAINAGE	2313.497	369892.232	6330181.866	INTERMEDIATE CHAINAGE
10.649	371749.210	6329946.347	15°42' HORIZ. DEFLECTION	2327.967	369878.609	6330176.985	9°10' HORIZ. DEFLECTION
57.614	371749.630	6329963.307		2357.845	369849.236	6330171.517	66°03' HORIZ. DEFLECTION
76.526 17.929	371748.912 371744.086	6329982.206 6330023.326	INTERMEDIATE CHAINAGE 8°28' HORIZ. DEFLECTION	2382.415 2392.839	369843.543 369839.917	6330147.616 6330137.843	6°57' HORIZ. DEFLECTION 8°27' HORIZ. DEFLECTION
30.054	371740.883	6330035.020	10°32' HORIZ. DEFLECTION	2430.791	369821.631	6330104.586	5°01' HORIZ. DEFLECTION
41.674	371735.816	6330045.477	8°47' HORIZ. DEFLECTION	2464.320	369802.974	6330076.728	INTERMEDIATE CHAINAGE
58.850	371730.776	6330061.898	5°28' HORIZ. DEFLECTION	2516.628	369776.262	6330031.755	INTERMEDIATE CHAINAGE
76.528	371727.221	6330079.215	INTERMEDIATE CHAINAGE	2569.048	369749.189	6329986.866	17°00' HORIZ. DEFLECTION - SC
90.817 06.233	<u>371725.317</u> 371722.379	6330093.376 6330108.509	INTERMEDIATE CHAINAGE	2589.951 2597.161	369733.633 369727.526	6329972.905 6329969.073	9°48' HORIZ. DEFLECTION 16°21' HORIZ. DEFLECTION
6.357	371719.296	6330118.152	8°37' HORIZ. DEFLECTION	2611.064	369714.145	6329965.295	9°35' HORIZ. DEFLECTION
9.340	371713.535	6330129.787	33'10' HORIZ. DEFLECTION	2629.912	369695.407	6329963.266	9°26' HORIZ. DEFLECTION
-8.406	371697.105	6330139.461	17°23' HORIZ. DEFLECTION	2648.094	369677.254	6329964.296	INTERMEDIATE CHAINAGE
5.665	371690.036	6330141.108	INTERMEDIATE CHAINAGE	2716.937	369608.412	6329964.358	INTERMEDIATE CHAINAGE
2.920	371663.274	6330146.269	6°24' HORIZ. DEFLECTION 5°11' HORIZ. DEFLECTION	2737.219	369588.132	6329964.079	
4.330 51.844	371633.287 371617.106	6330155.617 6330162.320	13°03' HORIZ. DEFLECTION	2755.576 2771.046	369569.778 369554.356	6329963.692 6329962.476	INTERMEDIATE CHAINAGE 25°23' HORIZ. DEFLECTION
64.042	371595.211	6330165.968	INTERMEDIATE CHAINAGE	2787.299	369540.266	6329954.376	AIR VALVE - REFER TO DRG-0
2.980	371576.740	6330170.151	SCOUR - REFER TO DRG-041	2797.624	369531.043	6329949.734	9°16' HORIZ. DEFLECTION
7.708	371552.782	6330176.273	INTERMEDIATE CHAINAGE	2827.603	369506.781	6329932.124	INTERMEDIATE CHAINAGE
8.782	371532.042	6330180.011		2863.615	369477.236	6329911.533	
-0.116	371511.182	6330184.483	5°54' HORIZ. DEFLECTION	2914.241	369437.204	6329880.543	
53.192 56.667	<u> </u>	6330186.977 6330197.586	20°40' HORIZ. DEFLECTION 13°57' HORIZ. DEFLECTION	2949.046 2966.474	369409.048 369395.528	6329860.083 6329849.086	INTERMEDIATE CHAINAGE 39°24' HORIZ. DEFLECTION
0.930	371443.652	6330203.012	INTERMEDIATE CHAINAGE	2976.365	369393.561	6329839.392	7°02' HORIZ. DEFLECTION
7.247	371408.337	6330211.486	INTERMEDIATE CHAINAGE	3023.672	369378.547	6329794.531	SCOUR - REFER TO DRG-04
3.552	371382.391	6330215.813	INTERMEDIATE CHAINAGE	3065.005	369365.220	6329755.405	11°29' HORIZ. DEFLECTION
0.331	371365.695	6330217.483		3091.970	369361.780	6329728.661	19°15' HORIZ. DEFLECTION
5.426 30.551	371340.949 371325.976	6330221.658 6330223.788	INTERMEDIATE CHAINAGE 11°05' HORIZ. DEFLECTION	3121.389 3157.446	369348.616 369331.039	6329702.352 6329670.869	INTERMEDIATE CHAINAGE 16°50' HORIZ. DEFLECTION
50.030 50.090	371298.075	6330233.491	7*56' HORIZ. DEFLECTION	3206.829	369320.486	6329670.869	17°42' HORIZ. DEFLECTION
53.517	371295.025	6330235.053	18°58' HORIZ. DEFLECTION	3214.384	369321.191	6329615.105	INTERMEDIATE CHAINAGE
'4.919	371283.737	6330236.668	18'16' HORIZ. DEFLECTION	3232.759	369323.525	6329596.878	12°32' HORIZ. DEFLECTION
79.051	371279.670	6330235.942	18°19' HORIZ. DEFLECTION	3242.418	369322.643	6329587.260	16°57' HORIZ. DEFLECTION
8.465 4.944	371260.455 371244.828	6330238.712 6330243.941	10°18' HORIZ. DEFLECTION 11°00' HORIZ. DEFLECTION	3258.568 3303.237	369316.541 369308.771	6329572.307 6329528.319	12°11' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE
-6.964	371213.082	6330248.123	7'30' HORIZ. DEFLECTION	3332.512	369302.301	6329499.767	INTERMEDIATE CHAINAGE
8.238	371181.808	6330248.125	60°26' HORIZ. DEFLECTION	3343.669	369300.160	6329488.818	45°22' HORIZ. DEFLECTION
7.004	371167.615	6330273.146	35°04' HORIZ. DEFLECTION	3351.466	369304.554	6329482.377	22'03' HORIZ. DEFLECTION
3.395	371152.806	6330280.171	15°25' HORIZ. DEFLECTION	3356.942	369305.716	6329477.026	58°03' HORIZ. DEFLECTION -
52.807 08.379	371123.837 371069.675	6330285.257	INTERMEDIATE CHAINAGE	3376.781 3396.390	369291.492 369277.155	6329463.195 6329449.818	INTERMEDIATE CHAINAGE 35°54' HORIZ. DEFLECTION
54.377	371024.739	6330297.694 6330307.527	INTERMEDIATE CHAINAGE	3403.594	369270.006	6329449.818	17°13' HORIZ. DEFLECTION
74.334	371005.461	6330312.684	INTERMEDIATE CHAINAGE	3463.857	369210.679	6329459.506	23°51' HORIZ. DEFLECTION
000.00	370980.272	6330317.619	AIR VALVE – REFER TO DRG–041	3477.146	369197.770	6329456.348	35°58' HORIZ. DEFLECTION - SC
56.731	370826.467	6330347.757	5°13' HORIZ. DEFLECTION	3507.841	369177.922	6329432.935	8°42' HORIZ. DEFLECTION
94.595	370790.126	6330358.388	5°48' HORIZ. DEFLECTION	3533.396	369158.636	6329416.168	23°50' HORIZ. DEFLECTION
45.015 50.000	370740.552 370735.727	6330367.583 6330368.833	INTERMEDIATE CHAINAGE SCOUR – REFER TO DRG-041	3550.938 3566.429	369141.876 369126.457	6329410.989 6329409.502	11°40' HORIZ. DEFLECTION 7°02' HORIZ. DEFLECTION
90.035	370696.971	6330378.877	8*29' HORIZ. DEFLECTION	3579.675	369113.215	6329409.855	10°08' HORIZ. DEFLECTION
18.703	370668.462	6330381.894	8'31' HORIZ. DEFLECTION	3604.318	369088.849	6329406.170	9°21' HORIZ. DEFLECTION
56.021	370632.342	6330391.274	INTERMEDIATE CHAINAGE	3620.183	369073.756	6329401.281	INTERMEDIATE CHAINAGE
93.107	370596.045	6330398.882		3644.958	369050.607	6329392.453	7°40' HORIZ. DEFLECTION
42.041 50.000	370547.705 370540.010	6330406.482 6330408.515	5°52' HORIZ. DEFLECTION AIR VALVE – REFER TO DRG-041	3665.291 3680.470	369030.813 369015.984	6329387.806 6329384.564	INTERMEDIATE CHAINAGE 19*57' HORIZ. DEFLECTION
73.457	370517.331	6330414.507	INTERMEDIATE CHAINAGE	3719.104	368983.320	6329363.933	26'19' HORIZ. DEFLECTION
36.733	370504.552	6330418.101	7°43' HORIZ. DEFLECTION	3741.516	368961.029	6329361.609	15°24' HORIZ. DEFLECTION
38.482	370502.819	6330418.344	9*58' HORIZ. DEFLECTION	3765.218	368938.954	6329352.978	10°29' HORIZ. DEFLECTION
19.220	370472.100	6330417.281	SCOUR - REFER TO DRG-041	3798.899	368910.342	6329335.208	9°36' HORIZ. DEFLECTION
48.140 57.752	370443.197 370424.207	6330416.282 6330421.183	16°27' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE	<u>3845.247</u> <u>3891.844</u>	368875.595 368833.140	6329304.535 6329285.332	17°06' HORIZ. DEFLECTION 9°27' HORIZ. DEFLECTION
73.636	370424.207	6330421.183	INTERMEDIATE CHAINAGE	3941.803	368791.621	6329255.532	5°34' HORIZ. DEFLECTION
75.376	370416.804	6330422.995	INTERMEDIATE CHAINAGE	3970.464	368766.369	6329243.988	11°21' HORIZ. DEFLECTION
94.757	370397.804	6330426.817	INTERMEDIATE CHAINAGE	4013.513	368725.176	6329231.484	16°43' HORIZ. DEFLECTION
5.307	370377.464	6330429.745	6°50' HORIZ. DEFLECTION	4041.046	368697.643	6329231.402	19°51' HORIZ. DEFLECTION
35.065 39.565	370357.711 370357.834	6330430.210 6330425.712	92°55' HORIZ. DEFLECTION ISOLATION VALVE	4065.157 4097.043	368674.941 368643.149	6329239.521 6329241.967	15°17' HORIZ. DEFLECTION 5°52' HORIZ. DEFLECTION -
59.046	370358.364	6330406.238	96*57' HORIZ. DEFLECTION	4139.480	368600.726	6329241.987	SCOUR - REFER TO DRG-04
02.884	370314.720	6330410.352	AIR VALVE - REFER TO DRG-041	4177.182	368563.025	6329241.287	14°33' HORIZ. DEFLECTION
23.554	370294.259	6330413.290	78°50' HORIZ. DEFLECTION	4208.408	368532.720	6329233.763	INTERMEDIATE CHAINAGE
33.821	370290.860	6330403.601	13°52' HORIZ. DEFLECTION	4220.278	368521.416	6329230.140	15°29' HORIZ. DEFLECTION
46.945 58.125	370283.676 370283.709	6330392.619 6330381.439	33°22' HORIZ. DEFLECTION 60°09' HORIZ. DEFLECTION	4260.494 4311.267	368487.785 368446.030	6329208.087 6329179.201	INTERMEDIATE CHAINAGE
58.805	370283.709	6330376.097	INTERMEDIATE CHAINAGE	4311.267	368446.030	6329179.201	INTERMEDIATE CHAINAGE
35.072	370260.632	6330367.530	INTERMEDIATE CHAINAGE	4387.095	368383.935	6329135.701	INTERMEDIATE CHAINAGE
01.610	370247.147	6330357.957	19'44' HORIZ. DEFLECTION	4409.508	368366.434	6329121.698	INTERMEDIATE CHAINAGE
)4.647	370244.223	6330357.138	42°13' HORIZ. DEFLECTION	4423.509	368356.056	6329112.300	6°58' HORIZ. DEFLECTION
0.639	370238.862 370231.317	6330359.817 6330352.620	70°13' HORIZ. DEFLECTION 10°25' HORIZ. DEFLECTION	4433.145 4457.642	368349.749 368340.620	6329105.015 6329082.283	19°00' HORIZ. DEFLECTION 6°36' HORIZ. DEFLECTION
31.899	370231.317	6330352.620	30°02' HORIZ. DEFLECTION	4457.642	368340.620	6329082.283	INTERMEDIATE CHAINAGE
38.048	370220.586	6330340.157	INTERMEDIATE CHAINAGE	4511.480	368325.799	6329030.530	INTERMEDIATE CHAINAGE
57.874	370203.184	6330330.658	INTERMEDIATE CHAINAGE	4536.715	368318.605	6329006.341	INTERMEDIATE CHAINAGE
58.031	370193.933	6330326.465	INTERMEDIATE CHAINAGE	4575.149	368308.088	6328969.374	7°24' HORIZ. DEFLECTION
38.744	370175.116	6330317.806 6330302.133	20°05' HORIZ. DEFLECTION	4603.066	368303.974	6328941.762	INTERMEDIATE CHAINAGE 30°13' HORIZ. DEFLECTION
10.989 30.244	370159.331 370144.690	6330302.133	INTERMEDIATE CHAINAGE 16°36' HORIZ. DEFLECTION	4617.622 4640.595	368301.774 368287.363	6328927.374 6328909.517	AIR VALVE - REFER TO DRG-
50.244 59.403	370108.890	6330273.761	INTERMEDIATE CHAINAGE	4643.569	368285.479	6328909.317	49°15' HORIZ. DEFLECTION
34.595	370094.664	6330268.426	12°24' HORIZ. DEFLECTION	4647.259	368281.789	6328907.064	PSV - REFER TO DRG-046
01.719	370080.295	6330259.112	10°48' HORIZ. DEFLECTION	4650.952	368275.400	6328907.009	93'39' HORIZ. DEFLECTION
31.977	370058.439	6330238.187		4653.649	368278.184	6328909.641	AIR VALVE - REFER TO DRG-
	370045.832 370032.596	6330227.892 6330219.056	5°31' HORIZ. DEFLECTION 7°16' HORIZ. DEFLECTION	4680.799 4903.309	368275.618 368297.629	6328937.040 6329158.337	INTERMEDIATE CHAINAGE INTERMEDIATE CHAINAGE
48.253 54.168			, IS HOME DELECTION				
6.255 64.168 81.550	370017.035	6330211.311	25°15' HORIZ. DEFLECTION	4947.239	368305.627	6329198.136	SCOUR - REFER TO DRG-04

	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES	
1 l	А В С D Ш F G T	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.		H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		
E	DESIGN	FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN					ALL DIMENSIONS ARE IN METRES.	DO N

Plot Date: 18/09/19 – 11:22 Plotted By: jaysonn


ALL DIMENSIONS ARE IN METRES.

CHAINAGE	EASTING	NORTHING	TER MAIN SETOUT DESCRIPTION	CHAINAGE	EASTING	NORTHING	ATER MAIN SETOUT
4994.594	368315.381	6329247.880	INTERMEDIATE CHAINAGE	6216.907	368089.021	6330403.680	INTERMEDIATE CHAINAG
5004.817	368317.385	6329257.904	INTERMEDIATE CHAINAGE	6224.910	368087.007	6330411.425	INTERMEDIATE CHAINAG
5024.933 5045.171	368321.458 368325.435	6329277.604 6329297.447	INTERMEDIATE CHAINAGE	6227.312 6239.484	368086.402 368083.184	6330413.750 6330425.489	INTERMEDIATE CHAINAG
5055.536	368327.343	6329307.634	AIR VALVE - REFER TO DRG-041	6251.988	368079.972	6330437.574	INTERMEDIATE CHAINAG
5068.566	368329.493	6329320.486	INTERMEDIATE CHAINAGE	6265.252	368076.557	6330450.390	INTERMEDIATE CHAINAG
5071.134	368329.906	6329323.020	INTERMEDIATE CHAINAGE	6277.096	368073.542	6330461.844	
5075.773 5086.217	368330.315 368331.553	6329327.641 6329338.012	INTERMEDIATE CHAINAGE	6288.187 6301.524	368070.667 368067.177	6330472.556 6330485.428	INTERMEDIATE CHAINAG
5096.500	368332.395	6329348.261	INTERMEDIATE CHAINAGE	6310.726	368064.736	6330494.300	INTERMEDIATE CHAINAG
5106.898	368333.055	6329358.637	INTERMEDIATE CHAINAGE	6318.942	368062.447	6330502.191	INTERMEDIATE CHAINAG
5117.072	368333.645	6329368.795		6328.207	368059.816	6330511.075	
5147.800 5178.479	368334.701 368335.489	6329399.504 6329430.173	INTERMEDIATE CHAINAGE	6337.127 6345.669	368057.040 368054.288	6330519.552 6330527.638	INTERMEDIATE CHAINAG
5209.037	368336.269	6329460.721	INTERMEDIATE CHAINAGE	6347.239	368053.730	6330529.105	AIR VALVE – REFER TO DR
5229.244	368336.875	6329480.919	INTERMEDIATE CHAINAGE	6359.927	368049.215	6330540.964	INTERMEDIATE CHAINAG
5231.699 5244.237	368336.831 368337.153	6329483.373 6329495.907	INTERMEDIATE CHAINAGE 12'06' HORIZ. DEFLECTION	6373.434 6386.317	368044.200 368039.275	6330553.505 6330565.409	INTERMEDIATE CHAINAG
5254.501	368339.563	6329505.885	9°00' HORIZ. DEFLECTION	6400.615	368033.709	6330578.580	INTERMEDIATE CHAINAG
5263.697	368340.297	6329515.052	INTERMEDIATE CHAINAGE	6411.119	368029.618	6330588.253	INTERMEDIATE CHAINAG
5273.859 5283.937	368340.635 368340.683	6329525.207		6421.332 6432.497	368025.622 368021.242	6330597.653	
5283.937	368340.883	6329535.285 6329545.245	INTERMEDIATE CHAINAGE	6446.927	368015.528	6330607.922 6330621.174	INTERMEDIATE CHAINAG
5301.248	368340.319	6329552.583	8°47' HORIZ. DEFLECTION	6457.145	368011.455	6330630.544	INTERMEDIATE CHAINAG
5309.163	368338.654	6329560.321	13'14' HORIZ. DEFLECTION	6470.910	368005.978	6330643.174	INTERMEDIATE CHAINAG
5318.498 5320.929	368338.832 368338.913	6329569.655 6329572.085	INTERMEDIATE CHAINAGE	6483.674 6496.039	368000.869 367995.849	6330654.870 6330666.170	INTERMEDIATE CHAINAG
5351.235	368339.532	6329602.385	INTERMEDIATE CHAINAGE	6504.547	367992.430	6330673.961	SCOUR – REFER TO DRG
5380.765	368340.197	6329631.907	INTERMEDIATE CHAINAGE	6518.714	367986.730	6330686.931	INTERMEDIATE CHAINAG
5410.873	368340.865	6329662.007	INTERMEDIATE CHAINAGE	6528.812	367982.699	6330696.189	
5430.750 5461.152	368341.241 368341.739	6329681.881 6329712.279	INTERMEDIATE CHAINAGE	6539.078 6549.225	367978.803 367974.556	6330705.687 6330714.902	INTERMEDIATE CHAINAG
5491.485	368342.206	6329742.608	INTERMEDIATE CHAINAGE	6558.921	367974.338	6330723.799	INTERMEDIATE CHAINAG
5521.496	368342.534	6329772.617	INTERMEDIATE CHAINAGE	6568.952	367966.661	6330732.981	INTERMEDIATE CHAINAG
5550.424	368343.069	6329801.540		6589.957	367958.262	6330752.233	
5560.901 5571.021	368343.253 368343.325	6329812.015 6329822.135	INTERMEDIATE CHAINAGE	6600.200 6610.914	367954.160 367949.881	6330761.619 6330771.441	INTERMEDIATE CHAINAG
5581.097	368343.301	6329832.211	INTERMEDIATE CHAINAGE	6642.948	367937.130	6330800.829	INTERMEDIATE CHAINAG
5591.338	368343.010	6329842.448	INTERMEDIATE CHAINAGE	6653.741	367932.870	6330810.745	INTERMEDIATE CHAINAG
5601.325 5611.299	368342.346 368341.134	6329852.414 6329862.313	INTERMEDIATE CHAINAGE	6664.103 6674.968	367928.722 367924.222	6330820.240 6330830.130	INTERMEDIATE CHAINAG
5621.420	368339.303	6329872.267	INTERMEDIATE CHAINAGE	6685.620	367919.717	6330839.783	INTERMEDIATE CHAINAG
5631.480	368336.990	6329882.058	INTERMEDIATE CHAINAGE	6695.990	367915.305	6330849.168	INTERMEDIATE CHAINAG
5641.454	368334.248	6329891.647	INTERMEDIATE CHAINAGE	6706.256	367910.705	6330858.345	INTERMEDIATE CHAINAG
5651.506 5661.570	368331.048 368327.527	6329901.177 6329910.604	INTERMEDIATE CHAINAGE	6716.017 6726.037	367906.088 367900.917	6330866.945 6330875.527	INTERMEDIATE CHAINAG
5671.296	368323.917	6329919.636	INTERMEDIATE CHAINAGE	6735.877	367895.424	6330883.692	INTERMEDIATE CHAINAG
5677.997	368321.415	6329925.852	INTERMEDIATE CHAINAGE	6745.649	367889.573	6330891.519	INTERMEDIATE CHAINAG
5680.253 5688.688	368320.752	6329928.008		6755.799 6795.284	367883.211	6330899.426	
5697.708	368317.602 368314.167	6329935.834 6329944.173	INTERMEDIATE CHAINAGE	6824.927	367857.802 367838.803	6330929.651 6330952.404	INTERMEDIATE CHAINAG
5699.907	368313.270	6329946.181	INTERMEDIATE CHAINAGE	6845.375	367825.609	6330968.026	INTERMEDIATE CHAINAG
5710.414	368309.166	6329955.853		6855.728	367818.870	6330975.885	
5720.384 5730.628	368304.992 368300.461	6329964.908 6329974.095	INTERMEDIATE CHAINAGE	6865.658 6875.587	367812.307 367805.603	6330983.337 6330990.661	INTERMEDIATE CHAINAG
5740.772	368295.738	6329983.073	INTERMEDIATE CHAINAGE	6885.387	367798.868	6330997.780	INTERMEDIATE CHAINAG
5750.728	368290.816	6329991.727	INTERMEDIATE CHAINAGE	6895.003	367792.057	6331004.569	INTERMEDIATE CHAINAG
5760.657 5781.081	368285.631 368274.158	6330000.195 6330017.092	INTERMEDIATE CHAINAGE SCOUR – REFER TO DRG-041	6904.801 6914.505	367784.869 367777.551	6331011.227 6331017.600	INTERMEDIATE CHAINAG
5791.566	368267.957	6330025.546	INTERMEDIATE CHAINAGE	6924.327	367769.973	6331023.849	INTERMEDIATE CHAINAG
5801.737	368261.875	6330033.699	INTERMEDIATE CHAINAGE	6934.390	367762.152	6331030.181	INTERMEDIATE CHAINAG
5812.200	368255.591	6330042.064	INTERMEDIATE CHAINAGE	6944.223	367754.469	6331036.317	
5822.394 5832.893	368249.455 368243.090	6330050.204 6330058.554	INTERMEDIATE CHAINAGE	6954.206 6964.061	367746.641 367738.860	6331042.512 6331048.561	INTERMEDIATE CHAINAG
5843.048	368236.951	6330066.644	INTERMEDIATE CHAINAGE	6973.983	367731.029	6331054.653	INTERMEDIATE CHAINAG
5853.034	368230.885	6330074.576	INTERMEDIATE CHAINAGE	6983.878	367723.239	6331060.755	
5863.199	368224.709	6330082.650			367715.227		INTERMEDIATE CHAINAG
5873.291 5883.198	368218.588 368212.575	6330090.674 6330098.547	INTERMEDIATE CHAINAGE	7000.809 7011.600	367709.619 367700.650	6331070.810 6331076.812	INTERMEDIATE CHAINAG
5893.293	368206.446	6330106.569	INTERMEDIATE CHAINAGE	7023.051	367690.762	6331082.585	INTERMEDIATE CHAINAG
5903.452	368200.269	6330114.634		7032.711	367682.084	6331086.831	INTERMEDIATE CHAINAG
5913.465 5924.197	368194.155 368187.639	6330122.564 6330131.091	AIR VALVE – REFER TO DRG–041 INTERMEDIATE CHAINAGE	7042.624 7052.143	367672.902 367663.892	6331090.566 6331093.638	INTERMEDIATE CHAINAG AIR VALVE – REFER TO DR
5934.524	368181.387	6330139.311	INTERMEDIATE CHAINAGE	7063.770	367652.714	6331096.835	INTERMEDIATE CHAINAG
5944.845	368175.084	6330147.483	INTERMEDIATE CHAINAGE	7074.946	367641.934	6331099.783	INTERMEDIATE CHAINAG
5954.962 5965.253	368169.102 368163.094	6330155.642 6330163.997	INTERMEDIATE CHAINAGE	7085.050 7095.258	367632.194 367622.360	6331102.473 6331105.210	INTERMEDIATE CHAINAG
5965.253	368163.094	6330172.659	INTERMEDIATE CHAINAGE	7106.662	367622.360	6331105.210	INTERMEDIATE CHAINAG
5985.610	368152.917	6330181.608	INTERMEDIATE CHAINAGE	7114.895	367603.545	6331110.829	INTERMEDIATE CHAINAG
5995.600	368148.655	6330190.642	INTERMEDIATE CHAINAGE	7124.661	367594.337	6331114.086	INTERMEDIATE CHAINAG
6005.588 6015.324	368145.001 368141.951	6330199.939 6330209.184	INTERMEDIATE CHAINAGE	7134.971 7143.319	367584.796 367577.314	6331117.992 6331121.695	INTERMEDIATE CHAINAG
6025.115	368139.062	6330218.539	INTERMEDIATE CHAINAGE	7147.239	367574.708	6331123.220	SCOUR – REFER TO DRG
6035.198	368136.117	6330228.183	INTERMEDIATE CHAINAGE	7152.279	367569.597	6331126.247	INTERMEDIATE CHAINAG
6045.129	368133.539	6330237.773		7177.910	367548.422	6331140.689	INTERMEDIATE CHAINAG
6055.433 6065.682	368130.791 368128.137	6330247.704 6330257.604	INTERMEDIATE CHAINAGE	7198.527 7218.685	367531.688 367515.279	6331152.732 6331164.441	INTERMEDIATE CHAINAG 13°54' HORIZ. DEFLECTI
6075.415	368125.589	6330266.997	INTERMEDIATE CHAINAGE	7218.883	367512.809	6331165.420	13°57' HORIZ. DEFLECTI
6085.617	368122.952	6330276.852	SCOUR – REFER TO DRG-041	7233.822	367502.657	6331172.680	INTERMEDIATE CHAINAG
6095.939	368120.314	6330286.832	INTERMEDIATE CHAINAGE	7243.693	367494.646	6331178.445	INTERMEDIATE CHAINAG
6106.194 6115.917	368117.651 368115.105	6330296.735 6330306.119	INTERMEDIATE CHAINAGE	7254.661 7263.707	367485.784 367478.542	6331184.908 6331190.328	INTERMEDIATE CHAINAG
6126.043	368112.483	6330315.900	INTERMEDIATE CHAINAGE	7274.542	367469.955	6331196.935	INTERMEDIATE CHAINAG
6135.940	368109.875	6330325.446	INTERMEDIATE CHAINAGE	7284.962	367461.704	6331203.300	INTERMEDIATE CHAINAG
6145.945 6157.315	368107.302 368104.507	6330335.114	INTERMEDIATE CHAINAGE	7292.431 7303.058	367456.023	6331208.149	INTERMEDIATE CHAINAG
6157.315	368104.507 368100.365	6330346.136 6330361.558	INTERMEDIATE CHAINAGE	7303.058	367448.170 367440.361	6331215.309 6331222.591	5°46' HORIZ. DEFLECTIO
6184.512	368097.482	6330372.409	INTERMEDIATE CHAINAGE	7323.917	367433.651	6331230.249	INTERMEDIATE CHAINAG
6187.043	368096.857	6330374.863	INTERMEDIATE CHAINAGE	7334.109	367427.617	6331238.461	5°15' HORIZ. DEFLECTIO
6197.175	368094.209	6330384.642	INTERMEDIATE CHAINAGE	7344.535	367422.238	6331247.393	6°04' HORIZ. DEFLECTIO

NOTES:

1. ALL COORDINATES ARE MGA ZONE 56.

2. CHAINAGES SHOWN AS INTERMEDIATE ARE THOSE WITH LESS THAN 5 DEGREES HORIZONTAL DEFLECTION.

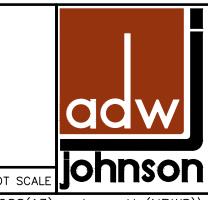
Hunter Office Unit 7/335 Hillsborough Rd Warners Bay N.S.W. 2282 Phone: (02) 4978 5100 Fax: (02) 4978 5199 email:hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

CLIENT

PROJECT PROPERTY DESCRIPTION SURPLUS RECYCLED WATER MAIN SURPLUS RECYCLED PLAN TITLE WATER MAIN SURPLUS RECYCLED WATER MAIN SETOUT TABLE CATHERINE HILL BAY. SURVEYED DISCIPLINE DATUM PROJECT No. NUMBER REV. 11688(13)NPWS - RWAT -026 Н ADWJ A.H.D.

Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-001 to 026(H).dwg

			ATER MAIN SETOUT
CHAINAGE	EASTING	NORTHING	DESCRIPTION
7365.143	367414.327	6331266.403	INTERMEDIATE CHAINAGE
7375.597	367411.346	6331276.424	INTERMEDIATE CHAINAGE
7386.229	367408.796	6331286.745	INTERMEDIATE CHAINAGE
7389.446	367408.045	6331289.873	INTERMEDIATE CHAINAGE
7399.479	367405.755	6331299.641	INTERMEDIATE CHAINAGE
7409.541	367403.546	6331309.458	INTERMEDIATE CHAINAGE
7419.429	367402.279	6331319.264	INTERMEDIATE CHAINAGE
7429.119	367400.636	6331328.814	INTERMEDIATE CHAINAGE
7436.948	367399.662	6331336.582	10°52' HORIZ. DEFLECTION
7437.664	367399.709	6331337.297	43'32' HORIZ. DEFLECTION
7438.815	367398.971	6331338.181	18°21' HORIZ. DEFLECTION
7439.748	367398.630	6331339.049	14°41' HORIZ. DEFLECTION
7444.748	367398.039	6331344.014	6°44' HORIZ. DEFLECTION
7449.934	367398.034	6331349.200	7°05' HORIZ. DEFLECTION
7454.239	367398.561	6331353.472	AIR VALVE – REFER TO DRG–041
7455.101	367398.666	6331354.328	5°33' HORIZ. DEFLECTION
7460.121	367399.850	6331359.206	INTERMEDIATE CHAINAGE
7465.366	367401.575	6331364.160	INTERMEDIATE CHAINAGE
	367403.527		INTERMEDIATE CHAINAGE
7470.456		6331368.861	
7475.611	367405.602	6331373.580	INTERMEDIATE CHAINAGE
7480.892	367407.336	6331378.568	14°41' HORIZ. DEFLECTION
7485.991	367407.736	6331383.651	11°12' HORIZ. DEFLECTION
7491.244	367407.122	6331388.867	INTERMEDIATE CHAINAGE
7496.311	367406.496	6331393.896	5°17' HORIZ. DEFLECTION
7501.588	367406.329	6331399.170	8°48' HORIZ. DEFLECTION
7506.743	367406.956	6331404.287	8°43' HORIZ. DEFLECTION
7512.270	367408.453	6331409.608	77°28' HORIZ. DEFLECTION - SCOU
7523.967	367398.148	6331415.142	86°02' HORIZ. DEFLECTION
7530.318	367394.763	6331409.769	5°43' HORIZ. DEFLECTION
7535.606	367394.783		5°18' HORIZ. DEFLECTION
		6331405.597	
7541.097	367387.753	6331401.596	8°39' HORIZ. DEFLECTION
7546.297			14°05' HORIZ. DEFLECTION
7551.294	367379.099	6331396.349	11°37' HORIZ. DEFLECTION
7556.370	367374.142	6331395.258	5°08' HORIZ. DEFLECTION
7560.144	367370.398	6331394.779	INTERMEDIATE CHAINAGE
7562.714	367367.831	6331394.670	AIR VALVE - REFER TO DRG-041
7566.737	367363.807	6331394.657	INTERMEDIATE CHAINAGE
7571.865	367358.693	6331395.031	6°12' HORIZ. DEFLECTION
7577.203	367353.442	6331395.994	17°06' HORIZ. DEFLECTION
7578.192	367352.565	6331396.450	13°06' HORIZ. DEFLECTION
7579.305	367351.720	6331397.175	33°56' HORIZ. DEFLECTION
7592.226	367338.914	6331398.892	INTERMEDIATE CHAINAGE
7603.050	367328.219	6331400.559	INTERMEDIATE CHAINAGE
7614.208	367317.167	6331402.099	INTERMEDIATE CHAINAGE
7618.188	367313.215	6331402.560	INTERMEDIATE CHAINAGE
7629.885	367301.653	6331404.337	11°24' HORIZ. DEFLECTION
7632.436	367299.105	6331404.219	10°43' HORIZ. DEFLECTION
7643.427	367288.222	6331405.759	INTERMEDIATE CHAINAGE
7660.986	367270.828	6331408.159	
7674.504	367257.447	6331410.079	INTERMEDIATE CHAINAGE
7685.813	367246.223	6331411.462	INTERMEDIATE CHAINAGE
7697.560	367234.574	6331412.974	INTERMEDIATE CHAINAGE
7699.127	367233.034	6331413.270	7°48' HORIZ. DEFLECTION
7699.720	367232.473	6331413.460	48°04' HORIZ. DEFLECTION
7706.198	367229.915	6331419.411	7°41' HORIZ. DEFLECTION
7707.126	367229.666	6331420.305	ISOLATION VALVE
7708.053	367229.417	6331421.198	5°06' HORIZ. DEFLECTION
7708.809	367229.280	6331421.941	10°13' HORIZ. DEFLECTION
7709.564	367229.277	6331422.697	5°06' HORIZ. DEFLECTION
7725.956		6331439.030	13°36' HORIZ. DEFLECTION
	367230.662		
7730.912	367229.908	6331443.929	INTERMEDIATE CHAINAGE
7740.229	367228.127	6331453.074	9°58' HORIZ. DEFLECTION
7742.224	367227.412	6331454.936	19°57' HORIZ. DEFLECTION
7744.219	367226.105	6331456.443	9°58' HORIZ. DEFLECTION
7756.719	367216.404	6331464.326	INTERMEDIATE CHAINAGE
7766.803	367208.578	6331470.684	9°30' HORIZ. DEFLECTION
7768.286			
	367207.597		9°30' HORIZ. DEFLECTION
7773.430	367204.877	6331476.164	6°51' HORIZ. DEFLECTION
7774.442	367204.448	6331477.080	13°42' HORIZ. DEFLECTION
7775.454	367204.249	6331478.072	6°51' HORIZ. DEFLECTION
7779.486	367203.930	6331482.091	INTERMEDIATE CHAINAGE
7780.813	367203.933	6331483.419	INTERMEDIATE CHAINAGE
7793.069	367203.955	6331495.674	INTERMEDIATE CHAINAGE
	367204.379	6331508.380	INTERMEDIATE CHAINAGE
7805.782	367205.213	6331533.369	INTERMEDIATE CHAINAGE
7805.782 7830.785	·		INTERMEDIATE CHAINAGE
	367205.612	6331548.461	5°45' HORIZ. DEFLECTION
7830.785 7845.882			
7830.785 7845.882 7853.481	367206.244	6331556.034	
7830.785 7845.882 7853.481 7856.271	367206.244 367206.754	6331556.034 6331558.777	8°06' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517	367206.244 367206.754 367207.152	6331556.034 6331558.777 6331559.958	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271	367206.244 367206.754	6331556.034 6331558.777	8°06' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955	367206.244 367206.754 367207.152 367208.691	6331556.034 6331558.777 6331559.958 6331563.032	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589	367206.244 367206.754 367207.152 367208.691 367209.677	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480 367224.471	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480 367224.471	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628 7903.112 7905.452	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480 367224.471 367246.135 367248.463	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543 6331581.608 6331581.377	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 28°22' HORIZ. DEFLECTION 28°18' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628 7903.112 7905.452 7928.495	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480 367224.471 367224.471 367246.135 367248.463 367267.574	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543 6331581.608 6331581.377 6331568.505	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 28°22' HORIZ. DEFLECTION 28°18' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628 7903.112 7905.452 7928.495 7932.794	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480 367224.471 367246.135 367248.463 367267.574 367271.140	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543 6331581.608 6331581.377 6331568.505 6331566.103	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 28°22' HORIZ. DEFLECTION 28°18' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 11°30' HORIZ. DEFLECTION
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628 7903.112 7905.452 7928.495 7932.794 7935.804	367206.244 367206.754 367207.152 367209.691 367209.677 367211.826 367216.480 367224.471 367246.135 367246.135 367248.463 367267.574 367271.140 367273.921	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543 6331581.608 6331581.377 6331568.505 6331566.103 6331564.954	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 28°22' HORIZ. DEFLECTION 28°18' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 11°30' HORIZ. DEFLECTION DIRECT BURIED FLOWMETER
7830.785 7845.882 7853.481 7856.271 7857.517 7860.955 7862.589 7865.480 7870.927 7879.628 7903.112 7905.452 7928.495 7932.794	367206.244 367206.754 367207.152 367208.691 367209.677 367211.826 367216.480 367224.471 367246.135 367248.463 367267.574 367271.140	6331556.034 6331558.777 6331559.958 6331563.032 6331564.335 6331566.268 6331569.099 6331572.543 6331581.608 6331581.377 6331568.505 6331566.103	8°06' HORIZ. DEFLECTION 7°58' HORIZ. DEFLECTION 10°30' HORIZ. DEFLECTION 10°56' HORIZ. DEFLECTION 10°39' HORIZ. DEFLECTION – SCOU 8°00' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 28°22' HORIZ. DEFLECTION 28°18' HORIZ. DEFLECTION INTERMEDIATE CHAINAGE 11°30' HORIZ. DEFLECTION


CONSTRUCTION ISSUE

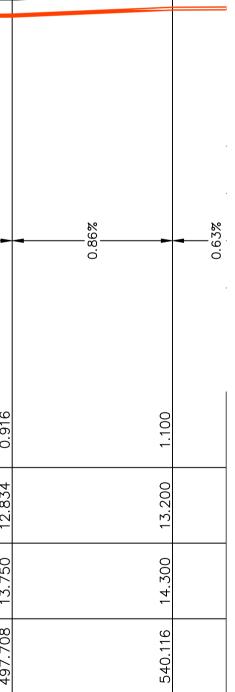
		EE NOTE 4)		6.2m							
	TRENCHSTOF	PS (SEE NOTE 3)	-	IS 16.					-	•	
		DATUM	RL -7.00								
	DEPTH T	O INVERT	0 750	0.723 0.723	0.900	0.900		0.981	0.934		
-	INVERT L	EVEL	48 800 000	40.000 48.498	47.840	47.730		47.699	46.536		
-	DESIGN S	SURFACE	40 550	49.221	48.740	48.630		48.680	47.470		
-	CHAINAG	E		0.000 5.000	15.605	24.418		68.363	92.040		
				I	I			I	I	L	
				I	Ι	ļ			Ι	L	ONC
REV.	DATE	AMENDMENT					DRAWN	СНЕСК	DESIGN		
REV. A B C D E F G H	DATE 20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	AMENDMENT PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS O AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIEN ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	NT COMMENTS	5			DRAWN J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N. J.N.	l R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J	DESIGN H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M		

	CONNECTION TO EXISTING SURPLUS RECYCLED WATER MAIN TO BE MADE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, CLAUSE 5.9. REFER TO CONNECTION DETAIL, DRG-004 AIR VALVE REFER TO DRG-041							
DN140 ISOLATION	N VALVE							
				LAY PROPOSED SU WATER MAIN UNDE WATER TRANSFER	R EXISTING BULK			
					FINISH	ED SURFACE		
								1.1
					DN140 PE100 SDR11 SURPLUS RECYCLED WATER MAIN			DRG-041 LATION VALVI DRG-041
								10 To
								SCOUR REFER DN140 SCOUR REFER
FIRE / ACCESS TRACK SURFACE TREATMENT ROAE			CROSS BANK ROLLOVER / REFER DRG-04	AT 40m CTS		CROSS BANK ROLLOVE	R AT 30m CTS -042	-
TENURE/APPROVAL (MONTEFIORE iPART APP PIPE SIZE AND MATERIAL	STREET)				MUNMORAH STATE RECRE NPWS APPROVA			
PIPELINE GRADE	-1.22%	- 0.07%		-8.55% -8.55% -4.00% -9.36% -7.86%	-5.16%	-200555% -16.21%	-12.64% -8.22% -5.99%	-1.36%
BEDDING (SEE NOTE 4) TRENCHSTOPS (SEE NOTE 3)	- 16.2m		1. E	11.6m 12.7m		27.7m 27.7m	7.9m 12.1m 16.6m	-
	RL -7.00	- 4	β	TS 73 13		0 BT 3 TS	0 0 5 5 5	
DEPTH TO INVERT	0.750 0.750 0.723 0.900 0.900	0.93	4	0 1.543 7 1.043 0 0.900	9 0.900 3 0.902	0.903 0.903 0.900	0.90	06.0
INVERT LEVEL	48.800 48.498 47.840 47.730	47.69(39.374	35.26	31.58(30.36(29.96(25.509 24.017 19.600	15.63(14.19C	13.10;
DESIGN SURFACE	49.550 49.221 48.740 48.630	48.680	40.450	36.803 35.620 33.870	32.480	26.410 24.920 20.500	16.530	14.100
CHAINAGE	0.000 5.000 15.605 24.418	68.363 92.040	176.526	224.630 241.674 258.850	276.528 300.000 316.357	348.406 355.665 382.920	414.330 431.844	450.000 472.980
		LO	NGITUDINAL SECTION	- SURPLUS RECYCL	ED WATER MAIN			
				VERTICA	SCALE 1:200			
DATEAMENDMENT20.11.2018PRELIMINARY ISSUE01.04.2019AMENDED ISSUE03.05.2019NPWS ISSUE		DRAWN CHECK DESIGN VERIFY SC J.N. R.J. H.M. C.B. J.N. R.J. H.M. C.B.	ALES	Hunter Office Unit 7/335 Hillsb	CLIENT		PROPERTY DESCRIPTION	US RECYCLEI

DNS ARE IN METRES. DO NOT SCAL

er\Recycled Watermain\11688(13) — Issue H (NPWS)\11688(13)NPWS-RWAT-027 to 039(H).dwg

CCW Johnson E

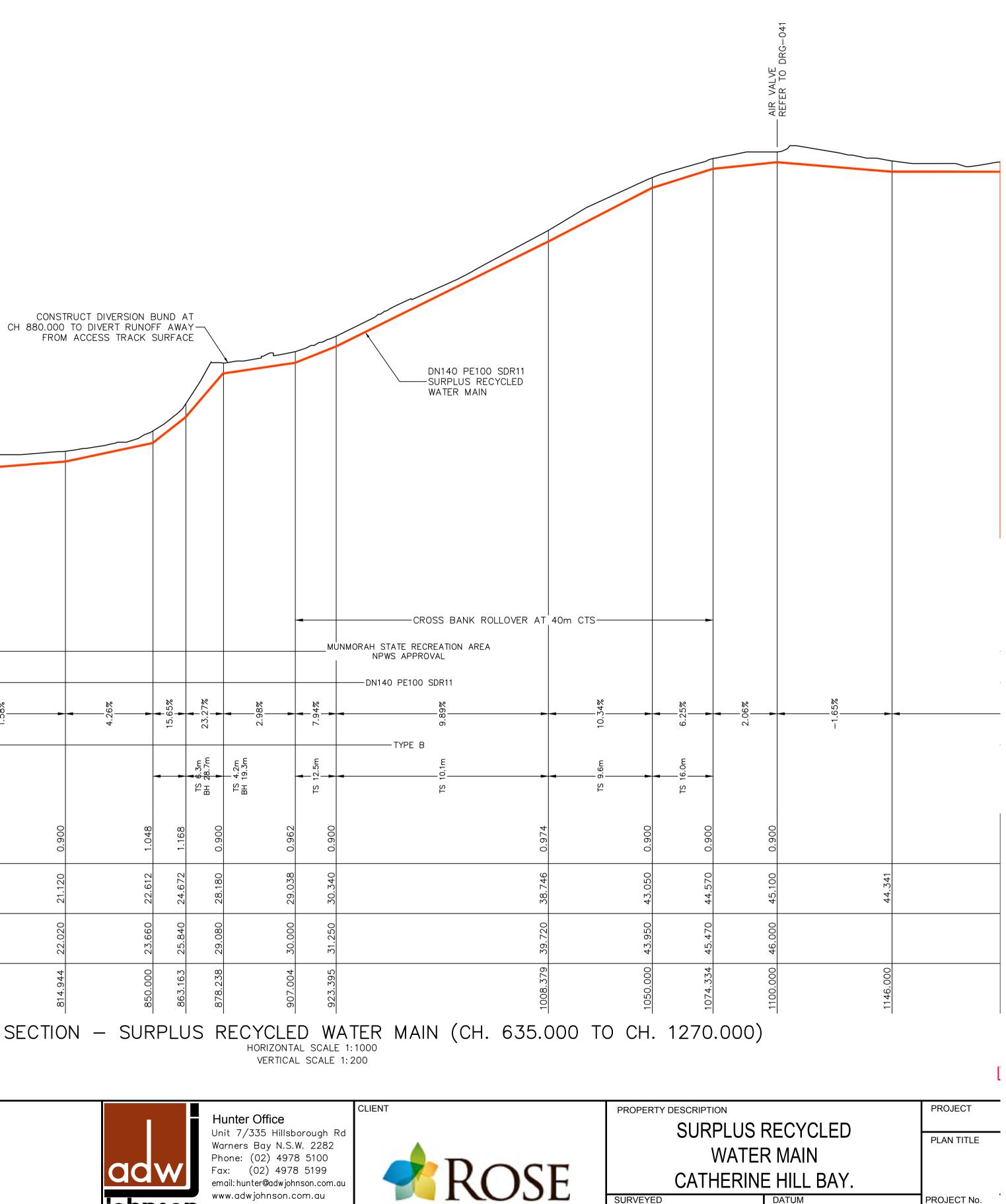

/	AD WJ	А.	┝
SURVEYED		DATUM	Ī
C	ATHERIN	E HILL BAY.	
	WATE	R MAIN	
S	SURPLUS I	RECYCLED	
PROPERTY DES	SCRIPTION		

NOTES:

1. H.D. POLYETHY THAN MANUFA ALIGNMENT CA CONTRACTOR I REQUIRED DEFL

•

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.
- 4. PIPE BEDDING ACCORDANCE
- 5. DETAILS FOR ! PROVIDED ON
- 6. EXISTING SERV SURVEY. THE CONTRACT ALL EXISTING
- 7. BUOYANCY CHI


PROJECT PLAN TITLE PROJECT №. 11688(13 A.H.D.

NOTES:

LAYER.

- 1. H.D. POLYETHYLENE PIPE SHALL NOT BE BENT TO A RADIUS LESS THAN MANUFACTURERS RECOMMENDATIONS. IF THE PROPOSED ALIGNMENT CAN NOT BE ACHIEVED BY BENDING THE PIPE THE CONTRACTOR IS TO USE ELECTROFUSION FITTINGS TO ACHIEVE REQUIRED DEFLECTIONS.
- REFER TO DRG-026 FOR SURPLUS RECYCLED WATER MAIN SETOUT DETAILS.
- TRENCHSTOPS AND BULKHEADS ARE TO BE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, CLAUSE 7.10. TS DENOTES TRENCH STOPS. BH DENOTES BULKHEADS. WHERE TS OR BH SPECIFIED THE TRENCH BACKFILL WILL INCORPORATE A 150mm THICK DGS40 2% STABILISED SURFACE
- PIPE BEDDING AND CONCRETE ENCASEMENT IS TO BE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, SECTION 7.
- 6. EXISTING SERVICES IN THIS AREA HAVE NOT BEEN LOCATED BY SURVEY. THE CONTRACTOR IS TO VERIFY THE POSITIONS AND LEVELS OF ALL EXISTING SERVICES, PIPES, CABLES AND CONDUITS.

								~					
		2		T									
		3-02											
		DRG-											
		SNOP											
	FIRE / ACC SURFACE TF												
	TENURE/APP	PROVAL	-										
	PIPE SIZE A	ND MATERIAL	-										
	PIPELINE GR	ADE	3.69%		3.62%		5.54%		3.81%		1.58%		-
	BEDDING (SE	EE NOTE 4)	-										
	TRENCHSTOF	PS (SEE NOTE 3)				-	TS 18.0m						
		DATUM RL -7.00	D										
	DEPTH T	O INVERT	0.978	0.900		0.900		0.900		0.900		0.900	
	INVERT L	EVEL	•	15.630		17.090		18.480		20.310		21.120	
	DESIGN S	SURFACE		16.530		17.990	(19.380		21.210		22.020	
	CHAINAG	E	635.000	650.000		690.331	ι	/15.426		763.517		814.944	
1			I	I		I		Ι					NI
									LU	INGLIU	DINAL S		IN —
REV	_	AMENDMENT				_	WN CHECK	1		SCALES			
A B C D E F	20.11.2018 01.04.2019	PRELIMINARY ISSUE AMENDED ISSUE				1.U 1.U	N. R.J.	Н.М. Н.М.	C.B.				
	03.05.2019 04.07.2019	NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS				S.H J.I	N. R.J.	H.M. H.M.	C.B.				
F G	08.07.2019 02.09.2019 06.09.2019	AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMEN ISSUED FOR CONSTRUCTION	ITS			1.U 1.U 1.U	N. R.J.	H.M. H.M. H.M.	C.B.				
H	17.09.2019	RE ISSUED FOR CONSTRUCTION				J.1		н.м. Н.М.					
DESI	GN FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN						•		ALL DIMENSI	ONS ARE IN METRE	ES. DO NO	T SCALE
Plo	otted By: jay	sonn Plot Date: 18/09/19 — 10:2	26	Cad F	ile: N: \116	88(13)\Drawings`	\Engin	eering∖Wa	ter & Sew	er\Recycled Wo	ıtermain∖116	688(13)

SURVEYED

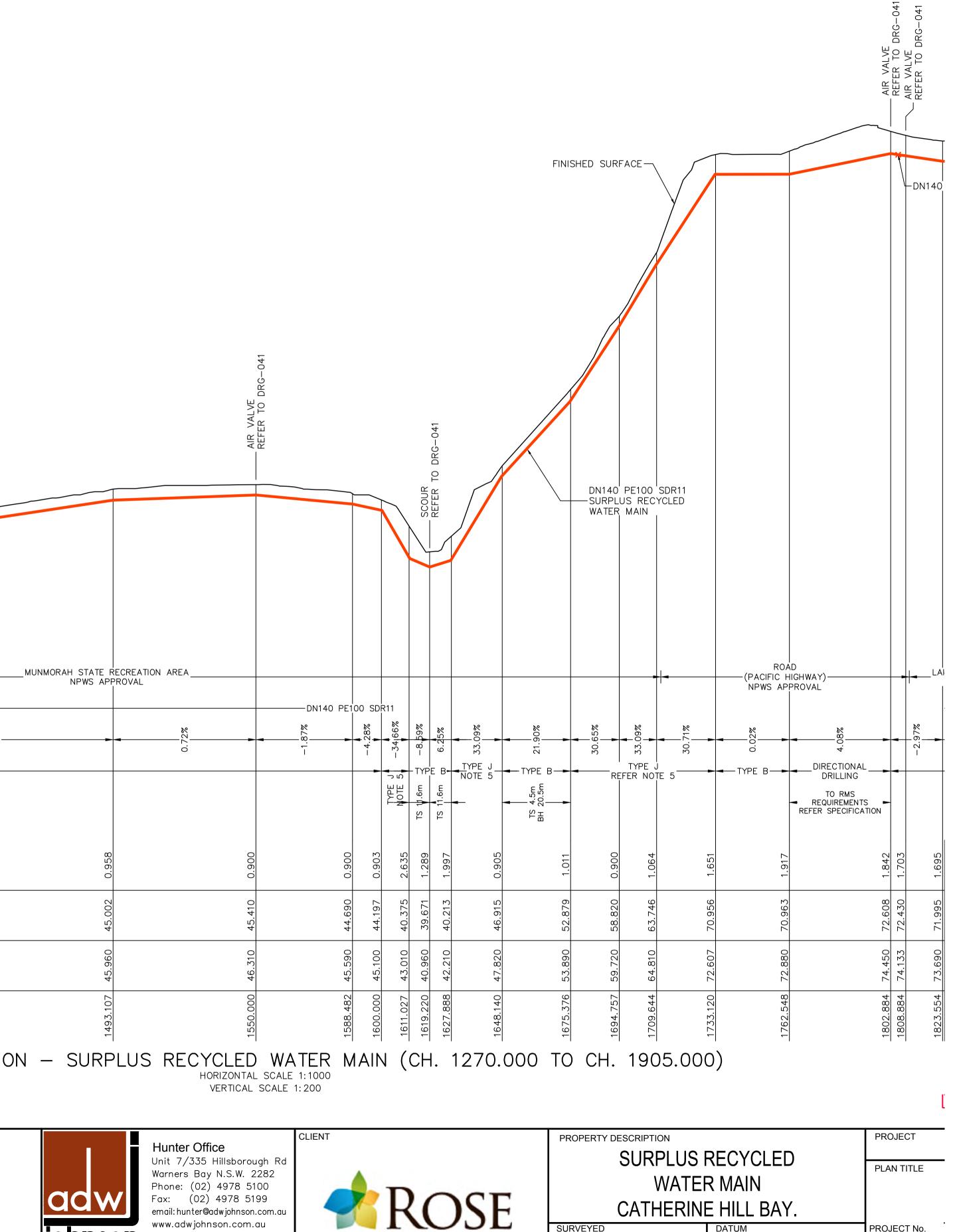
ADWJ

1688(13) - Issue H (NPWS)\11688(13)NPWS-RWAT-027 to 039(H).dwg

Johnson ABN 62 129 445 398

www.adwjohnson.com.au

	ť
	PROJECT
	PLAN TITLE
•	
.H.D.	PROJECT №. 11688(13


DATUM

Α.

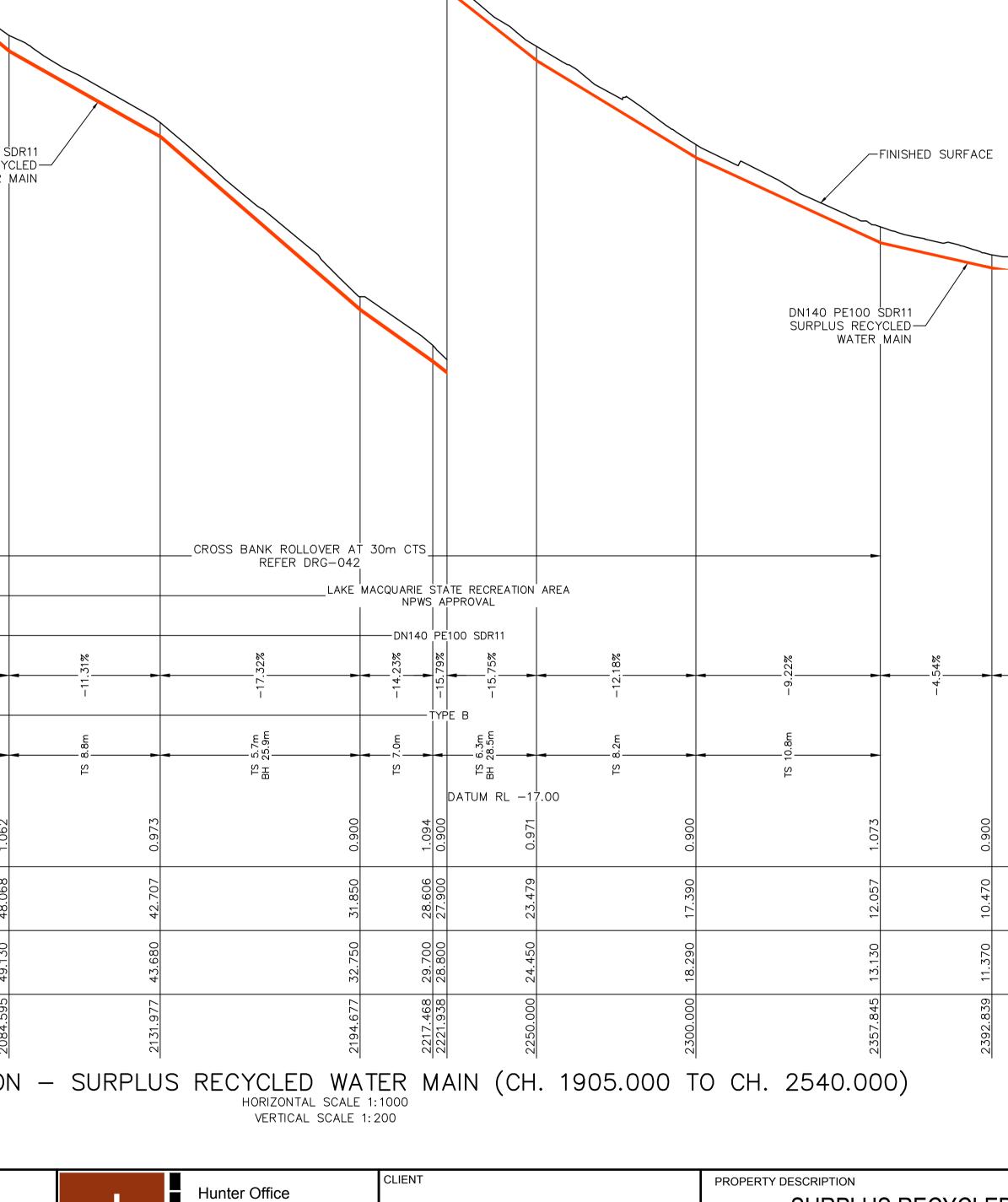
NOTES:

- H.D. POLYETHYLENE PIPE SHALL NOT BE BENT TO A RADIUS LESS THAN MANUFACTURERS RECOMMENDATIONS. IF THE PROPOSED ALIGNMENT CAN NOT BE ACHIEVED BY BENDING THE PIPE THE CONTRACTOR IS TO USE ELECTROFUSION FITTINGS TO ACHIEVE REQUIRED DEFLECTIONS.
- 2. REFER TO DRG-026 FOR SURPLUS RECYCLED WATER MAIN SETOUT DETAILS.
- TRENCHSTOPS AND BULKHEADS ARE TO BE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, CLAUSE 7.10. TS DENOTES TRENCH STOPS. BH DENOTES BULKHEADS. WHERE TS OR BH SPECIFIED THE TRENCH BACKFILL WILL INCORPORATE A 150mm THICK DGS40 2% STABILISED SURFACE LAYER.
- 4. PIPE BEDDING AND CONCRETE ENCASEMENT IS TO BE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, SECTION 7.
- 5. CONCRETE ENCASEMENT TO BE 'KEYED' INTO SIDE AND BASE OF TRENCH. REFER TO TYPICAL DETAIL, DRG-047.
- 6. EXISTING SERVICES IN THIS AREA HAVE NOT BEEN LOCATED BY SURVEY. THE CONTRACTOR IS TO VERIFY THE POSITIONS AND LEVELS OF ALL EXISTING SERVICES, PIPES, CABLES AND CONDUITS.

				SCOUR REFER TO DRG-041					AIR VALVE	REFER TO DR	<u> </u>
	TENURE/APPROVAL PIPE SIZE AND MATERIAL	-					MUNM	ORAH STATE RECRE NPWS APPROVA	ATION AREA	DN140 PE	 E100
	PIPELINE GRADE	-4.72%	-0.31%		0.76%	-	3.02%		0.72%	-1.87%	+
	BEDDING (SEE NOTE 4) TRENCHSTOPS (SEE NOTE 3)					Τ`	YPE B				
	DATUM RL 18.0	0.932	1.245	0.943	0.934			0.958	0.900	C C C C C	0.900
INLL SIZE	INVERT LEVEL	43.098	4 // 9 // 9	41.807	42.186			45.002	45.410		44.020
50mm AT F	DESIGN SURFACE	44.030	45.220	42.750	43.120			45.960	46.310		45.590
	CHAINAGE		1294.090	1350.000	1400.000			1493.107	1550.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1588.482
-			1	, , , , , , , , , , , , , , , , , , ,	LONGITU	JDINAL S	SECTION -	- SURPLU		1	'
	A20.11.2018PRELIMINARY ISSUEB01.04.2019AMENDED ISSUEC03.05.2019NPWS ISSUED04.07.2019AMENDED NPWS ISSUE NPWS COMMENTSE08.07.2019AMENDED NPWS ISSUEF02.09.2019AMENDED NPWS ISSUE - CLIENT COMMENTG06.09.2019ISSUED FOR CONSTRUCTIONH17.09.2019RE ISSUED FOR CONSTRUCTION		DRA J.1 J.1 S.H J.1 J.1 J.1 J.1	N. R.J. H N. R.J. H IO. R.J. H N. R.J. H N. R.J. H N. R.J. H N. R.J. H	ESIGN VERIFY H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B. H.M. C.B.			adw ohnson	Hunter Office Unit 7/335 Hillsborou Warners Bay N.S.W. 2 Phone: (02) 4978 51 Fax: (02) 4978 51 email:hunter@adwjohnson. www.adwjohnson.com.o ABN 62 129 445 39	2282 100 99 .com.au au	
	SIGN FILE S:\190238\Design\12D\WWPS CONCEPT DESIGN Plotted By: jaysonn Plot Date: 18/09/19 — 10:2	26 Cad	File: N: \11688(13)\Drawings\Er		ons are in metres. er\Recycled Wate			■ \11688(13)NPWS-RWAT-0		, ,

SURVEYED

ADWJ


•

	PROJECT
	PLAN TITLE
	PROJECT No.
.H.D.	11688(13

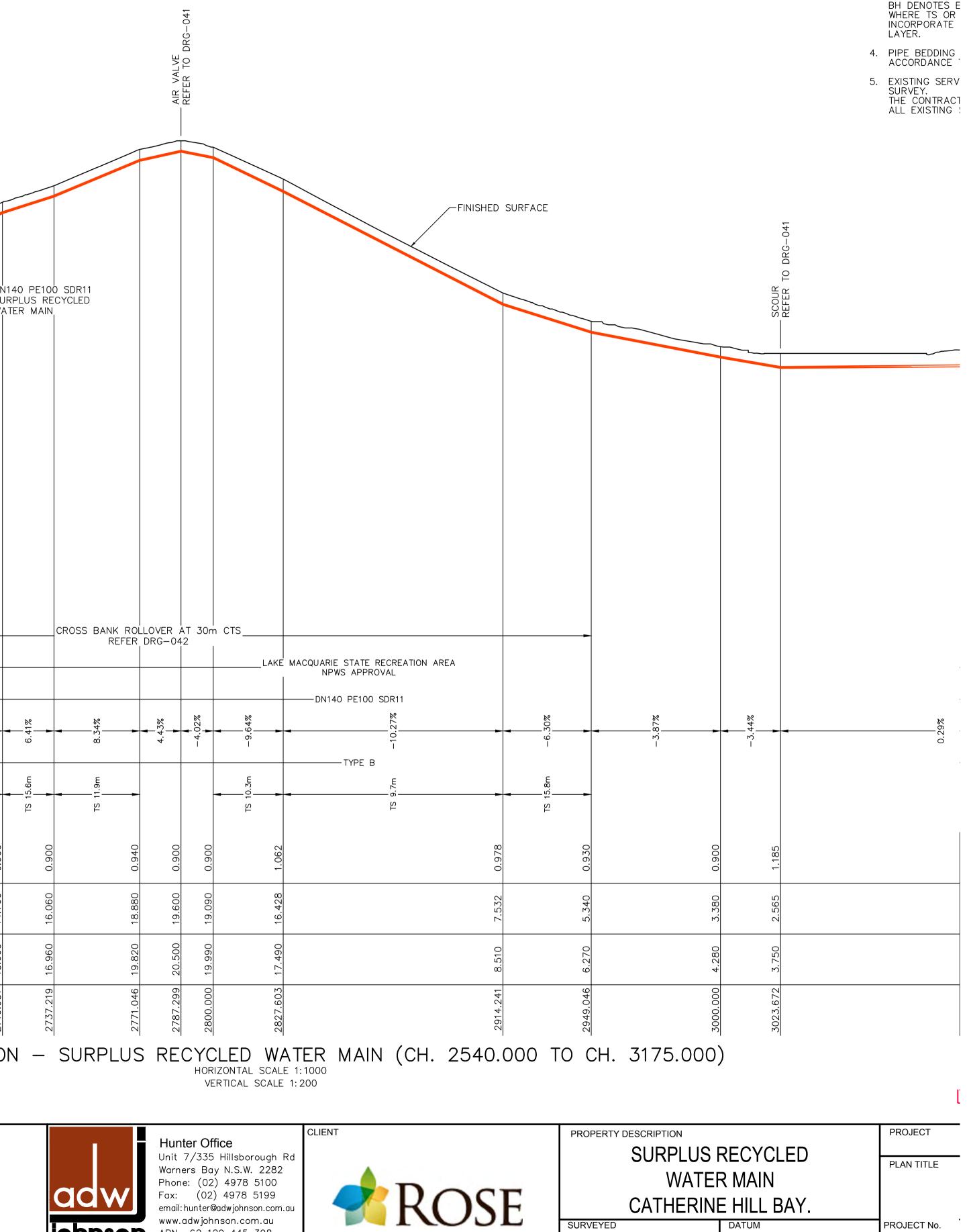
DATUM

Α.

				DN140 PE100 SURPLUS RE	-FINISHED SURFACE
FIRE / ACCESS TRACK SURFACE TREATMENT TENURE/APPROVAL PIPE SIZE AND MATERIAL PIPELINE GRADE BEDDING (SEE NOTE 4)	-9.63% -8.12% -13.32%	-2.12%	-4.58%	-24.89% -16.33%	-11.31%
	69.376 1.024 TS 10.3m 67.830 0.900 TS 10.3m 66.950 1.120 TS 12.3m TS 12.3m	3.490 1.150	62.835 1.165 62.320 0.900 62.320 1.165 58.637 0.903	191	48.068 1.062 TS 8.8m
DESIGN SURFACE	1905.000 70.400 69 1921.066 68.730 67 1931.899 68.070 66	1957.874 64.640 63.	1988.744 64.000 2000.000 63.220 2030.244 59.540	2020.000 24.930 JDINAL SECTIO	2084.595 49.130
REV.DATEAMENDMENTA20.11.2018PRELIMINARY ISSUEB01.04.2019AMENDED ISSUEC03.05.2019NPWS ISSUED04.07.2019AMENDED NPWS ISSUE NPWS COMMENTSE08.07.2019AMENDED NPWS ISSUEF02.09.2019AMENDED NPWS ISSUE – CLIENT COMMENTG06.09.2019ISSUED FOR CONSTRUCTIONH17.09.2019RE ISSUED FOR CONSTRUCTIONDESIGN FILES: \190238\Design\12D\WWPS CONCEPT DESIGNPlotted By:igysonnPlot Date: 18/09/19 - 10:26		J.N. R.J. J.N. R.J. S.HO. R.J. J.N. R.J. J.N. R.J. J.N. R.J. J.N. R.J. J.N. R.J. J.N. R.J.		NSIONS ARE IN METRES. DO	NOT SCALE

Unit 7/335 Hillsborough Rd Warners Bay N.S.W. 2282 Phone: (02) 4978 5100 Fax: (02) 4978 5199 email: hunter@adwjohnson.com.au www.adwjohnson.com.au

		ľ
PROPERTY DESCRIPTION		PROJECT
SURPLUS I		
	PLAN TITLE	
WATE		
CATHERINI		
SURVEYED	DATUM	PROJECT No.
ADWJ	A.H.D.	11688(13


Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-027 to 039(H).dwg

NOTES:

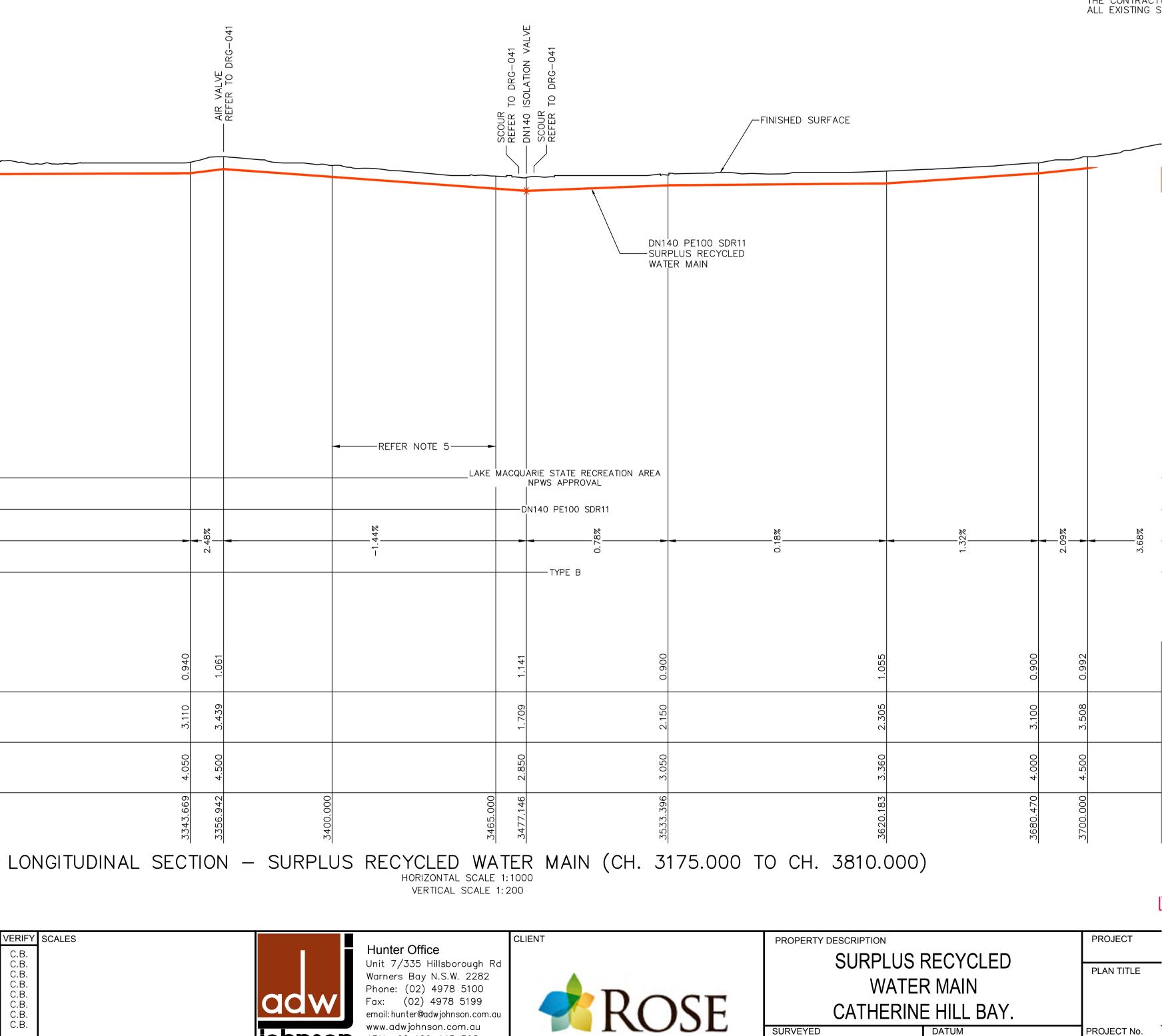
1. H.D. POLYETHYLI THAN MANUFAC ALIGNMENT CAN CONTRACTOR IS REQUIRED DEFLE

- 2. REFER TO DRG-SETOUT DETAILS
- TRENCHSTOPS A WSA03-2011-3. TS DENOTES TRE BH DENOTES BU WHERE TS OR B INCORPORATE A LAYER.
- 4. PIPE BEDDING A ACCORDANCE WI
- 5. EXISTING SERVIC SURVEY. THE CONTRACTO ALL EXISTING SE

		SCOUR REFER TO DRG-041	SCOUR REFER TO DRG-041					DN14 SURF WATE
ONS DRG-030								
S FIRE / ACCESS TRACK SURFACE TREATMENT				-				
TENURE/APPROVAL	-							
PIPE SIZE AND MATERIAL	-							
PIPELINE GRADE	-	-3.44%	2.06%	-	6.59%		10.23%	
BEDDING (SEE NOTE 4)	-							
TRENCHSTOPS (SEE NOTE 3)				•	TS 15.1m		TS 9.7m	
DATUM RL -34.00								
DEPTH TO INVERT	1.028	1.348	1.151			0.947		0.900
INVERT LEVEL	4.982	3.982	4.619			7.913		14.760
DESIGN SURFACE	6.010	5.330	5.770			8.860		15.660
CHAINAGE	2540.000	2569.048	2600.000			2650.000		2716.937
							GITUDINAL	I
REV.DATEAMENDMENTA20.11.2018PRELIMINARY ISSUE			DRAWI J.N.	N CHECK I R.J.	DESIGN H.M.	VERIFY C.B.	SCALES	
A20.11.2018PRELIMINARY ISSUEB01.04.2019AMENDED ISSUEC03.05.2019NPWS ISSUED04.07.2019AMENDED NPWS ISSUE NPWS COMMENTSE08.07.2019AMENDED NPWS ISSUEF02.09.2019AMENDED NPWS ISSUE - CLIENT COMMENG06.09.2019ISSUED FOR CONSTRUCTIONH17.09.2019RE ISSUED FOR CONSTRUCTION	TS		J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N. J.N.	R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		
DESIGN FILE S: \190238\Design\12D\WWPS CONCEPT DESIGN Plotted By: jaysonn Plot Date: 18/09/19 - 10:2	6	Cad File	N:\11688(13)\	Drawinge	Enainee		all dimensions are in m er & Sewer\Recycled	
	-							

Johnson ABN 62 129 445 398 IOT SCALE 1688(13) - Issue H (NPWS)\11688(13)NPWS-RWAT-027 to 039(H).dwg NOTES:

1. H.D. POLYETHY THAN MANUFA[,] ALIGNMENT CA CONTRACTOR I REQUIRED DEFI


•

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.

11688(13

A.H.D.

	5 DRG-031		
	SNIOL		
FIRE / ACCESS TRACK SURFACE TREATMENT			
TENURE/APPROVAL	-		
PIPE SIZE AND MATERIAL	-		
PIPELINE GRADE	-		₽ 2.48%
BEDDING (SEE NOTE 4)	-		
TRENCHSTOPS (SEE NOTE 3)			
DATUM RL	-34.00		
DEPTH TO INVERT	1.004	0.940	1.061
INVERT LEVEL	2.956	3.110	3.439
DESIGN SURFACE	3.960	4.050	4.500
CHAINAGE	3175.000	3343.669	3356.942
	·		

SURVEYED

ADWJ

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-027 to 039(H).dwg

johnson

email:hunter@adwjohnson.com.au

www.adwjohnson.com.au

ABN 62 129 445 398

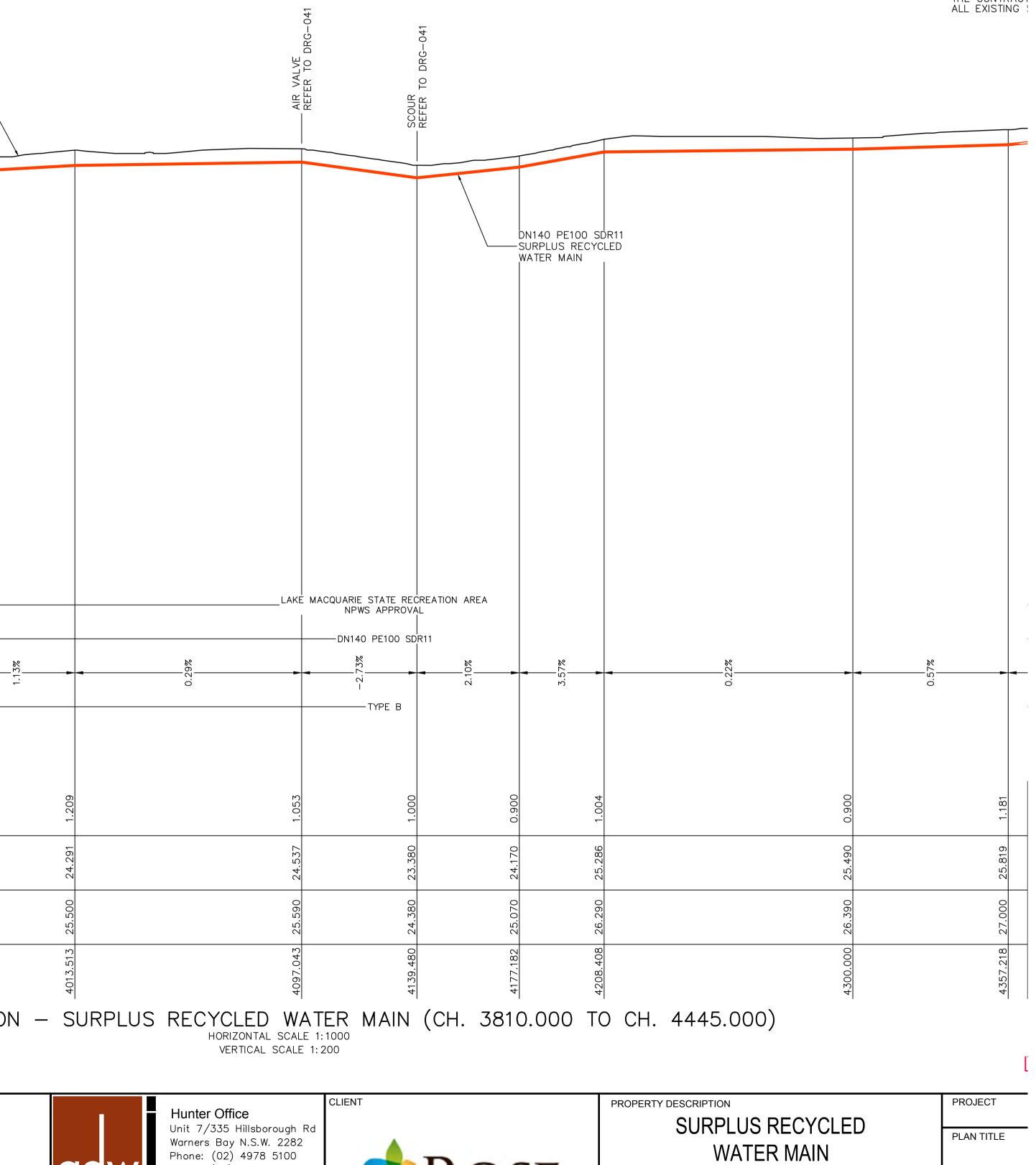
NOTES:

1. H.D. POLYETHYL THAN MANUFA | ALIGNMENT CAF CONTRACTOR | ! REQUIRED DEFL

•

- 2. REFER TO DRG-SETOUT DETAIL!
- 3. TRENCHSTOPS WSA03-2011-3 TS DENOTES TF BH DENOTES BU WHERE TS OR UNCORPORT INCORPORATE / LAYER.
- 4. PIPE BEDDING <u>-</u> ACCORDANCE W
- 5. BETWEEN CH 3 REMOVE ALI TO BE DISP

 - BOX OUT FUNATURAL SU
 - PLACE 150r MATERIAL F
- 6. EXISTING SERVI SURVEY. THE CONTRACTI ALL EXISTING S


	l
-D	PROJECT
_D	PLAN TITLE
Y.	
A.H.D.	PROJECT №. 11688(13

DATUM

									FINISHED	SURF	ACE
	-032										
	IS DRG-										
	SNIOC										
FIRE / ACCESS TRACK SURFACE TREATMENT			C	ROSS BA	NK ROL REFER	_OVER DRG—04 	AT 50m 42	CTS			
TENURE/APPROVAL	-										
PIPE SIZE AND MATERIAL	-										
PIPELINE GRADE		9.21%		8.15%				8.33%			
BEDDING (SEE NOTE 4)	-	ç		c				c			
TRENCHSTOPS (SEE NOTE 3)		TS 10.8m		TS 12.2m				TS 12.0m			
DAT	UM RL -21.00	·						·			
DEPTH TO INVERT	0.907		1.153			1.031				0.905	
INVERT LEVEL	10.163		13.847			17.259				23.805	
DESIGN SURFACE	11.070		15.000			18.290				24.710	
CHAINAGE	3810.000		3850.000			3891.844				3970.464	
	м М		m			<u>v </u>	LON	IGITUD	INAL	I	CTION
							•				. – •
				1							
REV.DATEAMENDMENTA20.11.2018PRELIMINARY ISSUEB01.04.2019AMENDED ISSUE				DRAWN J.N. J.N.	CHECK R.J. R.J.	DESIGN H.M. H.M.	VERIFY C.B. C.B.	SCALES			
C 03.05.2019 NPWS ISSUE D 04.07.2019 AMENDED NPWS ISSUE NPV	WS COMMENTS			5.N. S.HO. J.N. J.N.	R.J. R.J. R.J. R.J.	н.м. Н.М. Н.М. Н.М.	C.B. C.B. C.B. C.B.				
E 08.07.2019 AMENDED NPWS ISSUE F 02.09.2019 AMENDED NPWS ISSUE – 0 G 06.09.2019 ISSUED FOR CONSTRUCTION H 17.09.2019 RE ISSUED FOR CONSTRUCT	Ν			J.N. J.N. J.N.	R.J. R.J. R.J.	H.M. H.M. H.M.	C.B. C.B. C.B. C.B.				

DESIGN FILE S: \190238 \Design \12D \WWPS CONCEPT DESIGN

ALL DIMENSIONS ARE IN METRES. DO NOT SCAL

ROSE

SURVEYED

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-027 to 039(H).dwg

JONNSON ABN 62 129 445 398

Fax: (02) 4978 5199

www.adwjohnson.com.au

email: hunter@adwjohnson.com.au

Α

NOTES:

1. H.D. POLYETHY THAN MANUFA[,] ALIGNMENT CA CONTRACTOR I REQUIRED DEFI

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.
- 4. PIPE BEDDING ACCORDANCE
- 5. EXISTING SERV SURVEY. THE CONTRACT ALL EXISTING

т		

Y DESCRIPTION			PROJECT
SURPLUS I	RECYCLED		
			PLAN TITLE
WATE			
CATHERINE			
	DATUM		PROJECT No.
ADWJ	A.H.D.		11688(13

TENURE/APPROVAL

PIPELINE GRADE

PIPE SIZE AND MATERIAL

BEDDING (SEE NOTE 4)

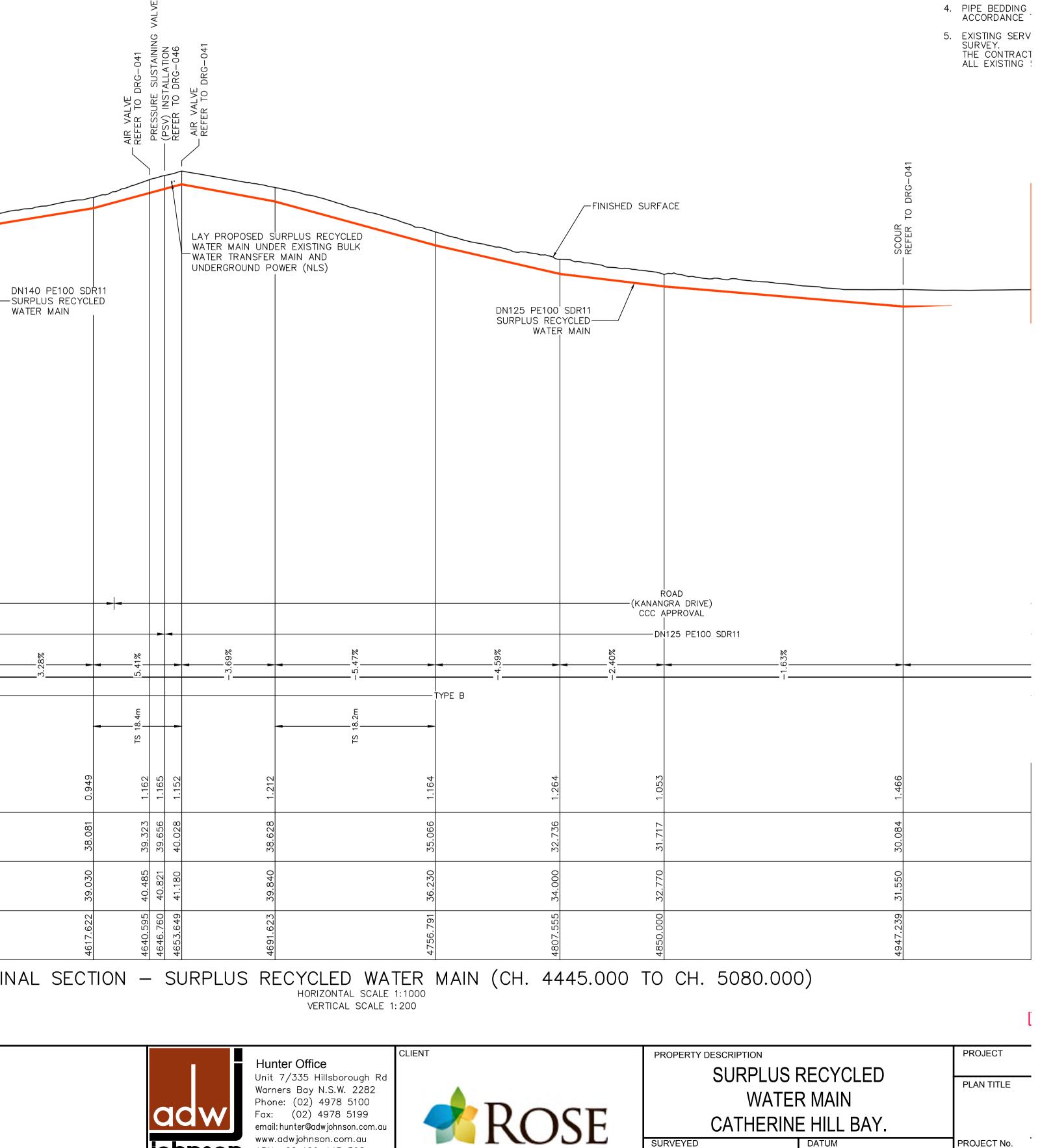
TRENCHSTOPS (SEE NOTE 3)

to 039(H)

		DEPTH T	O INVERT	0.951	0.950	0.920		0.900			006.0		0.949	1160
FULL SIZE		INVERT L	EVEL	28.809	29.240	30.790		32.360			36.690		38.081	502 DZ
50mm AT		DESIGN S	SURFACE	29.760	30.190	31.710		33.260			37.590		39.030	40 485
-		CHAINAG	E	445.000	4457.642	4486.248		4511.480			4575.149		4617.622	4640 595
-										LC	NGITU	DINAL	SECT	10N -
	REV	. DATE	AMENDMENT				DRAWN	CHECK	DESIGN	VERIFY	SCALES			
ւ և հակո	A20.11.2018PRELIMINARY ISSUEB01.04.2019AMENDED ISSUEC03.05.2019NPWS ISSUED04.07.2019AMENDED NPWS ISSUE NPWS COMMENTSE08.07.2019AMENDED NPWS ISSUEF02.09.2019AMENDED NPWS ISSUE - CLIENT COMMENTSG06.09.2019ISSUED FOR CONSTRUCTIONH17.09.2019RE ISSUED FOR CONSTRUCTION						J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.				
Ш	DESI	GN FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN						•			ONS ARE IN ME		O NOT SCALE
	Plo	otted By: jay	sonn Plot Date: 18/09/19 — 10:	26		Cad File: N:\116	88(13)\Di	rawings	Enginee	ering\Wo	ater & Sewe	er\Recycled	Watermain	\11688(13)

TS

TS


__LAKE MACQUARIE STATE RECREATION AREA

-DN140 PE100 SDR11-

TS

033

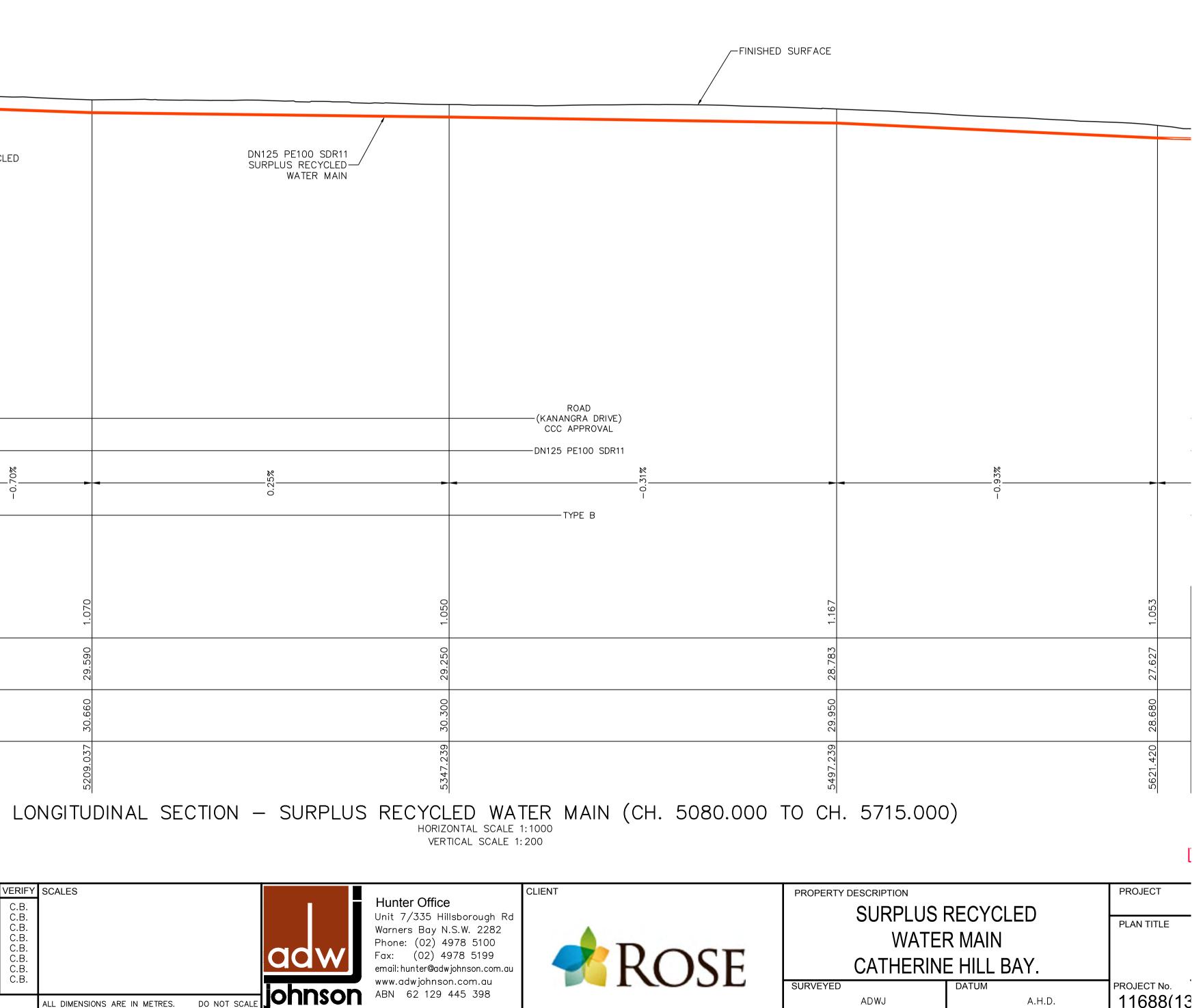
DATUM RL -7.00

588(13) - Issue H (NPWS)\11688(13)NPWS-RWAT-027 to 039(H).dwg

Johnson ABN 62 129 445 398

NOTES:

1. H.D. POLYETHY THAN MANUFA[,] ALIGNMENT CA CONTRACTOR I REQUIRED DEFI


•

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.

	ľ
Ð	PROJECT
	PLAN TITLE
Y.	
A.H.D.	PROJECT No. 11688(13

DATUM

	LAY PROPOSED SU WATER MAIN UNDER UNDERGROUND POV	R EXISTING	
JOINS DRG-034			
TENURE/APPROVAL			
PIPE SIZE AND MATERIAL	◄	× 00	
PIPELINE GRADE	-0.96%		-
BEDDING (SEE NOTE 4)	-		
TRENCHSTOPS (SEE NOTE 3)			
DATUM RL -7.00			
DEPTH TO INVERT	1.187	1.070	
INVERT LEVEL	30.671 30.021	29.590	
DESIGN SURFACE	31.858 31.110	30.660	
CHAINAGE	5080.000 5147.800	5209.037	
	· · · · · · · · · · · · · · · · · · ·	•	

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-027 to 039(H).dwg

NOTES:

1. H.D. POLYETHY THAN MANUFA ALIGNMENT CA CONTRACTOR I REQUIRED DEFL

•

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.
- 4. PIPE BEDDING ACCORDANCE
- 5. EXISTING SERV SURVEY. THE CONTRACT ALL EXISTING

		l

	PROJECT
	PLAN TITLE
•	
.H.D.	PROJECT №. 11688(13

			REFER TO DRG-041
JOINS DRG-035			
TENURE/APPROVAL	-		
PIPE SIZE AND MATERIAL	-		
PIPELINE GRADE	-1.49%		
BEDDING (SEE NOTE 4)	-		
TRENCHSTOPS (SEE NOTE 3)			
DATUM RL -12.00			
DEPTH TO INVERT	1.176 1.287	1.101	
INVERT LEVEL	25.935 25.703	25.539 25	
	27.111 26.990		
CHAINAGE	5715.000 57.30.628	5781.081	
			LONGITUDINAL SECTION

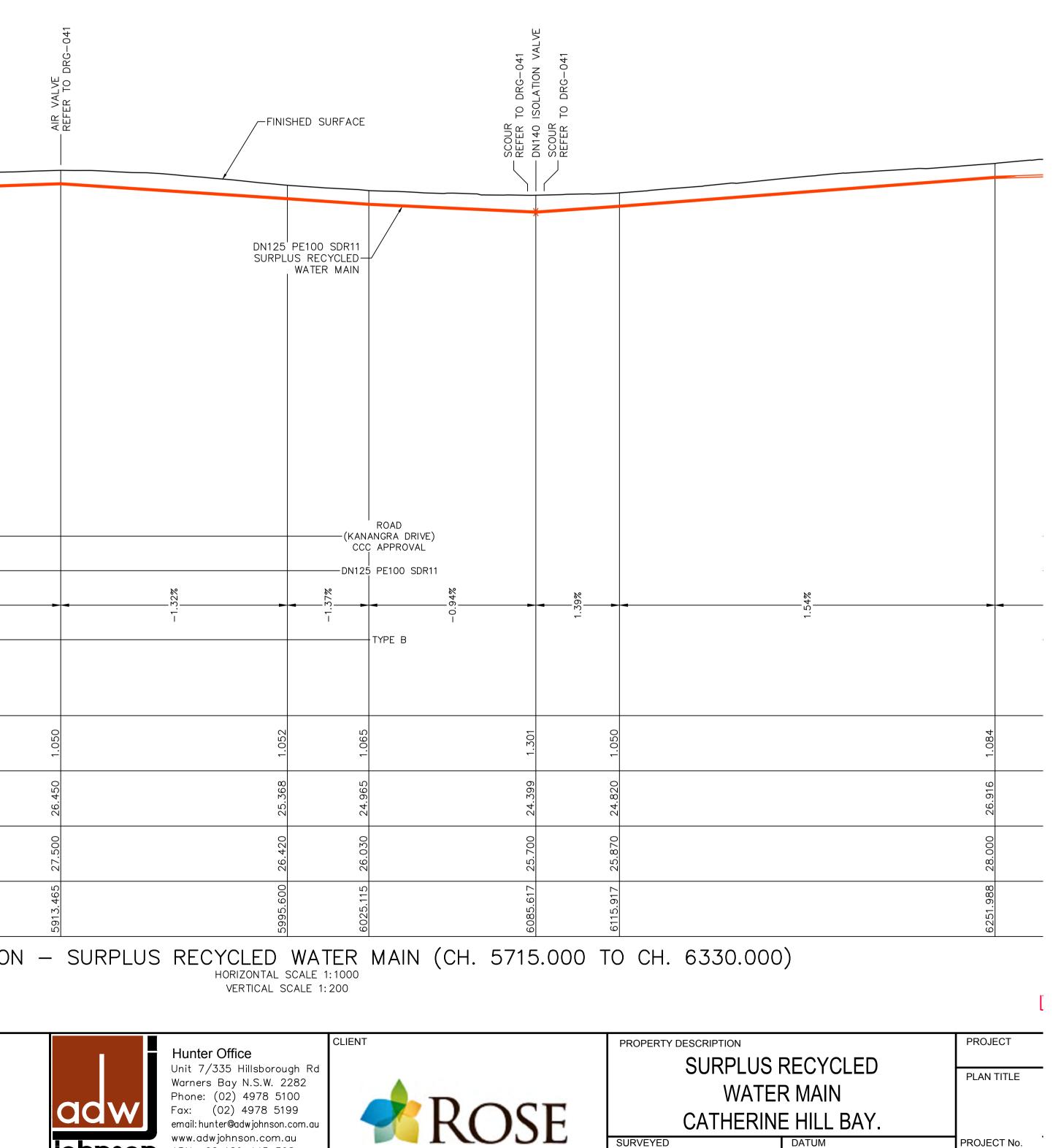
DATE

20.11.2018

01.04.2019

REV.

AMENDMENT


PRELIMINARY ISSUE AMENDED ISSUE

ALL DIMENSIONS ARE IN METRES. DO NOT SCALE

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-027 to 039(H).dwg

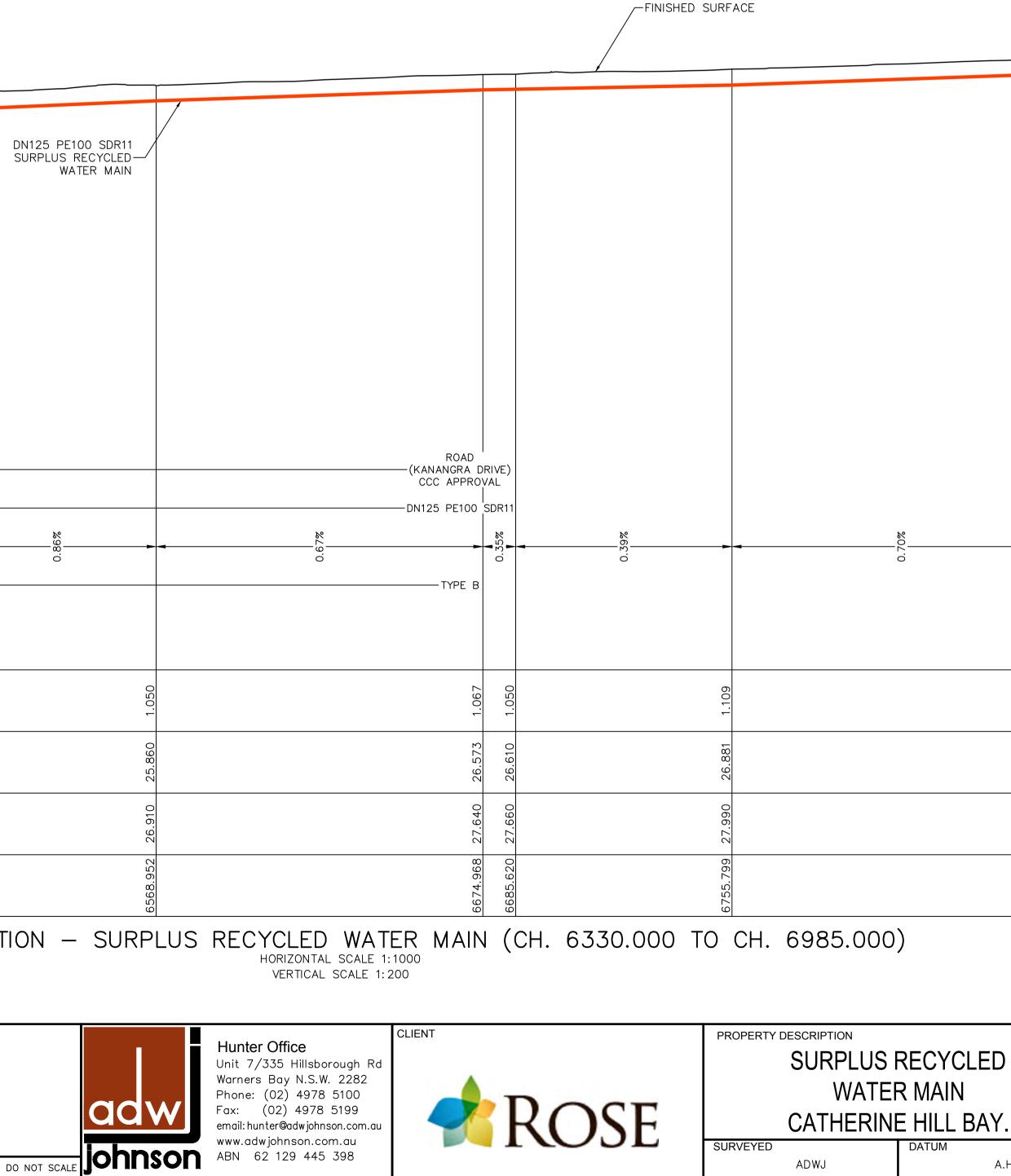
J.N.R.J.H.M.J.N.R.J.H.M.S.HO.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.J.N.R.J.H.M.

DRAWN CHECK DESIGN VERIFY SCALES

ABN 62 129 445 398

johnson

NOTES:


1. H.D. POLYETHY THAN MANUFA ALIGNMENT CA CONTRACTOR I REQUIRED DEFL

•

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.
- 4. PIPE BEDDING ACCORDANCE
- 5. EXISTING SERV SURVEY. THE CONTRACT ALL EXISTING

	ľ
Ð	PROJECT
	PLAN TITLE
Y.	
A.H.D.	PROJECT №. 11688(13

		PIPELINE GR BEDDING (SE	ND MATERIAL ADE	-1.70%			-2.43%				
		DEPTH T	O INVERT	1.226	1.054				1.116	1 2 0 0 1	
FULL SIZE		INVERT L	EVEL	28.252	27.636				25.914	с С С	
I A mmuc		DESIGN S	SURFACE	29.478	28.690				27.030	06 510 01	
		CHAINAGI	E	6350.000	6386.317				6457.145	6504 547	
	_								LON	IGITUDINAL	SECTION
	A B C D E F G H	DATE 20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	AMENDMENT PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMME ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION			DRAWN J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	CHECK R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J	DESIGN H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M	VERIFY C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B	SCALES	
∃ 			238\Design\12D\WWPS CONCEPT DESIGN sonn Plot Date: 18/09/19 - 10:	26 Cad File:	N: \116	588(13)\D	rawings [\]	• Enginee	ering\Wc	ALL DIMENSIONS ARE IN ME ater & Sewer\Recycled	

11688(13) - Issue H (NPWS)\11688(13)NPWS-RWAT-027 to 039(H).dwg

SCOUR REFER NOTES:

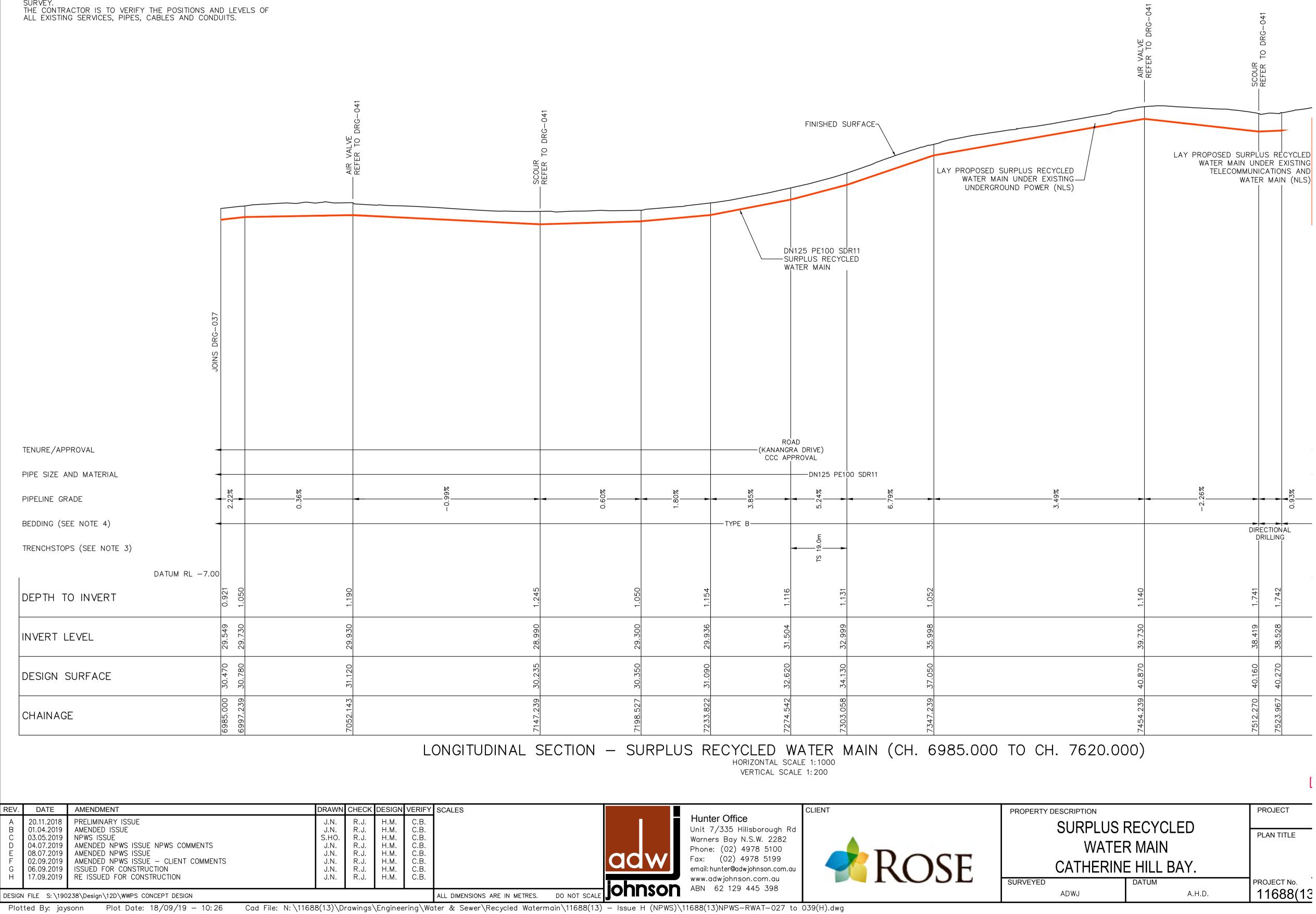
1. H.D. POLYETHY THAN MANUFA ALIGNMENT CA CONTRACTOR I REQUIRED DEFI

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E TRENCH BACKF STABILISED SU
- 4. PIPE BEDDING ACCORDANCE
- 5. EXISTING SERV SURVEY. THE CONTRACT ALL EXISTING

	•
1.124	
27.646	
6865.658 28.770	
58	
365.6	
99	

	ſ
	PROJECT
_	PLAN TITLE
H.D.	PROJECT №. 11688(13

Ĥ
039(
þ
T-027
AT-
-RV
SS
NP/
(13
1688


 $\overline{}$

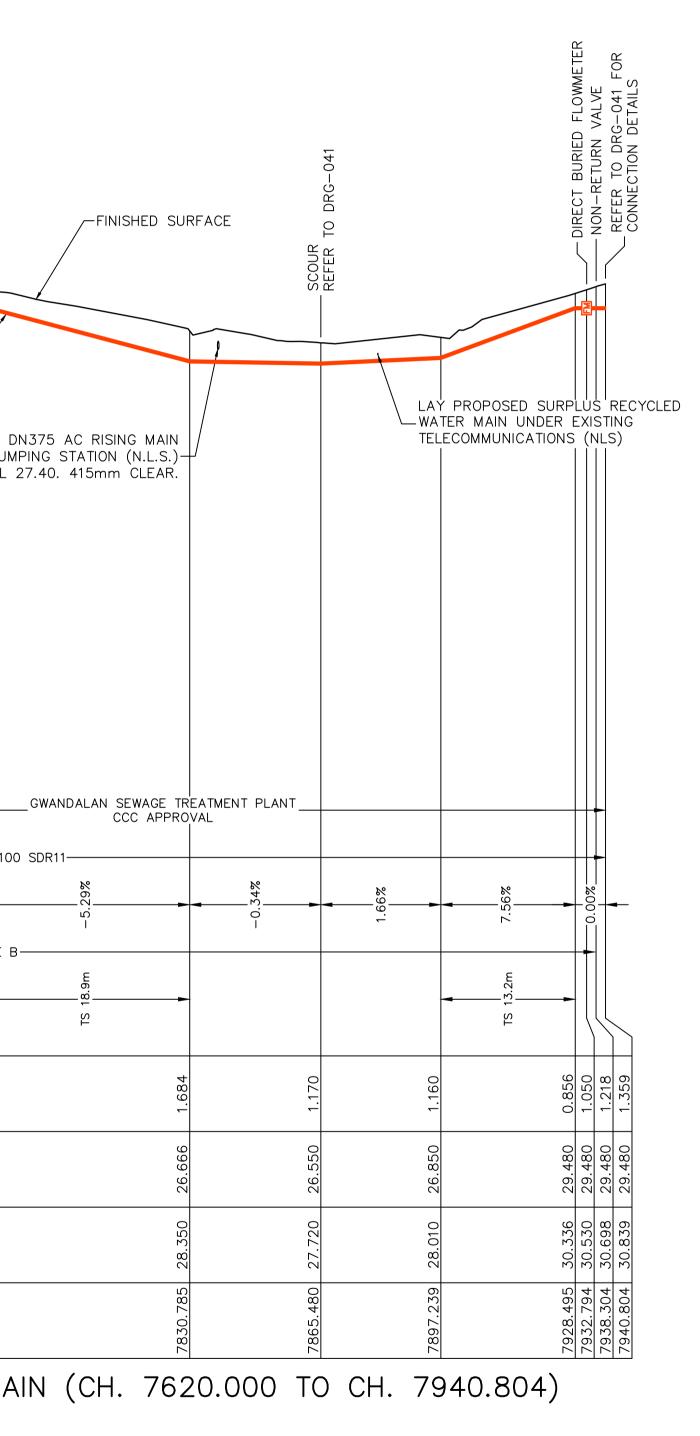
NOTES:

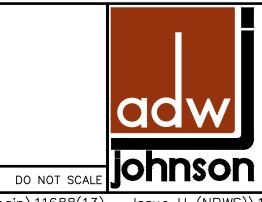
- 1. H.D. POLYETHYLENE PIPE SHALL NOT BE BENT TO A RADIUS LESS THAN MANUFACTURERS RECOMMENDATIONS. IF THE PROPOSED ALIGNMENT CAN NOT BE ACHIEVED BY BENDING THE PIPE THE CONTRACTOR IS TO USE ELECTROFUSION FITTINGS TO ACHIEVE REQUIRED DEFLECTIONS.
- 2. REFER TO DRG-026 FOR SURPLUS RECYCLED WATER MAIN SETOUT DETAILS.

3. TRENCHSTOPS AND BULKHEADS ARE TO BE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, CLAUSE 7.10. TS DENOTES TRENCH STOPS. BH DENOTES BULKHEADS. WHERE TS OR BH SPECIFIED THE TRENCH BACKFILL WILL INCORPORATE A 150mm THICK DGS40 2% STABILISED SURFACE LAYER.

- 4. PIPE BEDDING AND CONCRETE ENCASEMENT IS TO BE IN ACCORDANCE WITH WSA03-2011-3.1 PART 1, SECTION 7.
- 5. EXISTING SERVICES IN THIS AREA HAVE NOT BEEN LOCATED BY SURVEY.

	ť
	PROJECT
	PLAN TITLE
•	
H.D.	PROJECT No. 11688(13


									PE100 SDR11 US RECYCLED WATER MAIN	
									EXISTING FROM G5 P	
		JUNS URG-038								
	TENURE/APPROVAL	-	ROAI (SUMMERLAN CCC APPF	D ROA	AD)	╾┤╼				
	PIPE SIZE AND MATERIAL	-			N9				DN125 PE	:100
	PIPELINE GRADE –	-6.39%	-6.40%		-5.39%	•	-1.07%	-	- 5.53%	
	BEDDING (SEE NOTE 4)	-	L L L		ي ي				ТҮРЕ Е	ΞB
	TRENCHSTOPS (SEE NOTE 3)		TS 15.6m TS 15.6m TS 15.6m		TS 8.5			-	TS 18.0m	
	DATUM RL 10.0			9	اری	> 10				
	DEPTH TO INVERT	0.908		0.936	0.905	1.185		0.900	0.947	
50mm AT FULL SIZE	INVERT LEVEL	36.775 36.190		33.334	31.975	31.646		31.540	29.593	
J 50mm AT	NATURAL SURFACE	37.683		34.270	32.880 	32.831 32.831		32.440	30.540	
-	CHAINAGE	7620.000 7629 885		7674.504		7710.737		7740.229	7775.454	
-	LONGITUDINAL	SE	CTION - S	SUF	RPLUS	RE	HORE	ZONTAI	SCALE 1: 200	A
- REV	20.11.2018 PRELIMINARY ISSUE			DRA J.N	I. R.J.	Н.М.	C.B.	SCALE	S	
BCDEFGH	01.04.2019AMENDED ISSUE03.05.2019NPWS ISSUE04.07.2019AMENDED NPWS ISSUE NPWS COMMENTS08.07.2019AMENDED NPWS ISSUE02.09.2019AMENDED NPWS ISSUE - CLIENT COMME06.09.2019ISSUED FOR CONSTRUCTION17.09.2019RE ISSUED FOR CONSTRUCTION			J.N S.H J.N J.N J.N J.N	N. R.J. O. R.J. J. R.J. J. R.J. J. R.J. J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B.			
DESI	GN FILE S: \190238\Design\12D\WWPS CONCEPT DESIGN	26							MENSIONS ARE IN METRES	
Ρŀ	otted By: jaysonn Plot Date: 18/09/19 — 10:	∠0	σαα επε: Ν: (Πδδ	50(13)	י עטי מwings עצו	igine	ering \Wa	ier &	Sewer\Recycled Wat	ern


- SCOUR - REFER TO DRG-041 - DN150 ISOLATION VALVE - REFER TO DETAIL, DRG-0 - AIR VALVE - AIR VALVE - REFER TO DRG-041

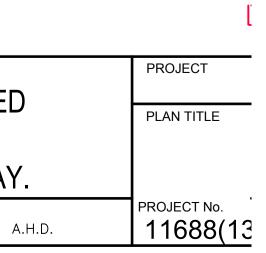
LAY PROPOSED SURPLUS RECYCLED WATER MAIN UNDER EXISTING

TELECOMMUNICATIONS AND

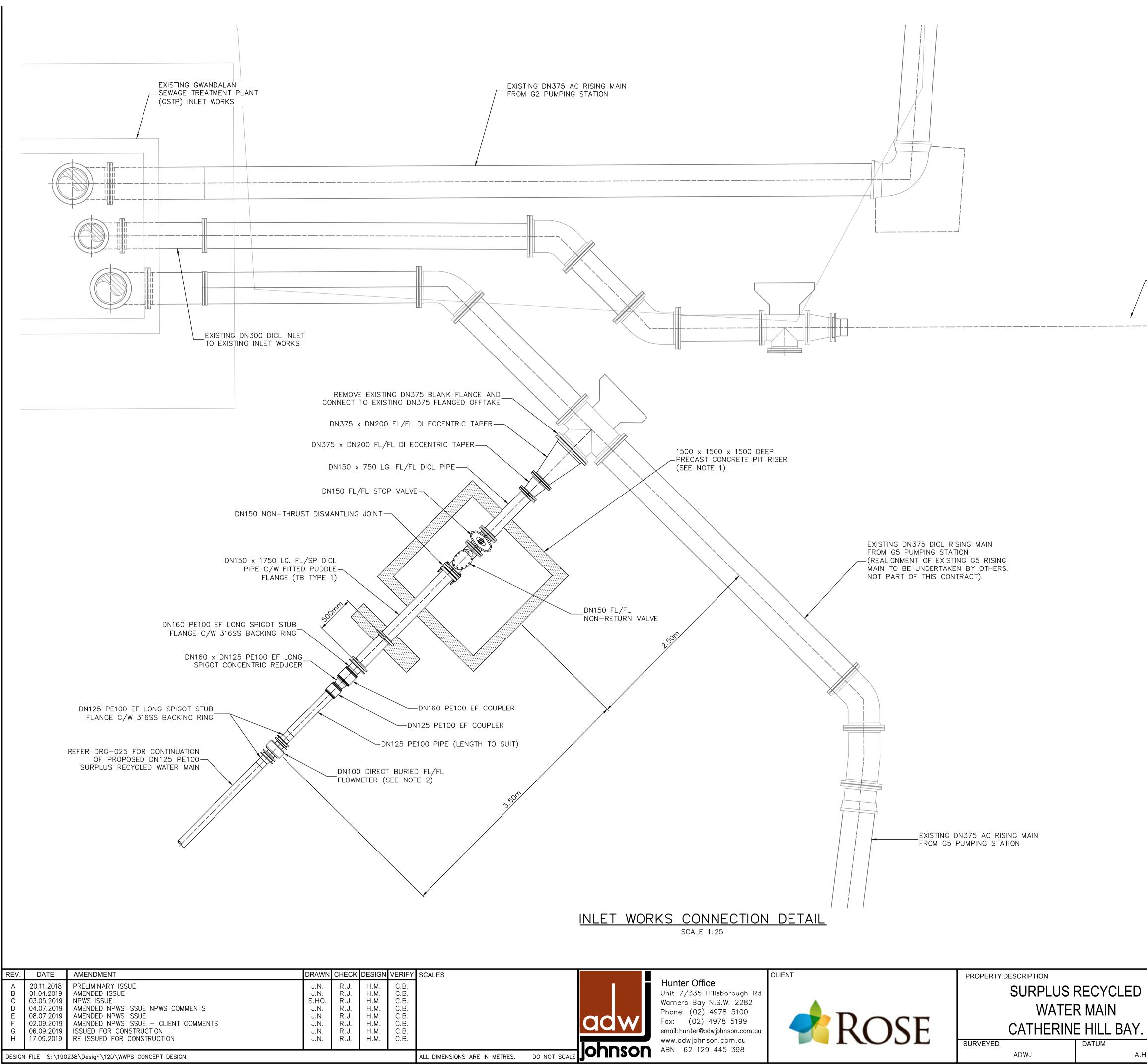
WATER MAIN (NLS)

Hunter Office Unit 7/335 Hillsborough Rd Warners Bay N.S.W. 2282 Phone: (02) 4978 5100 Fax: (02) 4978 5199 email:hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

CLIENT


PROPERTY DESCRIPTION SURPLUS RECYCLED WATER MAIN CATHERINE HILL BAY. SURVEYED DATUM ADWJ

main\11688(13) - Issue H (NPWS)\11688(13)NPWS-RWAT-027 to 039(H).dwg


NOTES:

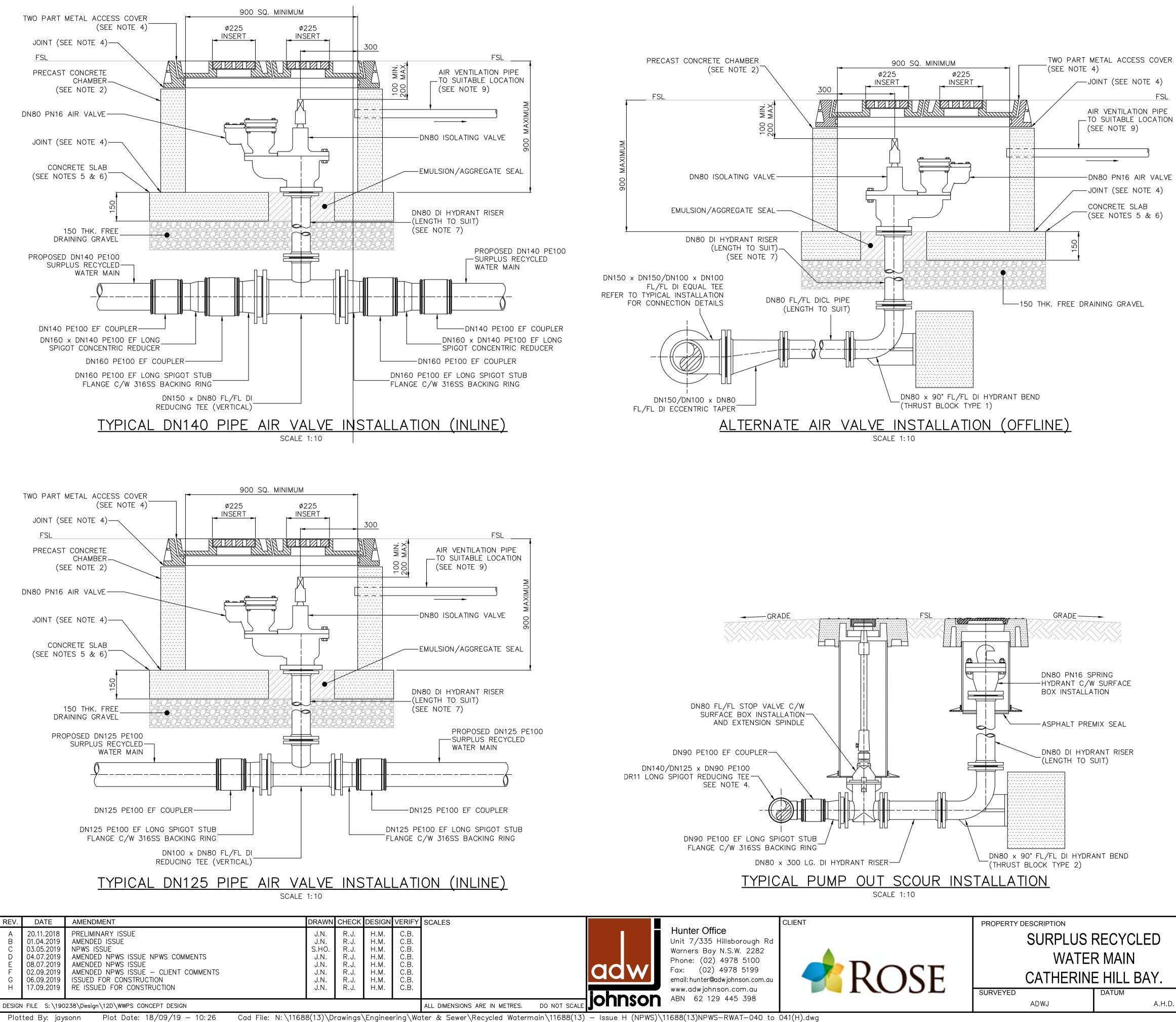
1. H.D. POLYETHY THAN MANUFA[,] ALIGNMENT CA CONTRACTOR I REQUIRED DEFI

- 2. REFER TO DRG SETOUT DETAIL
- 3. TRENCHSTOPS WSA03-2011-TS DENOTES T BH DENOTES E WHERE TS OR INCORPORATE LAYER.
- 4. PIPE BEDDING ACCORDANCE
- 5. EXISTING SERV SURVEY. THE CONTRACT ALL EXISTING

 $\overline{}$

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-040 to 041(H).dwg

DN225 PE100 GWANDALAN SPS (GW09) RISING MAIN


•

NOTES:

- 1. INSTALL 1: C/W CAST SAW CUT PIPEWORK. AFTER IN ! PROVIDE 1
- 2. CONTRACT AVAILABLE ANY INTEF CONTRACT TO COMME

	Ľ
	PROJECT
	PLAN TITLE
H.D.	PROJECT No. 11688(13

Plot Date: 18/09/19 — 10:26 Plotted By: jaysonn

- ALTERNATIVELY, 5. CONCRETE FOR PROVIDE 4/ø2C

4. JOINTS TO BE

<u>AIR VALVE NC</u>

1. ALL DIMENSION!

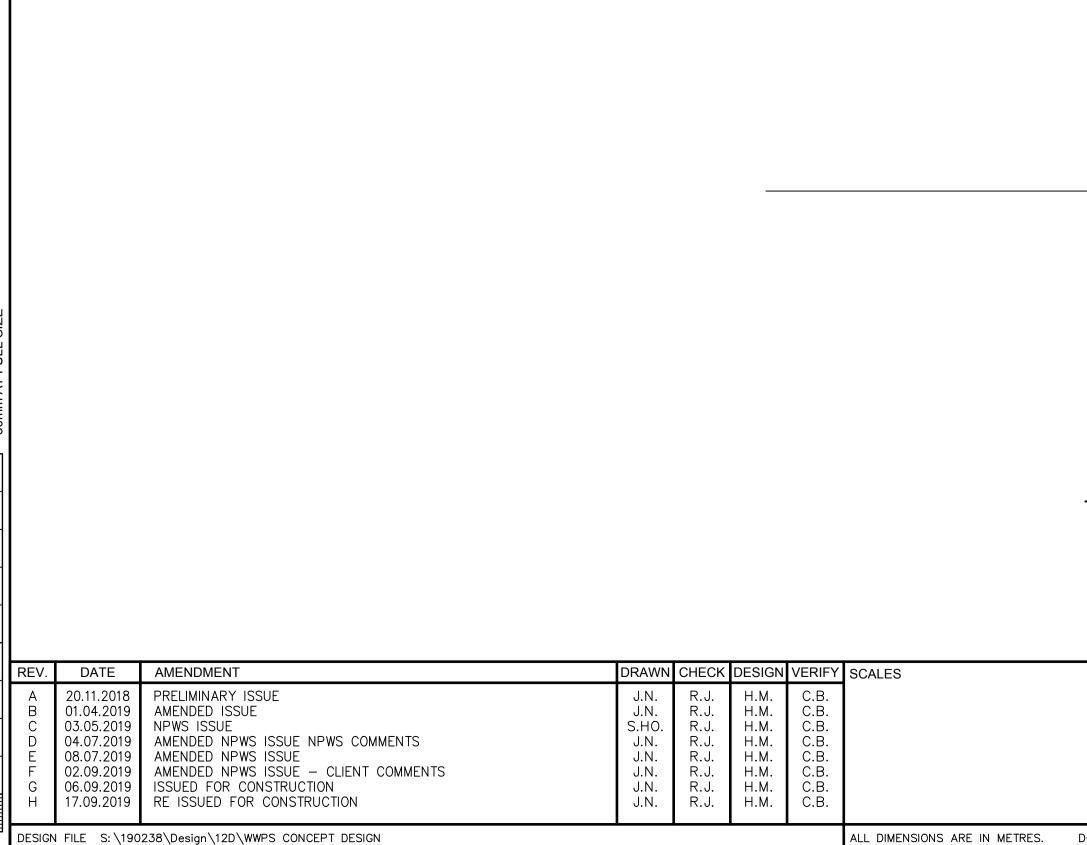
2. AN ALTERNATIL

METAL ACCESS CLASS "D" FOR

LOCATION MAY

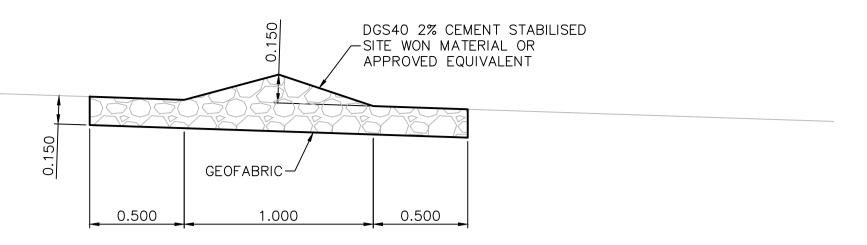
ACCESS COVER:

•

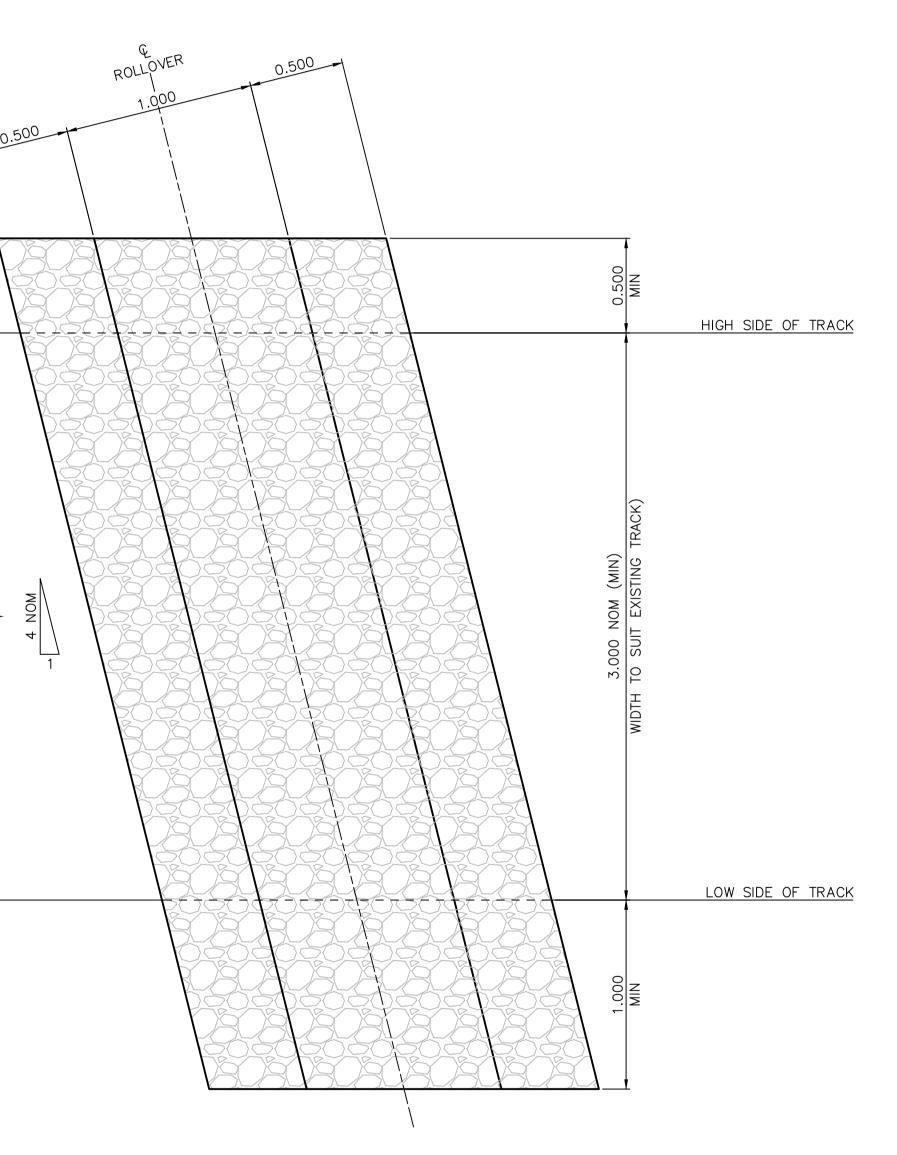

- 6. REINFORCING F: EQUIVALENT RE
- 7. ENSURE HYDRA FLOOR OF CHAI MINIMUM OF OF
- 8. PROTECT ALL C 9. PROVIDE AIR V.
- PIPE OR VENTE ENSURE PIPE/1
- 10. ALL VALVES AF ACCORDANCE V

SCOUR NOTES

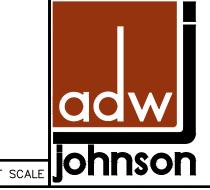
- 1. ALL DIMENSION
- 2. THIS DRAWING WAT-1303-V/1 TYPICAL SURFA WAT-1301-V: TYPICAL VALVE
- ASSEMBLY. 3. PAINT PLASTIC AN APPROVED
- 4. WHERE SURPLU DN140 PE100 E DN160 × DN110
- 5. ALL VALVES AF ACCORDANCE V


PROJECT

	PLAN TITLE
	PROJECT No.
H.D.	11688(13



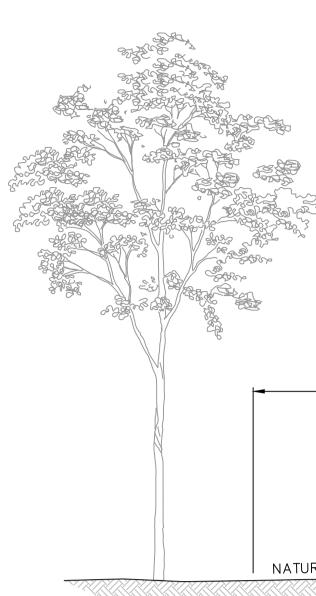
ALL DIMENSIONS ARE IN METRES. DO NOT SCAL


PREDOMINANT FALL OF TRACK-----

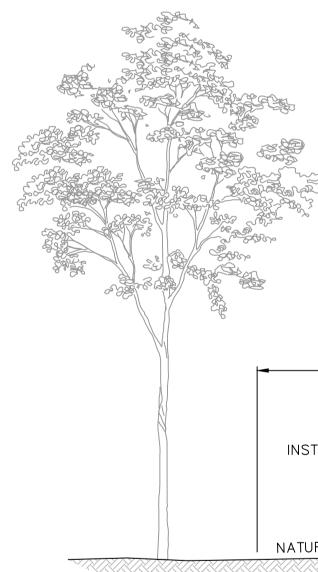
TYPICAL CROSS BANK ROLLOVER SECTION

TYPICAL CROSS BANK ROLLOVER PLAN

Hunter Office Unit 7/335 Hillsborough Rd Warners Bay N.S.W. 2282 Phone: (02) 4978 5100 Fax: (02) 4978 5199 email:hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

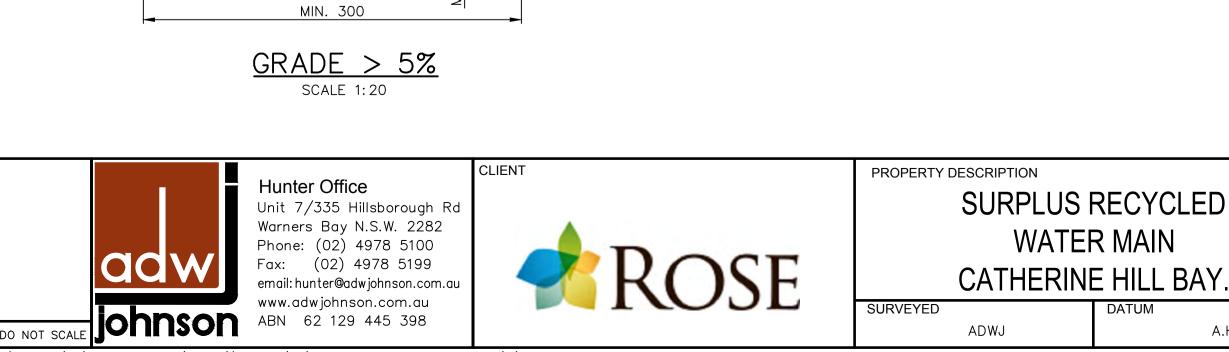


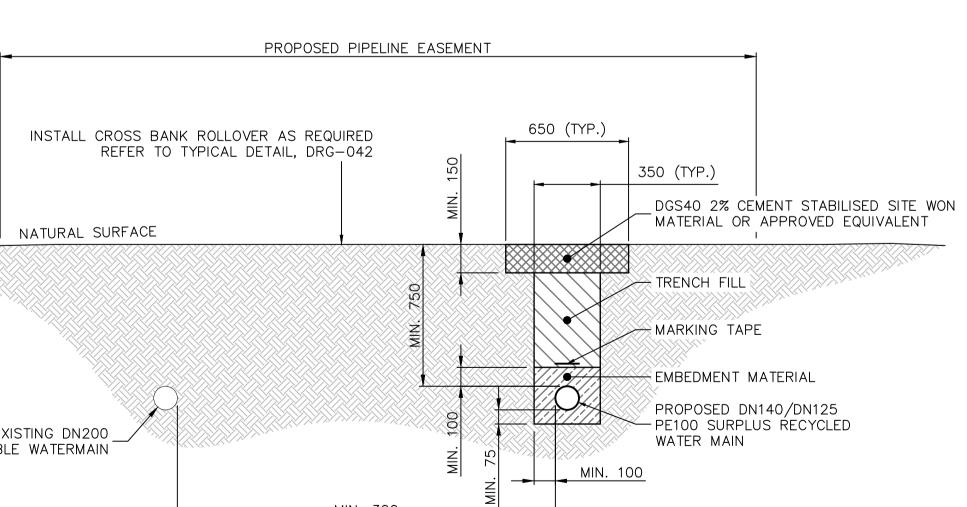
CLIENT

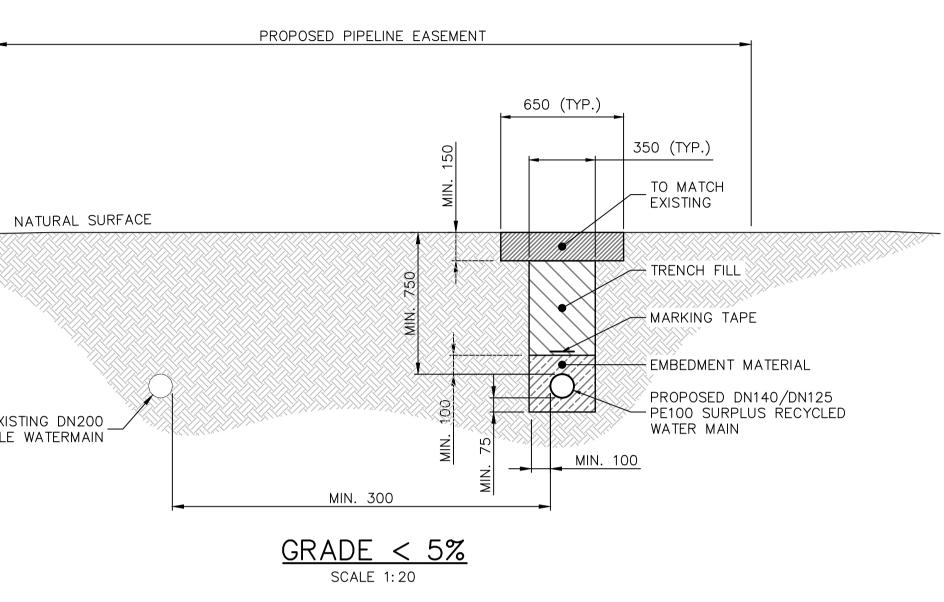

PROPERTY DESCRIPTION SURPLUS RECYCLED WATER MAIN CATHERINE HILL BAY. SURVEYED DATUM ADWJ Α

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-042 to 045(H).dwg

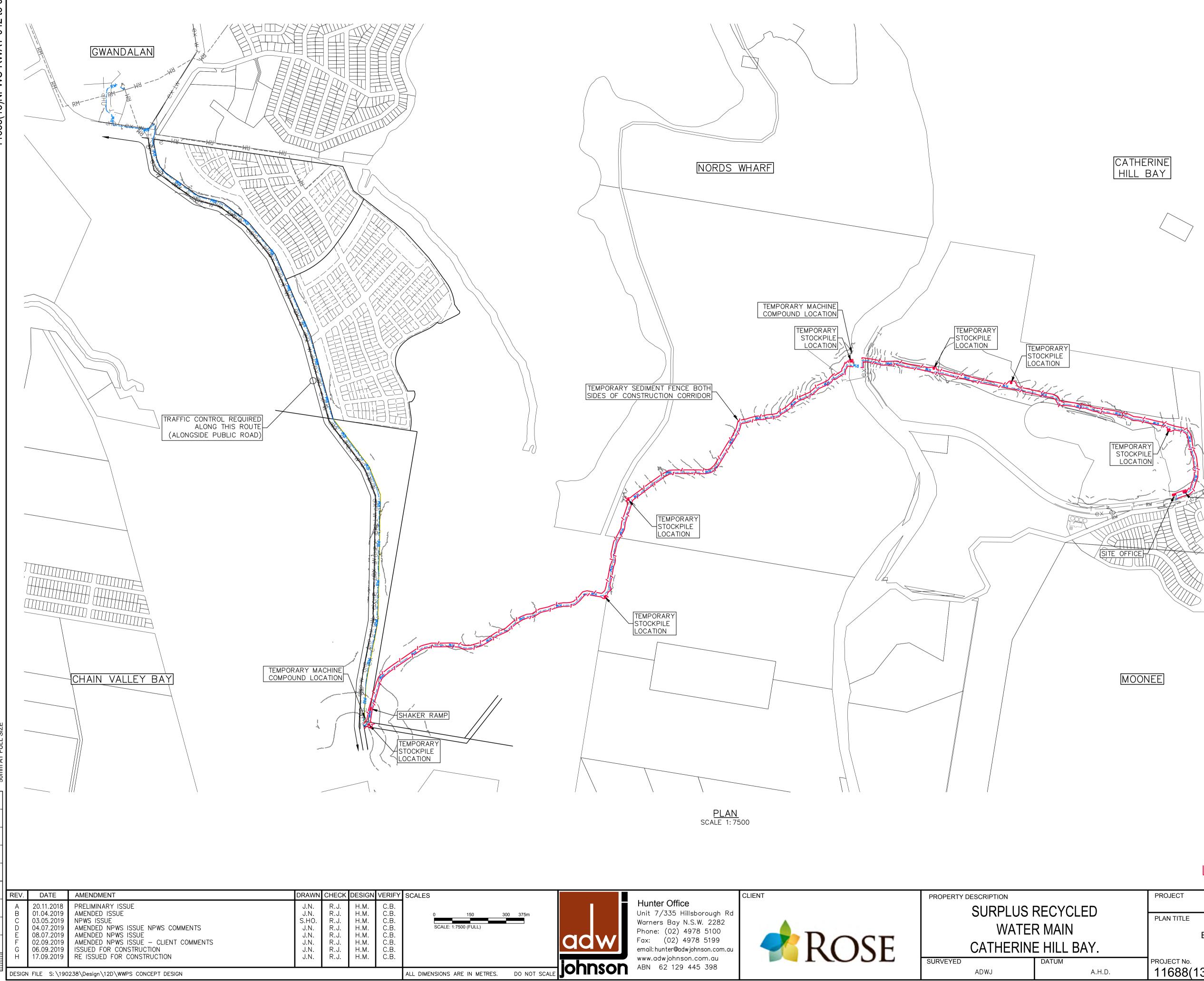
	ľ
)	PROJECT
)	PLAN TITLE
/	Τ
•	PROJECT No.
.H.D.	11688(13

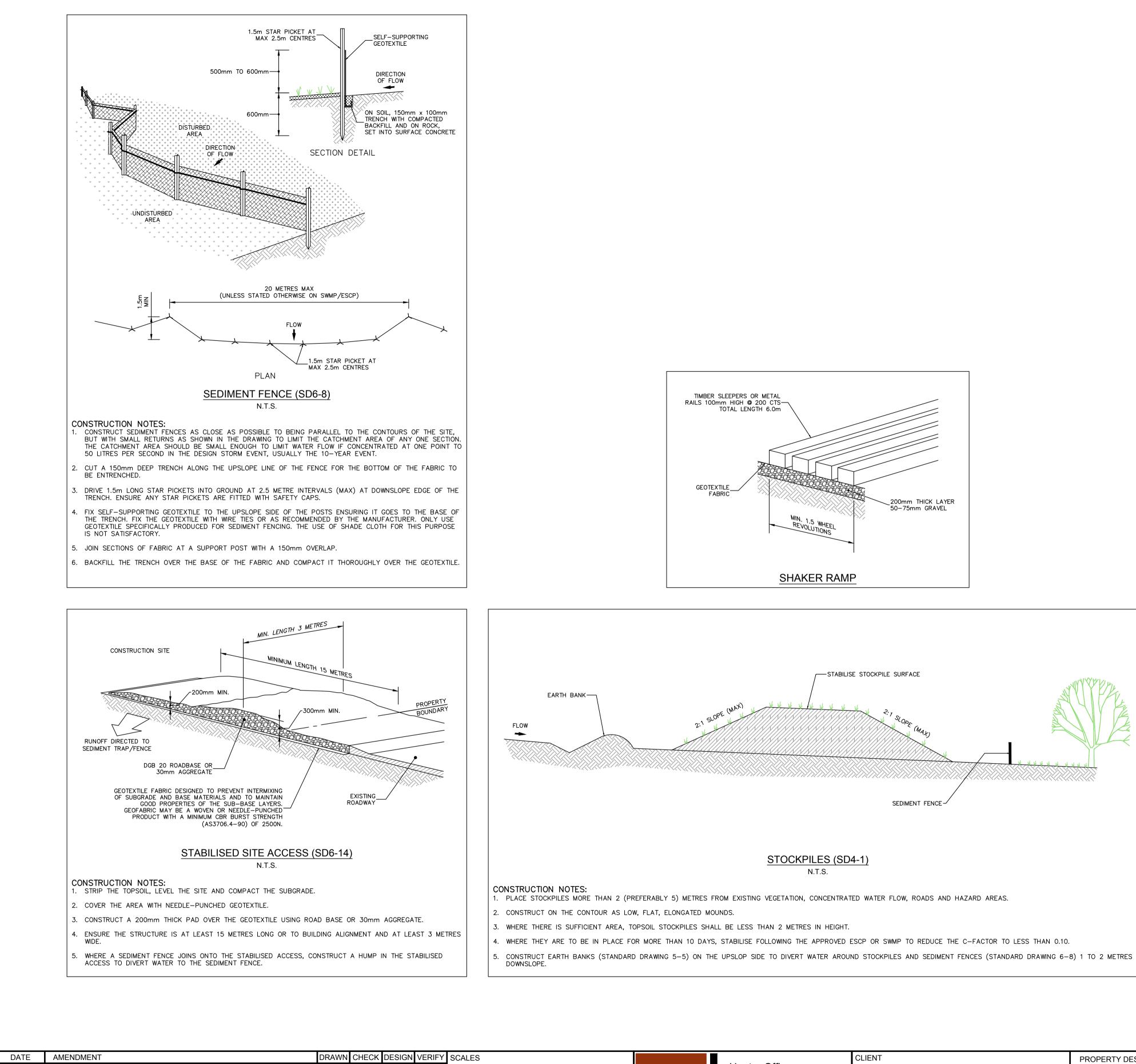

EXISTING DN200 _ POTABLE WATERMAIN




EXISTING DN200 _ POTABLE WATERMAIN

	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES
	КВС РПЕОТ	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.	
E	DESIGN FILE S: \190238\Design \12D\WWPS CONCEPT DESIGN						ALL DIMENSIONS ARE IN METRES. DO	

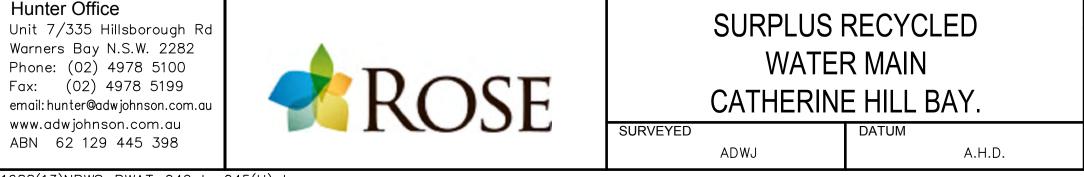

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-042 to 045(H).dwg



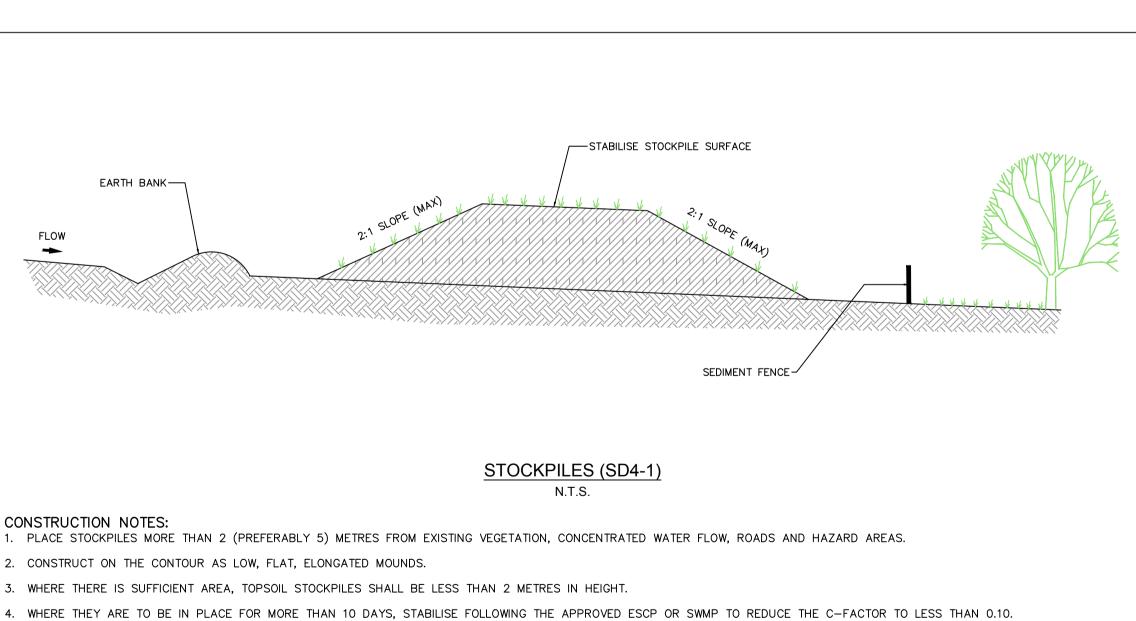
	l					
)	PROJECT					
)	PLAN TITLE					
	TYPI(
A.H.D.	PROJECT No. 11688(13					

		ľ
ROPERTY DESCRIPTION		PROJECT
SURPLUS I WATEF	PLAN TITLE E	
CATHERIN	E HILL BAY.	
RVEYED ADWJ	DATUM A.H.D.	PROJECT No. 11688(13

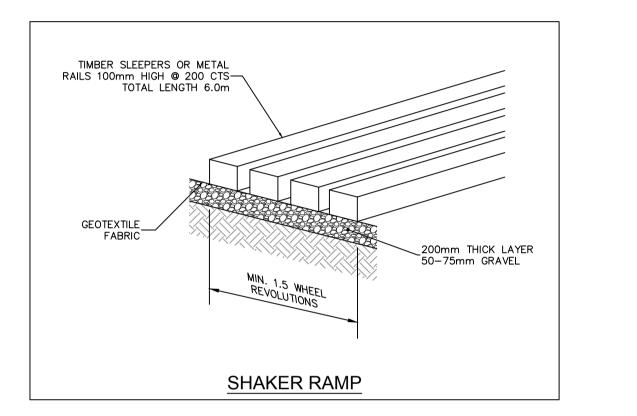
.


-									
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES	
	А В С D E F G H	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019 02.09.2019 06.09.2019 17.09.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE AMENDED NPWS ISSUE – CLIENT COMMENTS ISSUED FOR CONSTRUCTION RE ISSUED FOR CONSTRUCTION	J.N. J.N. S.HO. J.N. J.N. J.N. J.N. J.N.	R.J. R.J. R.J. R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B. C.B. C.B. C.B.		
E		FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN	-	-	-		ALL DIMENSIONS ARE IN METRES.	DO NOT SCALE

johnson


DOWNSLOPE.

FLOW


-

PROPERTY DESCRIPTION

CLIENT

NOTES: -

1. SEDIMENT AND EROSION CONTF URBAN STORMWATER – SOILS SPECIFICATIONS.

2. ALL TOPSOIL TO BE REMOVED TO STOCKPILE LOCATION. 3. STOCKPILE AREA TO BE FULLY

4. IMPORTED MATERIAL TO BE PL: IMPORTED MATERIAL IS NOT TO 5. STOCKPILES ARE TO BE REMOL REINSTATED IMMEDIATELY.

6. ALL AREAS DISTURBED DURING SEEDED WITHIN 14 DAYS.

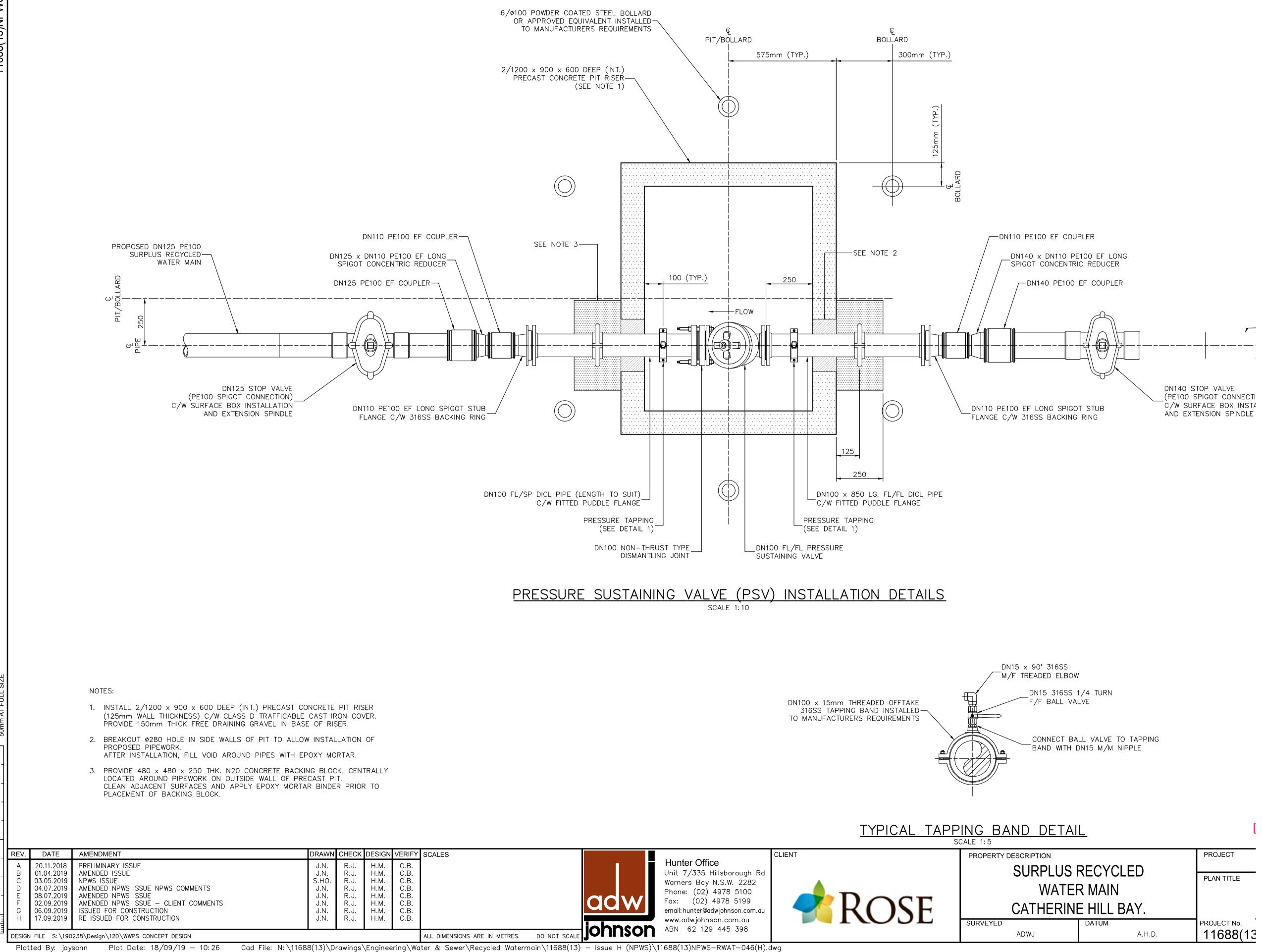
7. SILT FENCES AND HAY BALING ENGINEER AND MAINTAINED AT 8. WHERE PRACTICAL CATCH DRAI TO MINIMISE EXTERNAL RUNOFF

9. CONTROL CLEAN WATER FROM AROUND THE SITE.

10. MAINTAIN ALL EROSION AND SE REHABILITATION IS ACHIEVED. 11. OBTAIN COUNCIL'S PERMISSION

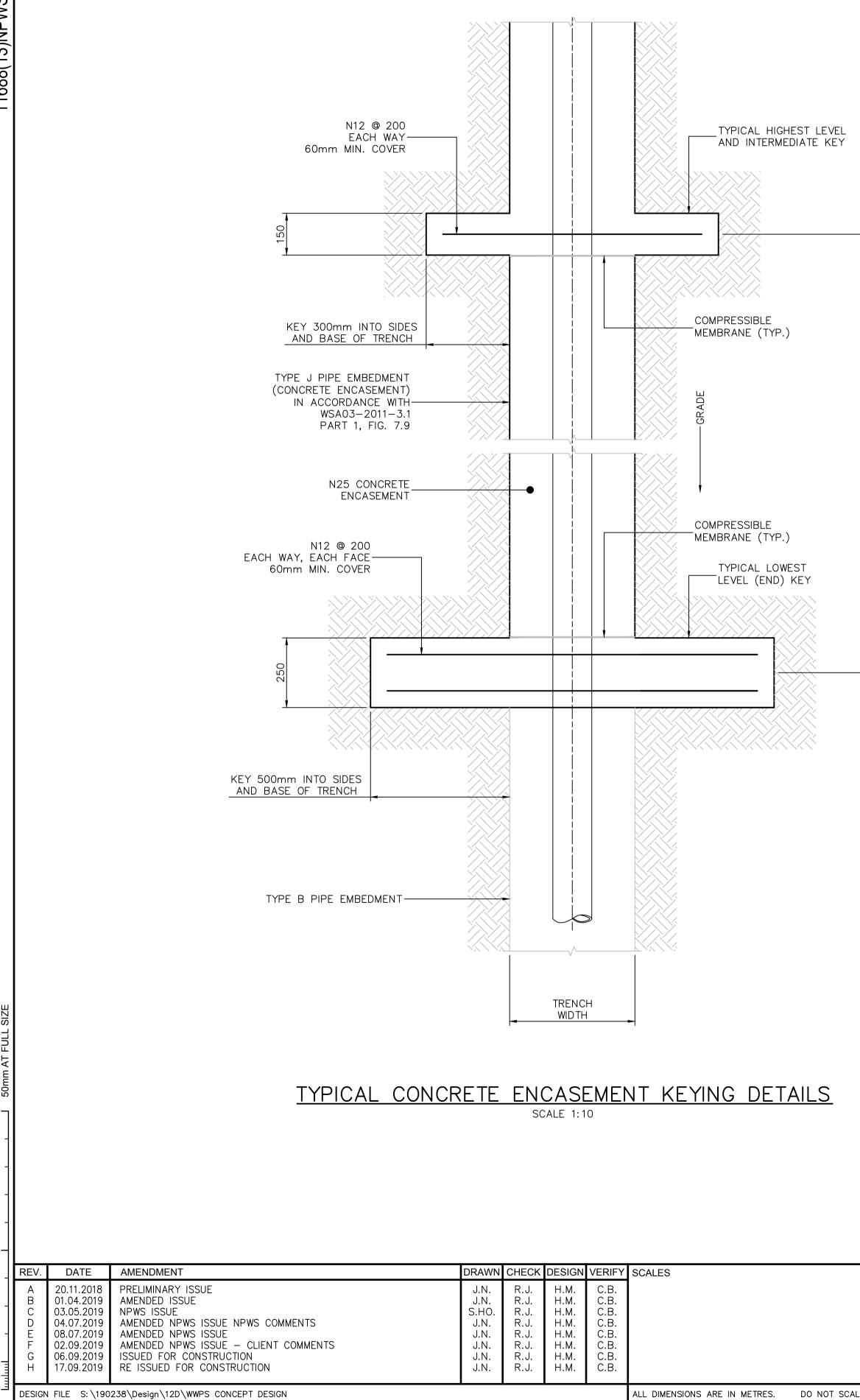
12. CONTRACTOR IS TO UNDERTAKE 13. GRAVEL DIVERSION BAGS TO BI AND @ 20m - 30m INTERVAL!

SYSTEM AND TO ACT AS VELO 14. LOCATION OF SILT FENCE DIAGI IS TO BE POSITIONED APPROXI


15. KERB INLET CONTROLS TO BE

16. ENSURE SEDIMENT FENCING IS AREAS TO BE REGRADED AND

17. SEDIMENT FENCES TO BE REINF STRAW BALES OR STEEL WIRE


18. GRAVEL FILLED GROYNES ARE TO DIRECT STORMWATER FLOW! ALSO TO BE POSITIONED DOWN OUTLET OR OVERLAND FLOW P.

	ť
ר ר	PROJECT
	PLAN TITLE
/	ER
•	
A.H.D.	PROJECT No. 11688(13

•

	ľ
	PROJECT
	PLAN TITLE
•	
.H.D.	PROJECT No. 11688(13

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-047(H).dwg

Hunter Office Unit 7/335 Hillsborough Rd Warners Bay N.S.W. 2282 email: hunter@adwjohnson.com.au www.adwjohnson.com.au ABN 62 129 445 398

WATER MAIN SURVEYED DATUM ADWJ

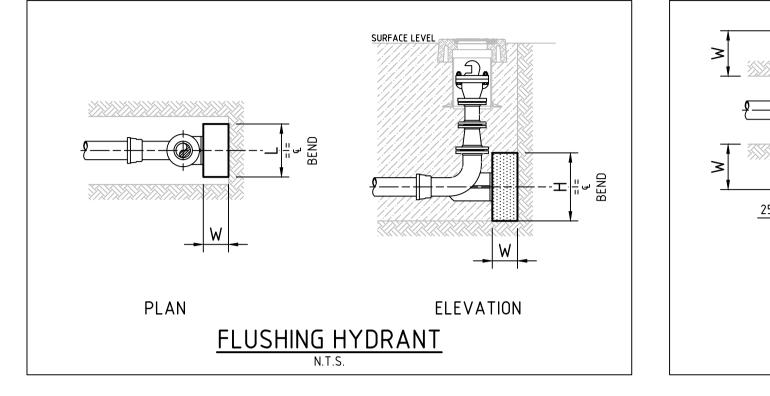
Phone: (02) 4978 5100 Fax: (02) 4978 5199

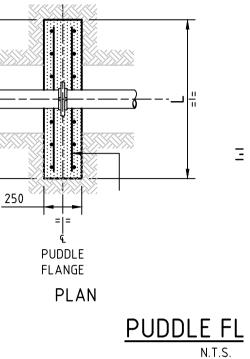
OSE

PROPERTY DESCRIPTION SURPLUS RECYCLED CATHERINE HILL BAY

CLIENT

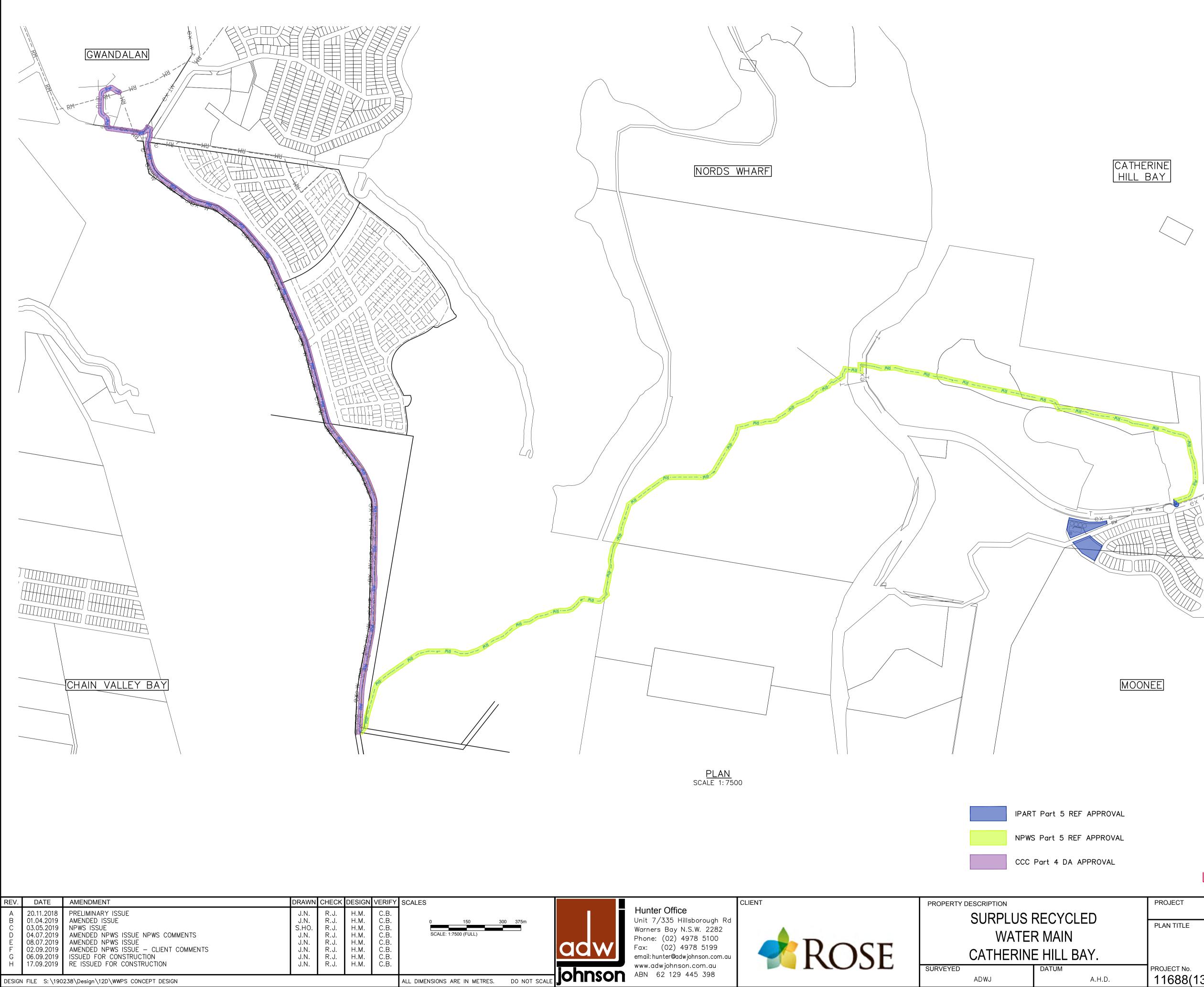
SYSTEM TEST PRESSURE (STP) = 1150kPa


THRUST BLOCK NOTES:


- 1. CONCRETE THRUST BLOCKS ARE TO BE PROVIDED FOR ALL FITTINGS IN ACCORDANCE WITH TABLE.
- HORIZONTAL BEARING PRESSURES OF THE SOIL AS SHOWN. IF GROUND CONDITIONS ENCOUNTERED INDICATE THAT THESE BEARING PRESSURES MAY
- 2. THRUST BLOCK DIMENSIONS ARE BASED ON THE MINIMUM ALLOWABLE NOT BE ACHIEVED, THRUST BLOCK DESIGN IS TO BE REVISED.
- 3. THRUST BLOCKS ARE TO BE CONSTRUCTED SUCH THAT THEY TRANSFER THE THRUST ONTO UNDISTURBED GROUND. THRUST BLOCKS ARE NOT TO INTERFERE WITH OTHER SERVICES.
- 4. FINISH THRUST BLOCKS APPROXIMATELY 100mm ABOVE THE TOP OF THE FITTING OR BEARING PAD AND EXTEND TO THE FLOOR OF THE TRENCH OR DEEPER IF NECESSARY TO ACHIEVE THE REQUIRED THRUST AREA. MAXIMUM
- ENCASEMENT TO BE 180°.
- 5. CONCRETE FOR THE THRUST BLOCKS TO BE GRADE S25 USING CEMENT TYPE
- "SR" TO AS3972. CONCRETE TO BE MECHANICALLY VIBRATED.

- 6. CONCRETE THRUST BLOCKS ARE TO BE CURED FOR A MINIMUM OF 7 DAYS BEFORE BEING SUBJECTED TO ANY THRUST LOAD.

STP STP (Kpa) (Kpa) DN150 PUDDLE FLANGE 200 | 1000 | 25.00 1 DN80 FLUSHING HYDRANT 200 1000 5.00 2


•

TA (m²)	LENGTH (L)	HEIGHT (H)	WII (
0.13	1.05	0.70	0.
0.05	0.40	0.35	0.

7. REFER TO WAT-1205 FOR GENERAL FITTING THRUST BLOCK ARRANGEMENTS.

	Ľ
	PROJECT
)	PLAN TITLE
	יד
•	
H.D.	PROJECT No. 11688(13

DESIGN FILE S: \190238 \Design \12D \WWPS CONCEPT DESIGN

ALL DIMENSIONS ARE IN METRES. DO NOT SCALE

Plotted By: jaysonn Plot Date: 18/09/19 - 10:26 Cad File: N: \11688(13) \Drawings \Engineering \Water & Sewer \Recycled Watermain \11688(13) - Issue H (NPWS) \11688(13) NPWS-RWAT-048(H).dwg

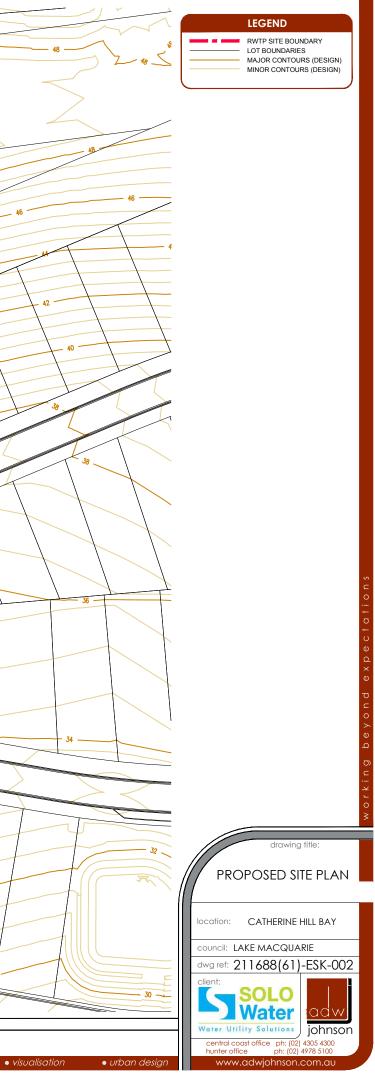
•

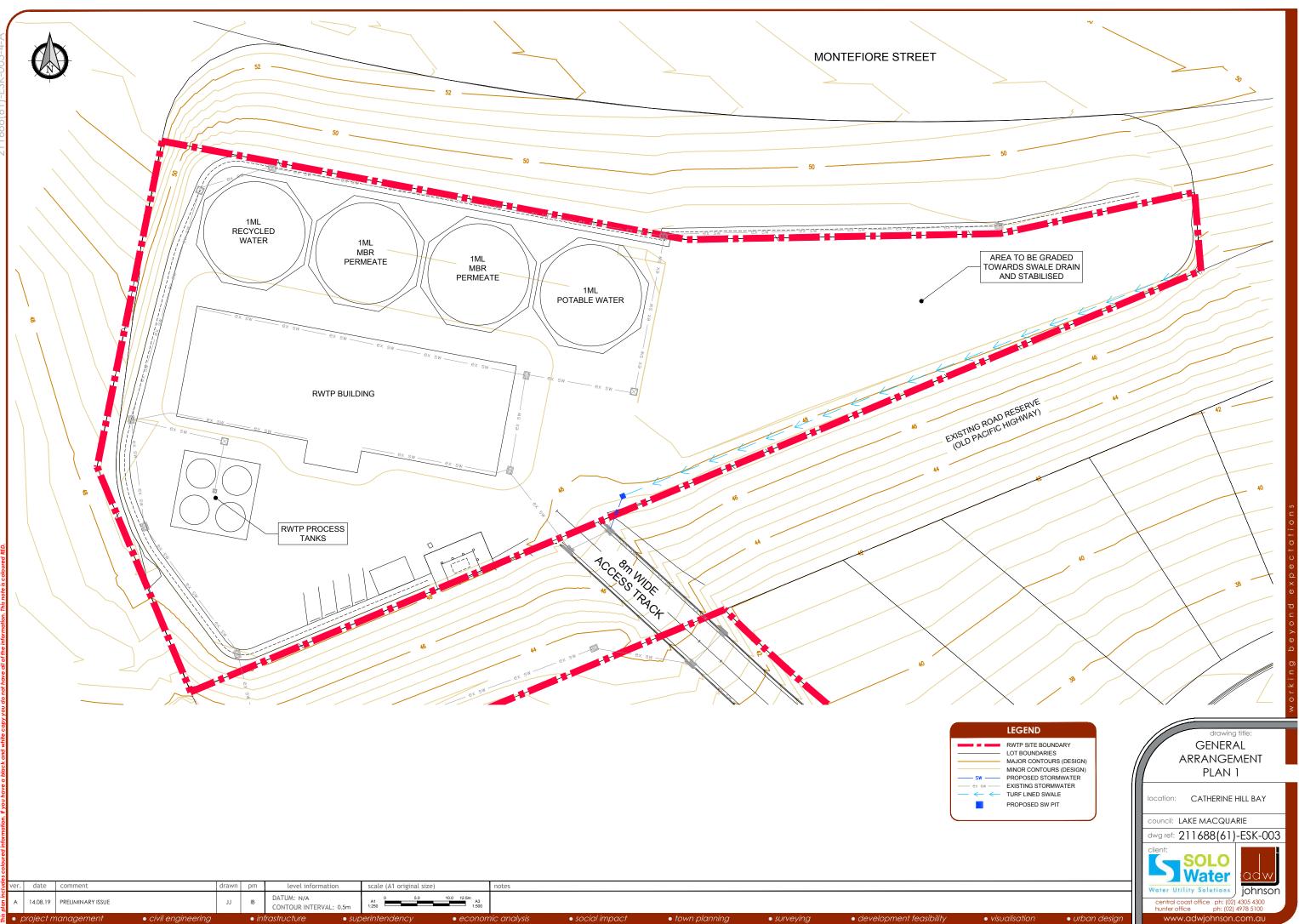
DATUM

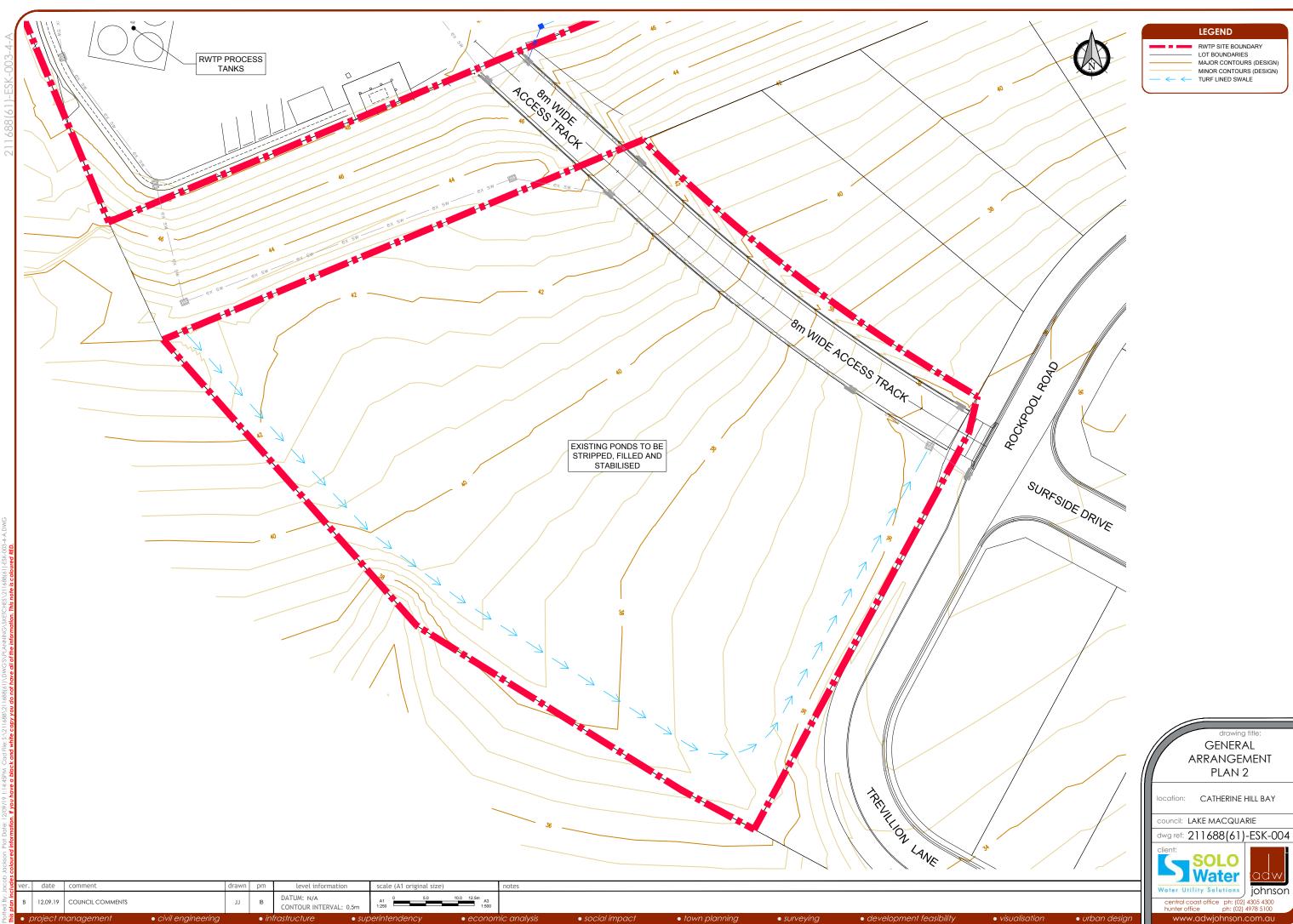
SURVEYED

ADWJ

PROJECT No. 11688(13 A.H.D.




RWTP SITE BOUNDARY
LOT BOUNDARIES
MAJOR CONTOURS (NATURAL)
MINOR CONTOURS (NATURAL)



central coast office ph: (02) 4305 4300 hunter office ph: (02) 4978 5100 www.adwjohnson.com.au

11688(61)-ESK-002-A	AB AB AB AB AB AB AB AB AB AB
: Jacob Jackson Plot Date: 12/09/19 1:14:41PM Cad File: S.Y.211688(1)\DWGS/PLANNING/SKEFCHES/211688(61)=EK:002-A.DWG ncludes coloured information. If you have a black and while copy you do not have all of the information. This note is coloured RED.	
otted By is plan ir	B 12.09.19 COUNCIL COMMENTS JJ IB DATUM: N/A CONTOUR INTERVAL: 0.5m A1 12.5 250m A3 • project management • civil engineering • infrastructure • superintendency • economic analysis • social impact • town planning • surveying • development feasibility

adw

visualisation

211688211688661/DWGSSPELANNINGSSRECHES/211688611-E8K-005-ADWG copy you do not have all of the information. This note is coloured RED.		34				AB 50 MONTEFIORE STREET 50 50 50 50 50 50 50 50 50 50	NO 30 30 30 30 AD
in C	ver. date comment B 12.09.19 COUNCIL COMMENTS		m level information B DATUM: N/A CONTOUR INTERVAL: 0.5m	scale (A1 original size)	notes		

r				
1		D (+ FILL		
Lower	value	Upper v	alue	Colour
-1	to	-0.5	m	
-0.5	to	0	m	
0	to	0.5	m	
0.500	to	1	m	
1	to	1.5	m	
1.5	to	2	m	
2	to	2.5	m	
2.5	to	3	m	
3	to	3.5	m	
3.5	to	4	m	
4	to	5	m	

LEGEND

NOTE: EARTHWORKS EXTENTS HAVE BEEN CALCULATED BASED ON EXISTING APPROVED DESIGN TO NEW DESIGN SURFACE

drawing title:

CUT/FILL PLAN

Water Industry Competition Act 2006 (NSW)

Grant of network operator's licence Licence no. 16_035

I, The Hon. Niall Blair MLC, Minister for Lands and Water, under section 10 of the Water Industry Competition Act 2006 (NSW), grant a network operator's licence to:

Catherine Hill Bay Water Utility Pty Ltd (ACN 163 381 922)

to construct, maintain and operate water industry infrastructure, subject to:

- (i) the conditions imposed by the Water Industry Competition Act 2006 (NSW);
- (ii) the conditions imposed by clause 9 and set out in Parts 1, 2 and 3 of Schedule 1 to the Water Industry Competition (General) Regulation 2008 (NSW);
- (iii) the conditions imposed by the Minister in the attached Schedule A, being special Ministerially-imposed licence conditions for Catherine Hill Bay Water Utility Pty Ltd's network operator's licence; and
- (iv) the conditions imposed by the Minister in the attached Schedule B, being standard Ministerially-imposed licence conditions for all licensed network operators.

Dated this 22 nd

Minister for Lands and Water day of March 2016

NEW SOUTH WALES GOVERNMENT

WATER INDUSTRY COMPETITION ACT 2006 (NSW)

NETWORK OPERATOR'S LICENCE

Catherine Hill Bay Water Utility Pty Ltd

(ACN 163 381 922)

LICENCE SCOPE

ACTIVITIES AUTHORISED UNDER THE LICENCE AND AREA OF OPERATIONS

S1 Activities authorised - non-potable water

- S1.1 This Licence authorises the Licensee and any authorised persons specified in Table 1.1 to construct, maintain and operate the water industry infrastructure which is specified in Table 1.2, and is substantially consistent with the water industry infrastructure described in the Review of Environmental Factors:
 - a) for one or more of the authorised purposes specified in Table 1.3; and
 - b) within the area of operations specified in Table 1.4,

subject to the conditions imposed by or under the Act, the Regulation and this Licence.

Table 1.1 Authorised persons

Solo Water Pty Ltd (ACN 160 013 614)

Table 1.2 Water industry infrastructure

- 1) A treatment plant for non-potable water and other water infrastructure used, or to be used, in connection with the treatment plant, where components of the treatment plant or the other water infrastructure may also be used for one or more of the following:
 - a) production of non-potable water;
 - b) treatment of non-potable water;
 - c) filtration of non-potable water;
 - d) storage of non-potable water; and
 - e) conveyance of non-potable water.
- 2) A reticulation network for non-potable water and other water infrastructure used, or to be used, in connection with the reticulation network, where components of the reticulation network or the other water infrastructure may also be used for one or more of the following:
 - a) storage of non-potable water;
 - b) conveyance of non-potable water; and
 - c) treatment of non-potable water.

Table 1.3 Authorised purposes

Toilet flushing, laundry machine cold water connection, irrigation of private lots and footpaths, outdoor cleaning and washdown (including car and bin washing).

Table 1.4 Area of operations

Lot 100 DP1129872, Lot 101 DP1129872, Lot 106 DP1129872, Lot 1 DP1141989, Lot 1 DP1129299, Lot 103 DP1194707, Lot 101 DP1194707, Lot 102 DP1194707, Lot 213 DP883941, Lot 1 Section I DP163, Lot 1 Section K DP163, Flowers Drive Road Reserve, and Montefiore Street Road Reserve, Catherine Hill Bay.

S2 Activities authorised – drinking water

- S2.1 This Licence authorises the Licensee and any authorised persons specified in Table 2.1 to construct, maintain and operate the water industry infrastructure which is specified in Table 2.2, and is substantially consistent with the water industry infrastructure described in the Review of Environmental Factors:
 - a) for the authorised purposes specified in Table 2.3; and

b) within the area of operations specified in Table 2.4,

subject to the conditions imposed by or under the Act, the Regulation and this Licence.

Table 2.1 Authorised persons

Solo Water Pty Ltd (ACN 160 013 614)

Table 2.2 Water industry infrastructure

A reticulation network for drinking water and other water infrastructure used, or to be used, in connection with the reticulation network, where components of the reticulation network or the other water infrastructure may also be used for one or more of the following:

- a) storage of drinking water;
- b) conveyance of drinking water; and
- c) treatment of drinking water.

Table 2.3 Authorised purposes

Drinking water and fire water

Table 2.4 Area of operations

- (a) The area of the transfer pump station on Lot 12 DP598580 and Lot 13 DP598580.
- (b) The area of the transfer pipeline on Lot 649 DP1027231, Lot 204 DP1164883, Lot 12 DP1180296, Lot 145 DP755266, Lot 105 DP1129872, Lot 100 DP1129872, Lot 101 DP1129872, Kanangra Drive, Pacific Highway Road Reserve, Montefiore Street Road Reserve, Catherine Hill Bay.
- (c) Lot 100 DP1129872, Lot101 DP1129872, Lot 106 DP1129872, Lot 1 DP1141989, Lot 1 DP1129299, Lot 103 DP1194707, Lot 101 DP1194707, Lot 102 DP1194707, Lot 213 DP883941, Lot 1 Section I DP163, Lot 1 Section K DP163, Flowers Drive Road Reserve, and Montefiore Street Road Reserve, Catherine Hill Bay.

S3 Activities authorised – sewerage services

- S3.1 This Licence authorises the Licensee and any authorised persons specified in Table 3.1 to construct, maintain and operate the water industry infrastructure which is specified in Table 3.2, and is substantially consistent with the water industry infrastructure described in the Review of Environmental Factors:
 - a) for one or more of the authorised purposes specified in Table 3.3; and
 - b) within the area of operations specified in Table 3.4,

subject to the conditions imposed by or under the Act, the Regulation and this Licence.

Table 3.1 Authorised persons

Solo Water Pty Ltd (ACN 160 013 614)

Table 3.2 Water industry infrastructure

- 1) A treatment plant for sewage and other sewerage infrastructure used, or to be used, in connection with the treatment plant, where components of the treatment plant or the other sewerage infrastructure may also be used for one or more of the following:
 - a) production of treated non-potable water from sewage;
 - b) treatment of sewage;
 - c) filtration of sewage;
 - d) storage of sewage; and
 - e) conveyance of sewage.
- 2) A reticulation network for sewage and other sewerage infrastructure used, or to be used, in connection with the reticulation network, where components of the reticulation network or the other sewerage infrastructure may also be used for one or more of the following:
 - a) storage of sewage; and
 - b) conveyance of sewage.

Table 3.3 Authorised purposes

Sewage collection, transport, treatment, effluent transfer to non-potable water system

Table 3.4 Area of operations

Lot 100 DP1129872, Lot 101 DP1129872, Lot 106 DP1129872, Lot 1 DP1141989, Lot 1 DP1129299, Lot 103 DP1194707, Lot 101 DP1194707, Lot 102 DP1194707, Lot 213 DP883941, Lot 1 Section I DP163, Lot 1 Section K DP 163, Flowers Drive Road Reserve, and Montefiore Street Road Reserve, Catherine Hill Bay.

INTERPRETATION AND DEFINITIONS

Interpretation

In this Licence, unless the context requires otherwise:

- (i) the singular includes the plural and vice versa;
- (ii) headings are used for convenience only and do not affect the interpretation of this Schedule A;
- (iii) a reference to a document includes the document as modified from time to time and any document replacing it;
- (iv) a reference to a person includes a natural person and any body or entity whether incorporated or not;
- (v) a reference to a clause is to a clause in this Schedule A;
- (vi) a reference to a schedule is to a schedule to this Licence;
- (vii) a reference to a law or statute includes regulations, rules, codes and other instruments under it, and consolidations, amendments, re-enactments or replacements of them; and
- (viii) explanatory notes do not form part of this Licence, but in the case of uncertainty may be relied on for interpretation purposes.

Definitions

Expressions used in this Licence that are defined in the Act or the Regulation have the meanings set out in the Act or the Regulation.

In this Licence:

Act	means the Water Industry Competition Act 2006 (NSW).
Agreement	means any agreement or deed provided to IPART in connection with the Licensee's application for this Licence.
Appropriate Facilities	means a facility or facilities with the capacity to accept excess recycled water or excess sewage from the Water Industry Infrastructure specified in clause S1 and Table 1.2 and clause S3 and Table 3.2, including during wet weather periods.
Construction Environmental Management Plan (CEMP)	means a site or project specific plan which, in relation to construction works:
	 (a) complies with the basic structure detailed in the "Guideline for the Preparation of Environmental Management Plans", Department of Infrastructure, Planning and Natural Resources (2004); and (b) identifies the environmental risks associated with the licensed activities and the mitigation measures to be implemented.
IPART	means the Independent Pricing and Regulatory Tribunal of New South Wales established under the <i>Independent Pricing and Regulatory Tribunal Act</i> 1992 (NSW).
Licence	means this network operator's licence granted under section 10 of the Act.

Licensee	means Catherine Hill Bay Water Utility Pty Ltd (ACN 163 381 922)
Minister	means the Minister responsible for Part 2 of the Act.
Operational Environmental Management Plan (OEMP)	means a site or project specific plan which, in relation to the operational phase:
	 (a) complies with the basic structure detailed in the "Guideline for the Preparation of Environmental Management Plans", Department of Infrastructure, Planning and Natural Resources (2004); and (b) identifies the environmental risks associated with the licensed activities and the mitigation measures to be implemented.
Review of Environmental Factors (REF)	means the Review of Environmental Factors for the proposed sewage treatment plant and sewage and recycled water reticulation systems (prepared for IPART by Planit Consulting Pty Ltd, August 2015).
Reporting Manual	means the document entitled "Network Operator's Reporting Manual" which is prepared by IPART and is available on IPART's website at <u>www.ipart.nsw.gov.au</u> .
Regulation	means the Water Industry Competition (General) Regulation 2008 (NSW).

SCHEDULE A - SPECIAL MINISTERIALLY-IMPOSED LICENCE CONDITIONS FOR CATHERINE HILL BAY WATER UTILITY PTY LTD'S NETWORK OPERATOR'S LICENCE

This schedule sets out the conditions which the Minister imposes pursuant to section 13(1)(b) of the Act. In addition to these special Ministerially-imposed conditions, the Licence is subject to conditions imposed by the Act, the Regulation and the standard Ministerially-imposed licence conditions set out in Schedule B. The Minister may vary the conditions in this schedule or impose new conditions, provided there is no inconsistency with the conditions imposed by the Act or the Regulation.

- A1 If a party to an Agreement proposes to:
 - a) terminate the Agreement;
 - b) novate the Agreement;
 - c) assign or transfer any of its rights or obligations under the Agreement to any other person; or
 - d) alter the Agreement in any way that materially reduces the Licensee's technical, financial or organisational capacity to carry out the activities authorised by this Licence,

the Licensee must provide IPART with written notice as soon as practicable, but no later than 3 months, before the time when the proposed action is to occur. The written notice must include details of how the service provided under the Agreement will be provided subsequent to the proposed termination, novation, assignment, transfer or alteration.

- A2 The Licensee is to implement environmental mitigation measures substantially consistent with the environmental risk mitigation measures identified in:
 - a) the Review of Environmental Factors (**REF**) in carrying out any activities authorised under clause S1 and S3 of this Licence.
- A3 The Licensee must not commence, or authorise the commencement of, construction of any water industry infrastructure which is:
 - a) described in Clause S1 and Table 1.2; and
 - b) described in Clause S3 and Table 3.2.

(Relevant Recycling Infrastructure)

until after the Licensee has provided IPART with a Construction Environmental Management Plan (**CEMP**), and IPART has provided written approval of the CEMP to the Licensee.

- A4 In addition to any requirements imposed by or under the Act or the Regulation, the Licensee must not commence commercial operation of, or authorise commercial operation of, the Relevant Recycling Infrastructure until the Licensee has provided:
 - a) a report addressing how the environmental mitigation measures identified in the CEMP have been implemented during the design and construction of the Relevant Recycling Infrastructure (**Report**); and
 - b) an Operational Environmental Management Plan (OEMP),

to IPART, and IPART has provided written approval of the Report and the OEMP to the Licensee.

A5 The Licensee must operate and maintain the Relevant Recycling Infrastructure consistently with the OEMP.

- A6 If the Licensee proposes to vary its environmental mitigation measures referred to in clause A2, it must first notify IPART in accordance with the Reporting Manual. The Licensee must not vary its environmental mitigation measures without the prior written approval of IPART.
- A7 As at the date of this Licence, the Licensee must have an unconditional bank guarantee executed in its favour which is:
 - a) for a value of \$2.5 million (two million and five hundred thousand dollars); and
 - b) for a term of at least five years from the day of the grant of this Licence (and such further term as directed in writing by the Minister),

and provide a certified copy of the bank guarantee to the Minister or IPART on request.

- A8 The Licensee must not commence, or authorise the commencement of, construction of any water industry infrastructure described in clause S1.1 and Table 1.2 paragraph (1) until:
 - (a) the Licensee has provided IPART a report prepared by a suitably qualified environmental consultant on the Licensee's proposed strategy of tankering out excess non-potable water as set out in its REF. The report should include:
 - modelling of truck movements during significant wet weather events or periods in the 10 year period prior to the grant of this Licence at times when irrigation would not have been undertaken;
 - an estimation of the costs of trucking during those wet weather events or periods;
 - iii) identification of Appropriate Facilities that have the capacity to accept excess recycled water (including during wet weather periods);
 - iv) evidence of agreements with the Appropriate Facilities setting out the arrangements for accepting excess non-potable water; and
 - v) confirmation that the configuration and size of the non-potable water storage tanks (as described in the REF) is adequate for the activities authorised by the Licence or, if the configuration or size of the non-potable water storage tanks is not considered adequate, advice as to any changes required to the configuration or size of the non-potable water storage tanks; and
 - (b) IPART has provided written approval of the report.

A9 Before the Licensee brings the Water Industry Infrastructure described in Table 3.2 into commercial operation, the Licensee must provide written evidence of the following to IPART:

- a) details of Appropriate Facilities that have the capacity to accept excess sewage; and
- b) evidence of agreements with the Appropriate Facilities setting out the arrangements for accepting excess sewage,

and the Licensee must obtain IPART's written approval.

SCHEDULE B - STANDARD MINISTERIALLY-IMPOSED LICENCE CONDITIONS FOR ALL LICENSED NETWORK OPERATORS UNDER THE ACT

This schedule sets out the standard conditions which the Minister imposes on the Licensee and all other licensed network operators pursuant to section 13(1)(b) of the Act. In addition to these standard Ministerially-imposed conditions, the Licensee is subject to obligations imposed by the Act, the Regulation and the special Ministerially-imposed licence conditions set out in Schedule A. The Minister may vary the conditions in this schedule or impose new conditions, provided there is no inconsistency with the conditions imposed on the Licensee by the Act or the Regulation.

B1 Ongoing capacity to operate

B1.1 The Licensee must have the technical, financial and organisational capacity to carry out the activities authorised by this Licence. If the Licensee ceases to have this capacity, it must report this to IPART immediately in accordance with the Reporting Manual.

B2 Obtaining appropriate insurance

- B2.1 Before commencing to commercially operate the Specified Water Industry Infrastructure under this Licence, the Licensee must:
 - a) obtain insurance that is appropriate for the size and nature of the activities authorised under this Licence;
 - b) provide a copy of each certificate of currency of the insurance obtained to IPART; and
 - c) demonstrate that the insurance obtained is appropriate for the size and nature of the activities authorised under this Licence by providing a report to IPART from an Insurance Expert that:
 - i) certifies that in the Insurance Expert's opinion, the type and level of the insurance obtained by the Licensee is appropriate for the size and nature of the activities authorised under the Licence; and
 - ii) is in the form prescribed by the Reporting Manual.

B2.2 [Not applicable]

B3 Maintaining appropriate insurance

- B3.1 The Licensee must maintain insurance that is appropriate for the size and nature of the activities authorised under this Licence.
- B3.2 The Licensee must provide a copy of each certificate of currency of the insurance maintained by the Licensee to IPART in accordance with the Reporting Manual.
- B3.3 If there is to be a change in:
 - a) the insurer or underwriting panel in respect of an insurance policy held by the Licensee; or
 - b) the type, scope or limit on the amount of insurance held by the Licensee,

in relation to the activities authorised under this Licence, the Licensee must provide a report to IPART in accordance with the Reporting Manual.

B3.4 From time to time when requested in writing by IPART, the Licensee must provide a report to IPART, in the manner, form and time specified by IPART, from an Insurance Expert certifying that in the Insurance Expert's opinion the type, scope or limit on the amount of the insurance held by the Licensee is appropriate for the size and nature of the activities authorised under this Licence.

[Note: The circumstances in which IPART may request a report under clause B3.4 include (but are not limited to) the following:

- where IPART has reason to believe that there may be a change in the type, scope or limit on the amount of insurance held by the Licensee in relation to activities authorised under this Licence;
- where there is a change in the type or extent of activities authorised under this Licence; or
- where IPART or an approved auditor has reason to believe that the type, scope or limit on the amount of insurance held by the Licensee may not be appropriate for the size and nature of the activities authorised under this Licence.]
- B3.5 The Licensee must maintain professional indemnity insurance during the Design Phase and for a minimum period of 6 years from the date of the completion of the Design Phase.

B4 Complying with NSW Health requirements

- B4.1 The Licensee must carry out the activities authorised by this Licence in compliance with any requirements of NSW Health that:
 - a) IPART has agreed to; and
 - b) are notified from time to time to the Licensee by IPART in writing.

B5 Complying with Audit Guidelines from IPART

B5.1 The Licensee must comply with any Audit Guidelines issued by IPART.

B6 Reporting in accordance with the Reporting Manual

B6.1 The Licensee must prepare and submit reports in accordance with the Reporting Manual.

B7 Reporting information in relation to the Register of Licences

- B7.1 Within 14 days of any change in relation to the following, the Licensee must notify IPART, and provide details, of the change in accordance with the Reporting Manual:
 - a) any source from which the water handled by the Specified Water Industry Infrastructure is derived;
 - b) the Authorised Purposes of the water handled by the Specified Water Industry Infrastructure;
 - c) the identity of each licensed retail supplier or public water utility that has access to the infrastructure services provided by the Specified Water Industry Infrastructure for the purpose of supplying water to its customers;
 - d) any other water infrastructure to which the Specified Water Industry Infrastructure is connected;
 - e) the identity of each licensed retail supplier or public water utility that has access to infrastructure services provided by the Specified Water Industry Infrastructure for the purpose of providing sewerage services to its customers;
 - f) any other sewerage infrastructure to which the Specified Water Industry Infrastructure is connected;
 - g) the arrangements for the disposal of waste from the Specified Water Industry Infrastructure.

B8 Monitoring

- B8.1 The Licensee must undertake any monitoring that is required for the purposes of this Licence, any Plan, the Act or the Regulation in accordance with this clause B8.
- B8.2 The Licensee must keep the following records of any samples taken for monitoring purposes specified in the Water Quality Plan:
 - a) the date on which the sample was taken;
 - b) the time at which the sample was collected;
 - c) the point or location at which the sample was taken; and
 - d) the chain of custody of the sample (if applicable).
- B8.3 The Licensee must ensure that analyses of all samples taken for the purposes of Verification Monitoring are carried out by a laboratory accredited for the specified tests by an independent body that is acceptable to NSW Health, such as the National Association of Testing Authorities or an equivalent body.

B9 Provision of copy of Plan

B9.1 Whenever the Licensee makes a significant amendment to a Plan, the Licensee must provide a copy of the amended Plan to IPART at the same time that it provides a copy to the approved auditor engaged to prepare a report as to the adequacy of the amended Plan, as required under the Regulation.

B10 Delineating responsibilities – interconnections

- B10.1 If a code of conduct has not been established under reg 25 of the Regulation, the Licensee must (by a date specified by IPART) establish a code of conduct (Licensee's Code of Conduct) in accordance with this clause B10.
- B10.2 The Licensee's Code of Conduct must set out the respective responsibilities of:
 - a) the Licensee; and
 - b) each licensed network operator, licensed retail supplier and/or public water utility that:
 - (i) supplies water or provides sewerage services by means of, or
 - (ii) constructs, maintains or operates any water industry infrastructure that is connected to the Specified Water Industry Infrastructure,

by, at a minimum, providing for:

- c) who is responsible for repairing, replacing or maintaining any pipes, pumps, valves, storages or other infrastructure connecting the Specified Water Industry Infrastructure to the other water industry infrastructure;
- d) who is responsible for water quality;
- e) who is liable in the event of the unavailability of water;
- f) who is liable in the event of failure of the Specified Water Industry Infrastructure;
- g) the fees and charges payable in respect of the use of the Specified Water Industry Infrastructure; and
- h) who is responsible for handling customer complaints.

- B10.3 Before the Licensee brings the Specified Water Industry Infrastructure into commercial operation or by a later date specified by IPART (if any), the Licensee's Code of Conduct must be agreed in writing between the Licensee and the other licensed network operators, licensed retail suppliers and/or public water utilities referred to in clause B10.2.
- B10.4 [Not applicable]
- B10.5 The Licensee must not contravene the Licensee's Code of Conduct to the extent that it makes the Licensee responsible or liable for the matters set out in it.

B11 Notification of changes to end-use

B11.1 If the Licensee proposes to operate the Specified Water Industry Infrastructure to supply water for an end-use which is not set out in the most recent Water Quality Plan provided to IPART, the Licensee must notify IPART in writing at least 3 months before commencing such operation.

B12 Notification of changes to Authorised Person

B12.1 If an Authorised Person ceases, proposes to cease, or receives notification to cease providing any of the services relating to the activities authorised by this Licence, the Licensee must provide IPART with written notice as soon as practicable but no later than 28 days before the date of cessation of the services. The written notice must include details of how the services previously undertaken by the Authorised Person will continue to be undertaken.

B13 Notification of commercial operation

- B13.1 This clause B13 applies each time the Licensee has brought any of the Specified Water Industry Infrastructure into commercial operation.
- B13.2 The Licensee must:
 - a) notify IPART in accordance with the Reporting Manual that it has brought the relevant Specified Water Industry Infrastructure into commercial operation; and
 - b) provide such notification within 10 days after it has brought the relevant Specified Water Industry Infrastructure into commercial operation.

INTERPRETATION AND DEFINITIONS

Interpretation

In this Schedule B, unless the context requires otherwise:

- (i) the singular includes the plural and vice versa;
- (ii) headings are used for convenience only and do not affect the interpretation of this Schedule B;
- (iii) a reference to a document includes the document as modified from time to time and any document replacing it;
- (iv) a reference to a "person" includes a natural person and any body or entity whether incorporated or not;
- (v) a reference to a clause is to a clause in this Schedule B;
- (vi) a reference to a schedule is to a schedule to this Licence;

- (vii) a reference to a law or statute includes regulations, rules, codes and other instruments under it, and consolidations, amendments, re-enactments or replacements of them; and
- (viii) explanatory notes do not form part of this Licence, but in the case of uncertainty may be relied on for interpretation purposes.

Definitions

Expressions used in this Schedule B that are defined in the Act or the Regulation have the meanings set out in the Act or the Regulation.

In this Schedule B:

Audit Guidelines	means the document entitled "Audit Guideline – Water Industry Competition Act 2006" which is prepared by IPART and is available on IPART's website at <u>www.ipart.nsw.gov.au</u> , and any other guidelines issued by IPART in relation to audits under the Act.
Authorised Person	 means the authorised persons specified in, as applicable: (i) Licence Scope, clause S1, Table 1.1; (ii) Licence Scope, clause S2, Table 2.1; and (iii) Licence Scope, clause S3, Table 3.1.
Authorised Purposes	 means the authorised purposes specified in, as applicable: (i) Licence Scope, clause S1, Table 1.3; (ii) Licence Scope, clause S2, Table 2.3; and (iii) Licence Scope, clause S3, Table 3.3.
Design Phase	means the period during which any design works are carried out in relation to the water industry infrastructure that the Licensee is authorised to construct, maintain and operate under this Licence.
Insurance Expert	means an insurance broker which holds an Australian financial services licence under Part 7.6 of the <i>Corporations Act 2001</i> (Cth) that authorises the broker to provide financial product advice for, and deal in, contracts of insurance within the meaning of Chapter 7 of that Act.
Licensee's Code of Conduct	has the meaning given in clause B10.1.
NSW Health	means the Water Unit of NSW Ministry of Health and any of the local health districts as defined by the NSW Ministry of Health.
Plan	means any infrastructure operating plan, water quality plan or sewage management plan that the Licensee is required to prepare under the Regulation.
Specified Area of Operations	 means the area of operations specified in, as applicable: (i) Licence Scope, clause S1, Table 1.4; (ii) Licence Scope, clause S2, Table 2.4; and (iii) Licence Scope, clause S3, Table 3.4.
Specified Water Industry	means the water industry infrastructure specified in, as applicable: (i) Licence Scope, clause S1, Table 1.2;

Infrastructure	(ii) Licence Scope, clause S2, Table 2.2; and
	(iii) Licence Scope, clause S3, Table 3.2.
Verification	means verification monitoring as described in the document entitled
Monitoring	"Australian Drinking Water Guidelines" or the document entitled
	"Australian Guidelines for Water Recycling" as the case may be.
Water Quality Plan	means the water quality plan that the Licensee is required to prepare under the Regulation.

Water Industry Competition Act 2006 (NSW)

Notice of approval to bring new infrastructure into commercial operation

I, The Hon. Don Harwin, MLC, Minister for Energy and Utilities, under clause 2 of Schedule 1 to the *Water Industry Competition (General) Regulation 2008* (NSW) (**Regulation**), approve Catherine Hill Bay Water Utility Pty Ltd (ACN 163 381 922) (**CHBWU**) to bring into commercial operation, all new infrastructure which:

- a) is infrastructure to which CHBWU's network operator's licence (licence no. 16_035) (Licence) applies;
- b) existed as at 25 November 2018; and
- c) is of the kind described in Tables 1.2 and 3.2 of the Licence.

I have considered the request from CHBWU for this approval, as well as the following report, which was prepared by an 'approved auditor' within the meaning of the Regulation.

a) "Catherine Hill Bay Water Utility: New Infrastructure Audit Report (Stage 2 Scheme), dated 25 November 2018, (included as **Attachment A**).

I am satisfied that the report indicates that the new infrastructure:

- a) complies with the requirements of the Regulation and the conditions of the Licence; and
- b) is capable of operating safely and in accordance with CHBWU's infrastructure operating plan and water (non-potable) quality plan.

lens

The Hon. Don Harwin, MLC Minister for Energy and Utilities

Dated this 13th day of December 20/8

Water Industry Competition Act 2006 (NSW)

Notice of approval to bring new infrastructure into commercial operation

I, The Hon. Don Harwin, MLC, Minister for Energy and Utilities, under clause 2 of Schedule 1 to the *Water Industry Competition (General) Regulation 2008* (NSW) (**Regulation**), approve Catherine Hill Bay Water Utility Pty Ltd (ACN 163 381 922) (**CHBWU**) to bring into commercial operation, all new infrastructure which:

- a) is infrastructure to which CHBWU's network operator's licence (licence no. 16 035) (Licence) applies;
- b) existed as at 25 November 2018; and
- c) is of the kind described in Table 2.2 of the Licence.

I have considered the request from CHBWU for this approval, as well as the following report, which was prepared by an 'approved auditor' within the meaning of the Regulation.

a) "Catherine Hill Bay Water Utility: New Infrastructure Audit Report (Stage 2 Scheme), dated 25 November 2018, (included as **Attachment A**).

I am satisfied that the report indicates that the new infrastructure:

- a) complies with the requirements of the Regulation and the conditions of the Licence; and
- b) is capable of operating safely and in accordance with CHBWU's infrastructure operating plan and water quality plan (drinking water).

The Hon. Don Harwin, MLC Minister for Energy and Utilities

Dated this 18th day of Janay 2019

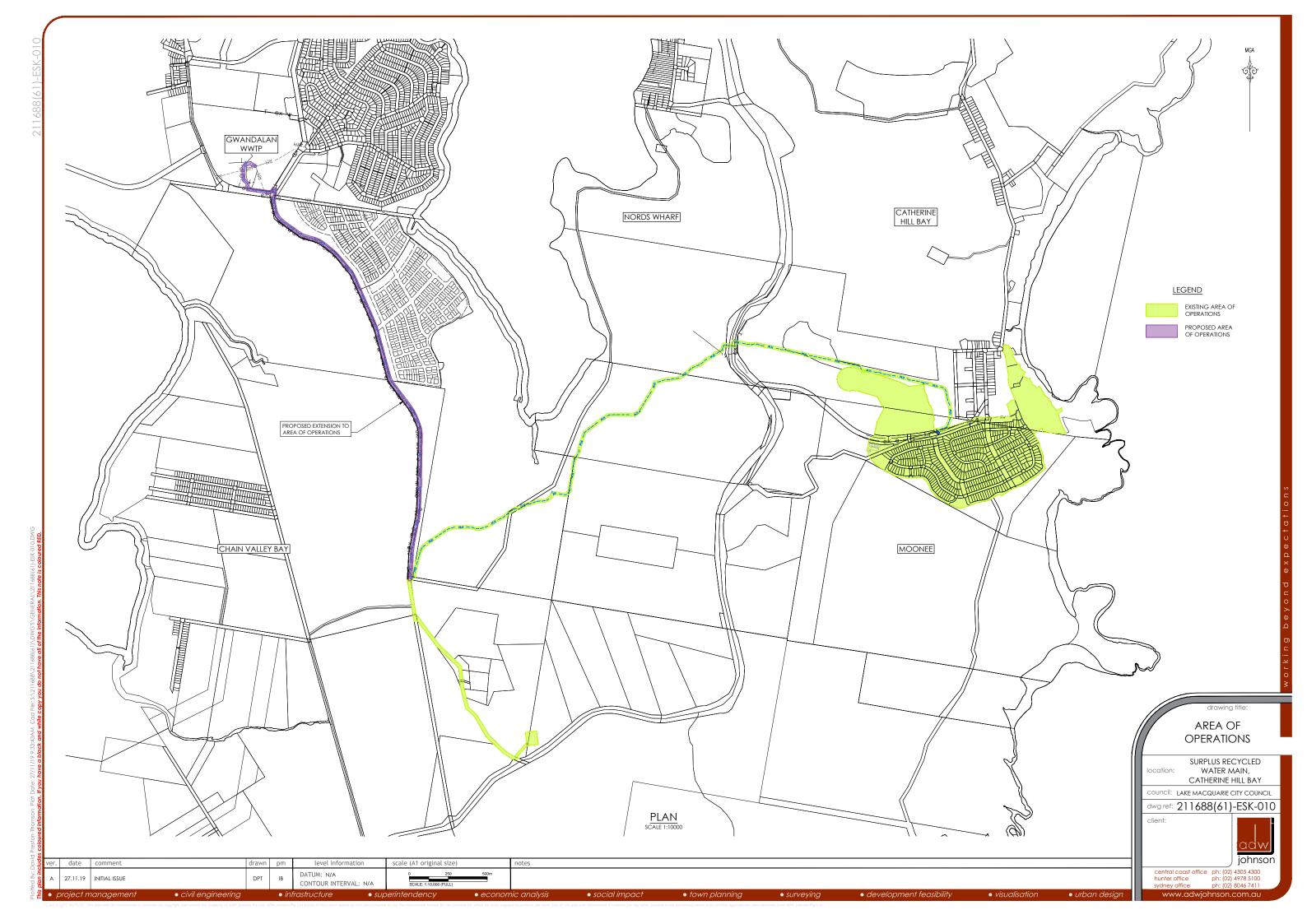
Water Industry Competition Act 2006 (NSW)

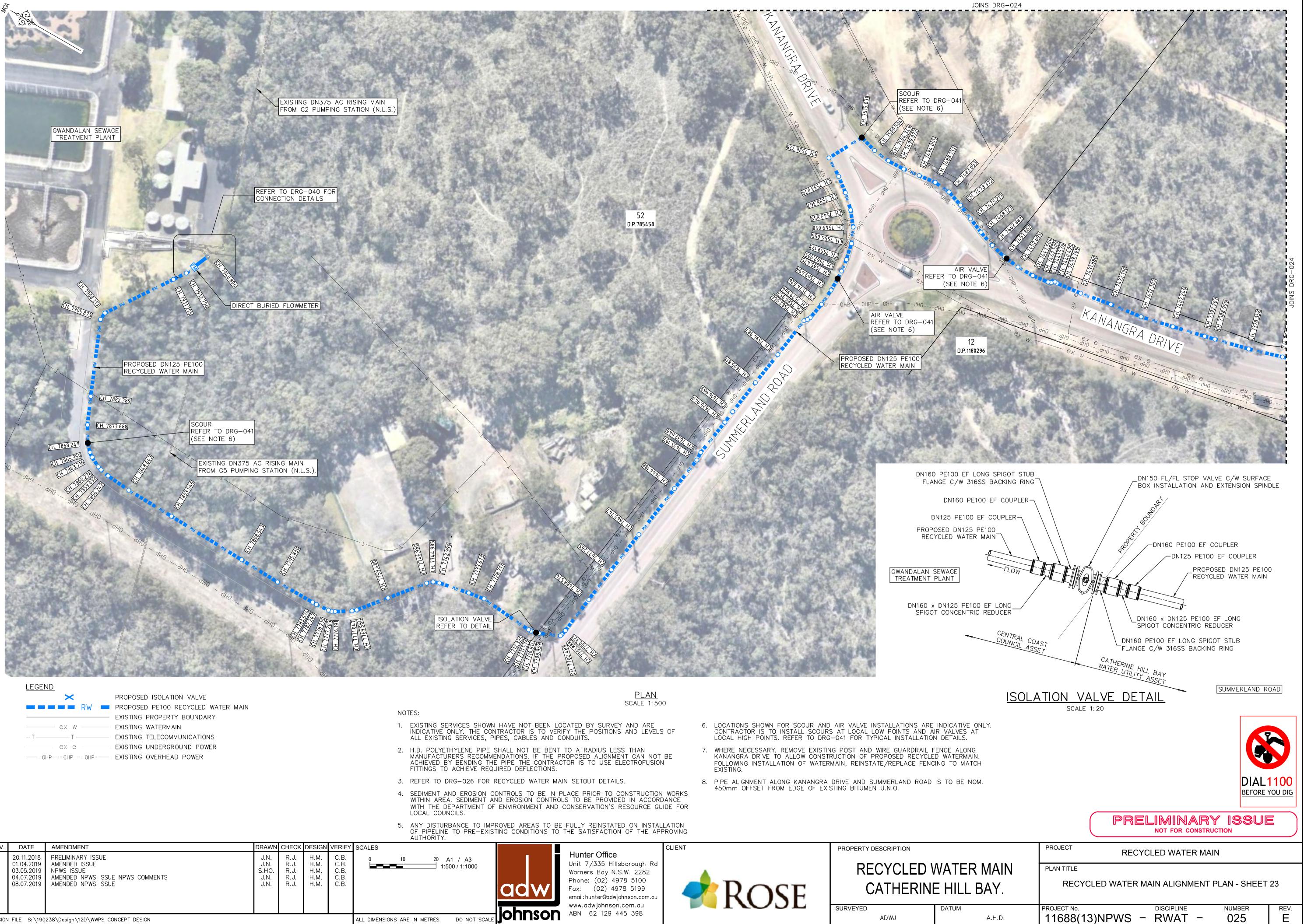
Notice of approval to bring new infrastructure into commercial operation

I, The Hon. Donald Harwin, MLC, Minister for Energy and Utilities, under clause 2 of Schedule 1 to the *Water Industry Competition (General) Regulation 2008* (NSW) (**Regulation**), approve Catherine Hill Bay Water Utility Pty Ltd (ACN 163 381 922) (**CHBWU**) to bring into commercial operation, all new infrastructure which:

- a) is infrastructure to which CHBWU's network operator's licence (licence no. 16_035) (Licence) applies;
- b) existed as at 4 July 2017; and
- c) is of the kind described in each of Table 1.2, Table 2.2 and Table 3.2 of the Licence.

I have considered the request from CHBWU for this approval, as well as the following report, which was prepared by an 'approved auditor' within the meaning of the Regulation.

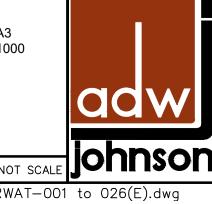

a) "Catherine Hill Bay Water Utility – New Infrastructure Audit", dated August 2017 (included as **Attachment A**).


I am satisfied that the report indicates that the new infrastructure:

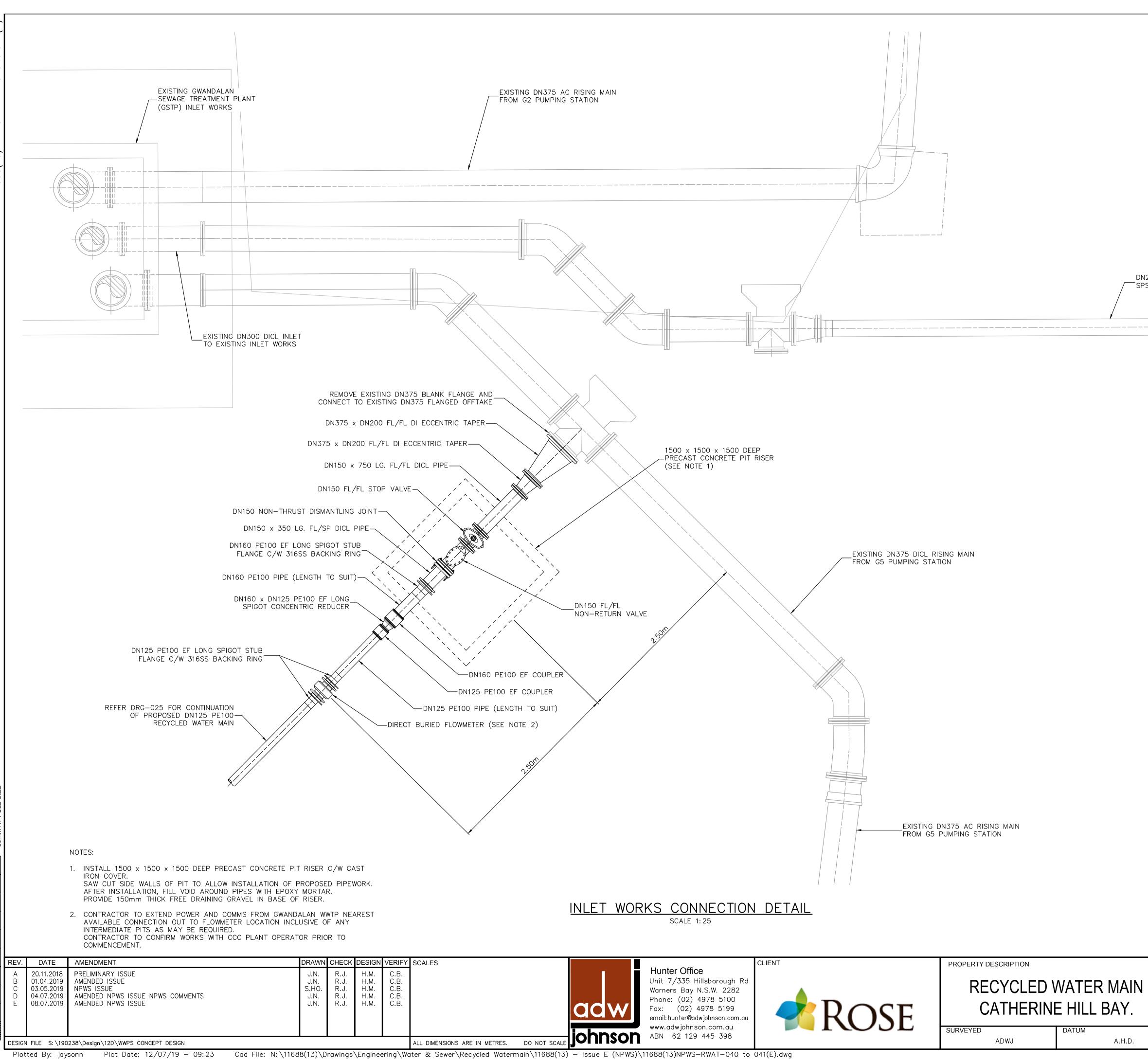
- a) complies with the requirements of the Regulation and the conditions of the Licence; and
- b) is capable of operating safely and in accordance with CHBWU's infrastructure operating plan, water quality plan and sewage management plan.

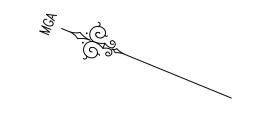
The Hon, Denald Harwin, MLC Minister for Energy and Utilities

Dated this 27th day of Octobe 2017



			RW	
– T ––––	- · ·			
1				
·· OHP	OH	P	- ·· OHP·	


-										THORITY.	IU PR
	REV.	DATE	AMENDMENT	DRAWN	CHECK	DESIGN	VERIFY	SCALES			
Imh	A B C D E	20.11.2018 01.04.2019 03.05.2019 04.07.2019 08.07.2019	PRELIMINARY ISSUE AMENDED ISSUE NPWS ISSUE AMENDED NPWS ISSUE NPWS COMMENTS AMENDED NPWS ISSUE	J.N. J.N. S.HO. J.N. J.N.	R.J. R.J. R.J. R.J. R.J.	H.M. H.M. H.M. H.M. H.M.	C.B. C.B. C.B. C.B. C.B.		10 	1	.1 / A3 00/1:10
Ξ	DESIGN	FILE S: \190	238\Design\12D\WWPS CONCEPT DESIGN					ALL DIMENSION	√S ARE IN	METRES.	DO NO


Plotted By: jaysonn

Plot Date: 12/07/19 - 09:17 Cad File: C:\Users\jaysonn\appdata\local\temp\AcPublish_5844\11688(13)NPWS-RWAT-001 to 026(E).dwg

DN225 PE100 GWANDALAN 9 SPS (GW09) RISING MAIN

> **DIAL1100 BEFORE YOU DIG**

	PRELIMINARY ISSUE	
PROJECT	RECYCLED WATER MAIN	
PLAN TITLE	INLET WORKS CONNECTION DETAILS	
PROJECT No. 11688(13)NPWS - RWAT - 040	EV.

Scheme: Stage: Title: Revision:

Catherine Hill Bay Water Utility RWTP Stage 3 - Surplus Recycled Water Transfer Main Recycled Water Risk Assessment Revision 3.1 22/05/2019

Date:

The Sewerage Risk Assessment covers the sewerage network. The Recycled Water Risk Assessment covers the source water, treatment processes, water quality and the supply of recycled water to end users. Scope:

Ref	Scheme	Hazard	Hazardous Event	Impact		Unmitigated Risk		Control Strategy			Mitigated Ri	k		CCP ?	Comments
-	Component			•••••	Likelihood	Consequence	Risk		Lik	elihood	Consequer		Risk	(Yes/No)	
72	Use of recycled water in construction and maintenance related activities	Pathogens	Construction worker exposure	Pathogen exposure	C Possible	3 Moderate	High	 High quality recycled water is suitable for construction uses. Contractor to develop procedures for using recycled water in construction prior to supply. 	A F	Rare	2 Minor		Low	No	
73	Use of recycled water in construction and maintenance related activities	Nutrients	Over use	Potential nutrient impacts		2 Minor		 Low nutrient concentration do not pose a risk if used appropriately for dust supression and construction water. Contractor to develop procedures for using recycled water in construction prior to supply. 			1 Insignifica		Low	No	
74	Use of recycled water in construction and maintenance related activities	Cross contamination	Use of incorrect tanker truck, e.g. drinking water tanker or wastewater tanker.	Pathogen exposure	C Possible	4 Major	Very High	 High quality recycled water. Contractor to develop procedures for using recycled water in construction prior to supply. 	в	Jnlikely	3 Moderate	Mc	oderate	No	
75	Surplus Recycled Water Transfer Pump Station	Pump Station Failure	Mechanical failure of the pump	Loss of transfer capacity leading to potential overflow from 2 ML storage	D Likely	3 Moderate	High	 Emergency spare pump maintained in stock onsite for quick changeover as required. Conservative design criteria and low pump run hours provides ample time to undertake repairs or replacement of pump if required. SCADA system used to monitor pump health and will automatically raise alarms for all pump fault and fail to start events. Use of the reputable pump manufacturer grundfos. Operate and maintain the pump to manufacturer recommendations. If required during extended failure, road tanker pump out can be used. 	BU	Jnlikely	2 Minor		Low	No	
76	Surplus Recycled Water Transfer Pump Station	Pump Station Failure	Power outage	Loss of transfer capacity leading to potential overflow from 2 ML storage	D Likely	3 Moderate	High	 Power failure detection and alarms included on SCADA systems. Emergency standby generator with auto changeover switch. Conservative design criteria and low pump run hours provides means power can go out for extended periods with minimal impact. 2 ML permeate tank provide substantial storage. If required during extended power outage and generator failure, road tanker pump out can be used. 			2 Minor		Low	No	
77	Surplus Recycled Water Transfer Pump Station	Pump Station Failure	Comm/SCADA outage	Loss of transfer capacity leading to potential overflow from 2 ML storage	D Likely	3 Moderate	High	 Control system designed with local PLC control so the pump will continue to operate during a ccommunications or SCADA failure. Comms outage procedure in IMS requires the operator to udertake additional physical inspection during comms outage. 	в	Jnlikely	2 Minor		Low	No	
78	Surplus Recycled Water Transfer Main	Pathogens	Pathogens present in surplus recycled water	Pathogens discharged to sewer	E Almost certain	1 Insignificant	Low	 Surplus recycled water discharges to sewer hence there is no impact on the environment or any end user. Surplus recycled water is MBR permeate hence under normal operation has no bacteria or protozoa but may contain some viruses. 		Almost certain	1 Insignific	nt	Low	No	
79	Surplus Recycled Water Transfer Main	Nutrients	Nutrients present in surplus recycled water	Nutrients discharged to sewer	E Almost certain	1 Insignificant	Low	 Surplus recycled water discharges to sewer hence there is no impact on the environment or any end user. Surplus recycled water is MBR permeate hence under normal operation contains very low concentrations of nutrients. 		Almost certain	1 Insignific	nt	Low	No	
80	Surplus Recycled Water Transfer Main	Salts	Salts present in surplus recycled water	Salts discharged to sewer	E Almost certain	1 Insignificant	Low	 Surplus recycled water discharges to sewer hence there is no impact on the environment or any end user. Surplus recycled water is MBR permeate from a domestic catchment and has a relatively low salinity in the order of 600 mg/L TDS. 		Almost certain	1 Insignific	nt	Low	No	
81	Surplus Recycled Water Transfer Main	Pipeline failure	Major pipeline failure	Release of surplus recycled water to the environment	C Possible	2 Minor	Moderate	 Surplus recycled water is high quality MBR permeate, hence the impact of any breaks would be minimal due to the high quality of water being transferred. HDPE pipeline with electrofusion welded joints. Design, construction and testing to the WSA01 Water Supply Code of Australia Hunter Water (2011) and WSA03 Polyethylene Pipe Code (2004). Use of a reputable civil contractor with quality system certification to ISO 9001. AL storage at the RWTP site provide ample time to undertake repairs. SCADA system will be used to assist in detection of main breaks via max flow rate alarms, loss of pressure alarms, abnormal run time alarms etc. Routine inspection and maintenance of assets to minimise the potential for failure. 24 hour call centre for reporting of faults from the public if required. 	В	Jnlikely	1 Insignifica	nt	Low	No	
82	Surplus Recycled Water Transfer Main	Pipeline leakage	Minor leaks from air valves, joints, hydrants etc	Minor leakage of surplus recycled water to the environment	D Likely	1 Insignificant	Low	 Surplus recycled water is high quality MBR permeate, hence the impact of any breaks would be minimal due to the high quality of water being transferred. HDPE pipeline with electrofusion welded joints. Design, construction and testing to the WSA01 Water Supply Code of Australia Hunter Water (2011) and WSA03 Polyethylene Pipe Code (2004). Use of a reputable civil contractor with quality system certification to ISO 9001. SCADA system will be used to detect leak by monitoring pump operation and pressure drop during low flow periods. Routine inspection and maintenance of assets to minimise the potential for failure and to identify leaks. 	В	Jnlikely	1 Insignifica	nt	Low	No	
83	Surplus Recycled Water Transfer Main	Excessive volume o surplus recycled water	f Reduced recycled water usage, increased wastewater generation rate or stormwater infiltration	Potential oveflow of surplus recycled water from 2 ML storage	C Possible	3 Moderate	High	 Conservative design flow for the transfer pipeline of approximately 7 L/s allows for the entire daily volume of wastewater without any recycling to be transfer in 12 hours, hence there is substantial spare transfer capacity in the system. 2 ML permeate storage provides substantial storage buffer that can be utilised if required. In an emergency event the system can be supplemented by road tankers, however this is unlikely to be required. 	AF	Rare	2 Minor		Low	No	

Catherine Hill Bay Water Utility

Drinking Water Quality Management Plan Stage 2

> Revision 2.1 September 2019

Revision	Date	Revision Details	Author	Review	Approved
1.0	13/06/17	For Interim Operations	B. Irwin	C. Heininger	B. Irwin
2.0	31/08/18	Updated to incorporate the onsite storage and supply and the RWTP Facility for Stage 2	B. Irwin	C. Heininger	B. Irwin
2.1	20/09/2019	Minor revision	B. Irwin	C. Heininger	B. Irwin

Document Status

Solo Water Pty Ltd

ABN 111 60 013 614

Address:	86-88 Chinderah Bay Drive, Chinderah NSW 2487
Post:	PO Box 1427, Kingscliff NSW 2487
Phone:	1300 7656 98 (1300 SOLO WU)
Internet:	www.solowater.com.au
Email:	info@solowater.com.au

© Solo Water Pty Ltd 2018

This document is and shall remain the property of Solo Water Pty Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1	Intro	oduction	1
	1.1	Background	1
	1.2	Scheme Overview	1
	1.3	Catherine Hill Bay Water Utility Scheme Stages	2
	1.4	Regulatory Framework	3
	1.5	Drinking Water Quality Plan Framework	3
	1.6	Solo Group – Integrated Management System	4
	1.7	DWQP Roles and Responsibility	4
2	Drin	king Water Quality Management Framework	5
	2.1	Element 1 – Commitment to Drinking Water Quality Management	5
	2.1.1	Responsible supply of Drinking Water	5
	2.1.2	Drinking Water Quality Management Policy	5
	2.1.3	Regulatory and Formal Requirements	6
	2.1.4	Engaging Stakeholders	6
	2.2	Element 2 – Assessment of the Drinking Water Supply System	7
	2.2.1	Water Supply System Analysis	7
	2.2.2	Assessment of Water Quality Data	10
	2.2.3	Hazard Identification and Risk Assessment	11
	2.3	Element 3 – Preventive Measures for Drinking Water Quality Management .	13
	2.3.1	Preventative Measures and Multiple Barriers	13
	2.3.2	Critical Control Points	14
	2.4	Element 4 – Operational Procedures and Process Controls	15
	2.4.1	Operational Procedures	15
	2.4.2	Operational Monitoring	16
	2.4.3	Corrective Actions	16
	2.4.4	Equipment Capability and Maintenance	17
	2.4.5	Materials and Chemicals	18
	2.5	Element 5 – Verification of Drinking Water Quality	19
	2.5.1	Drinking Water Quality Monitoring	19
	2.5.2	Consumer Satisfaction	19
	2.5.3	Short Term Evaluation of Results	20

	2.5.4	Corrective Action	21
2	.6 E	lement 6 – Management of Incidents and Emergencies	22
	2.6.1	Communication	22
	2.6.2	Incident and Emergency Response Plan	22
2	.7 E	lement 7 - Awareness and Training	23
	2.7.1	Employee Awareness and Involvement	23
	2.7.2	Employee Training	23
2	.8 E	lement 8 - Community Involvement and Awareness	25
	2.8.1	Community Consultation	25
	2.8.2	Communication	25
2	.9 E	lement 9 – Research and Development	26
	2.9.1	Validation of Processes	26
	2.9.2	Design of Equipment	26
	2.9.3	Investigative Studies and Research Monitoring	27
2	.10 E	lement 10 – Documentation and Reporting	29
	2.10.1	Management of Documentation and Records	29
	2.10.2	Reporting	29
2	.11 E	lement 11 – Evaluation and Audit	31
	2.11.1	Long Term Evaluation Results	31
	2.11.2	Audit of Drinking Water Quality Management	31
2	.12 E	lement 12 – Review and Continuous Improvement	33
	2.12.1	Review by Executive Management	33
	2.12.2	Drinking Water Quality Management Improvement Plan	33
3	Biblic	ography	34

1 Introduction

1.1 Background

Catherine Hill Bay Water Utility Scheme (CHBWU), a subsidiary of Solo Water, is the Water Industry Competition Act (WIC Act) licenced Network Operator for the Drinking Water, Recycled Water and Sewerage scheme servicing the Beaches Estate at Catherine Hill Bay (CHB).

All drinking water, recycled water and sewerage infrastructure under the scheme is owned, operated, maintained and renewed by Catherine Hill Bay Water Utility Pty Ltd (CHBWU).

CHBWU owns all assets and holds the Network Operator Licence (16/035) for the scheme. CHBWU subcontracts all design, construction, operation and maintenance activities to parent company Solo Water. Solo Water also holds the Retail Supplier Licence (15/036R) for the Catherine Hill Bay scheme and provides the customer and retail services directly to the end use customers.

This Drinking Water Management Plan is a licencing requirement under the WIC Act and has been prepared to ensure that drinking water quality in the scheme is maintained and managed in compliance with the 12 Element of the Australian Drinking Water Guidelines.

1.2 Scheme Overview

This *Drinking Water Quality Management Plan* (IMS-ENVM-B-3727-SW) (DWQMP) has been designed to provide a structured and systematic approach for the management of the drinking water system at the Catherine Hill Bay Water Utility (CHBWU) scheme.

This current version of the document was written specifically to address the management of the drinking water system for Stage 2 of the CHBWU scheme. During Stage 2, and all future stages, the drinking water system involves the following:

- Source bulk potable water from Central Coast Council Kanangra Drive Reservoir
- Bulk potable water is transferred to the CHB scheme via the bulk water pump station and bulk water transfer main;
- Drinking water is stored onsite in a 1 ML drinking water storage tank
- Drinking water is supplied directly to customers via the onsite drinking water supply booster pump station.
- Chlorine residual is maintained in the drinking water storage tank and at the point of supply using an online chlorine monitoring and dosing system.

The DWQMP covers the bulk potable water and drinking water supply system only. For information on the recycled water system refer to the *Recycled Water Management Plan* (IMS-QUAL-B-8446-SW).

1.3 Catherine Hill Bay Water Utility Scheme Stages

The Catherine Hill Bay Beaches subdivision was approved by the Planning Assessment commission under Project Approval MP 10-0204, for 550 residential lots, 1 retail lot, 9 reserves and 2 heritage lots that will be constructed in 7 subdivision stages.

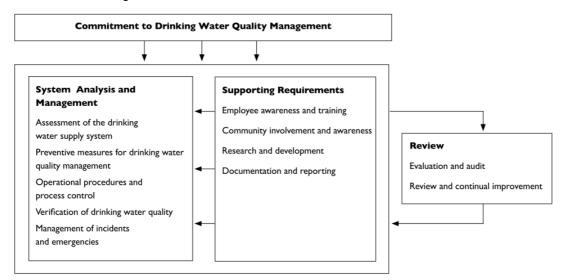
The CHBWU scheme is approved under a separate process under the WIC Act. The scheme is currently licenced to service up to 470 ET with future approval required for the ultimate 550 ET capacity.

A summary of the CHBWU stages for provision of drinking water services to the development is provided below in Table 1.1. This DWQMP is revised and updated as the CHBWU moves through each of the operational stages. This document applies to Stage 2 of the scheme and can provide for up to 470 ET in connections to the drinking water system. The main change in stage 2 is introduction of the onsite drinking water storage tank.

CHBWU Stages	Water Source	Onsite Storage and Treatment System	Drinking Water Network
Stage 1	Water source is potable	N/A – No onsite storage.	Drinking water network with
Interim	water from Central Coast	Inline chorine monitoring and	connection points provided
	Council Kanangra Drive	dosing system on the bulk water	for up to 470 ET.
	Reservoir.	transfer main.	Recycled water network with
	CHBWU's bulk water	The drinking water and recycled	connection points provided
	pump station is located at	water networks are cross	for up to 470 ET, supplied
	the Kanangra Drive	connected with a removable cross	with drinking water.
	Reservoir site.	connection located at the RWTP	
	CHBWU supply to	site.	
	customers directly from		
	the bulk water pump		
	station and transfer main.		
Stage 2	Water source is potable	1 ML onsite drinking water storage	Drinking water network with
– 470 ET	water from Central Coast	tank located at the RWTP Facility	connection points provided
	Council Kanangra Drive	filled from the bulk water pump	for up to 470 ET.
	Reservoir.	station and transfer main.	No cross connection with the
	CHBWU's bulk water	Residual chlorine monitoring and	recycled water network.
	pump station and transfer	dosing system on drinking water	
	main is used to fill the	storage tank and booster pump	
	onsite 1 ML drinking	station.	
	water tank.	Physical removal of cross	
		connection.	
Stage 3	No change to drinking	No change to drinking water	No change to drinking water
– 550 ET	water source or point of	storage and treatment.	network apart from
	supply.	As per Stage 2.	expansion of reticulation
	As per Stage 2.		system to service up to 550
			ET.

Table 1.1: CHBWU Drinking Water System Staging.

1.4 Regulatory Framework


The DWQMP forms part of the framework for licencing of private water utility schemes under the Water Industry Competition Act (2006) – (WICA). The key management plans that have been documented to support the CHBWU Network Operator's Licence are:

- Drinking Water Quality Management Plan (DWQMP)
 - o IMS-ENVM-B-3727-SW DWQMP Stage 2
- Recycled Water Quality Management Plan (RWQMP)
 - o IMS-QUAL-B-8446-SW- RWQMP Stage 2
- Sewage Management Plan (SMP)
 - o IMS-ENVM-B-3728-SW SMP Stage 2
- Infrastructure Operating Plan (IOP)
 - o IMS-OPER-B-8297-SW IOP Stage 2
- Incident Response & Notification Plan (IRNP)
 - o IMS-AIIR-B-0041-SW IRNP Stage 2
- Operational Environmental Management Plan (OEMP)
 - o IMS-ENVM-B-3736-SW OEMP Stage 2

The above documents are updated as the scheme progresses through each stage.

1.5 Drinking Water Quality Plan Framework

The Australian Drinking Water Guidelines (ADWG) (National Health and Medical Research Council; Natural Resource Management Ministerial Council, 2011, Version 3.3 Updated November 2016) provides a 12-element framework developed to guide the design of a structured and systematic approach for the management of drinking water quality from catchment to consumer, to assure its safety and reliability. The 12-element framework is outlined below in Figure 1-1.

Figure 1-1: 12-Element framework for drinking water quality management (ADWG: 2011)

1.6 Solo Group – Integrated Management System

The DWQMP will also apply within the broader context of the Solo Group Integrated Management System (IMS). The purpose of the IMS is to ensure that the company provides projects, products and services in a safe and environmentally responsible manner, whilst also meeting the high standards demanded by the company and expected by our customers and business partners.

The IMS is primarily defined within the following management plans which provide the overriding framework for the implementation of the IMS for the Solo Group including Solo Water activities at CHB. These include the following:

- 1. Quality Management Plan (IMS-QUAL-B-8401)
- 2. Environmental Management Plan (IMS-ENVM-B-3714-SW)
- 3. Safety Management Plan (IMS-SAFE-B-4801)

In supporting these management plans, the IMS *Document Control Procedure (IMS-DOCC-D-2420)* and the associated *Document Control Register (IMS-DOCC-G-2414)* details the control procedures and associated register for all controlled documents (e.g. policies, plans, procedures, registers and forms) within the IMS.

The DWQMP and associated documentation are incorporated within this system.

1.7 DWQP Roles and Responsibility

Solo Water has the following responsibilities established by this RWQMP:

- Operate the systems according to the Infrastructure Operating Plan (IMS-OPER-B-8297-SW) and this DWQMP.
- Review data from monitoring to verify the effectiveness of the operational and critical control point plans and respond to, or document areas of non-compliance.
- Undertake corrective response actions (as outlined by critical control point plans and emergency response procedures) when CCP limits are exceeded.
- Review and update identified areas for improvement as documented using the Corrective Action Request Procedure (IMS-COMP-D-0817) and tracking corrective actions within the Corrective Action Request (CAR) Log (IMS-COMP-G-0818).
- Record employee training and community engagement projects.
- Satisfy internal and external auditing requirements.
- Conduct and record annual and triggered reviews of this management system
- Report findings from annual/triggered reviews to validate and verify the functionality of this management system, and
- Update this DWQMP where necessary after review, in response to changes to the recycled water management system, or for any other relevant reason.

Staff members from Solo Water with support from Solo Resource Recovery compliance department staff will form the RWQMP team and will be responsible for implementation and review of the management plan and supporting systems. Nominated positions and roles within the RWQMP team are listed in the *Infrastructure Operation Plan (IOP) (IMS-OPER-B-8297-SW)* and the *Solo Water Organisational Chart (IMS-OPER-G-8321-SW)*.

Catherine Hill Bay Water Utility

Recycled Water Quality Management Plan Stage 2

Version 1.2

September 2019

Water Utility Solutions

Version	Date	Revision Details	Author	Review	Approved
А	01/02/2017	Preliminary draft for design development	JC Schrotter (Aquatis)	B. Irwin C. Heininger	
1.0	28/08/2018	Revised following detailed design of RWTP. For NSW Health Consultation.	B. Irwin	C. Heininger	B. Irwin
1.1	5/11/2018	Removed recycled water use for construction.	B. Irwin	C. Heininger	B. Irwin
1.2	20/09/2019	Minor revision	B. Irwin	C. Heininger	B. Irwin

Document Status

Solo Water Pty Ltd

ABN 111 60 013 614

Address:	86-88 Chinderah Bay Drive, Chinderah NSW 2487
Post:	PO Box 1427, Kingscliff NSW 2487
Phone:	1300 7656 98 (1300 SOLO WU)
Internet:	www.solowater.com.au
Email:	info@solowater.com.au

© Solo Water Pty Ltd 2019

This document is and shall remain the property of Solo Water Pty Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1	Intro	duction	. 1	
	1.1	Overview		
	1.2	Catherine Hill Bay Water Utility Scheme Staging		
	1.3	Regulatory Framework	. 3	
	1.4	RWQMP Framework	. 3	
	1.5	Solo Group – Integrated Management System	. 4	
	1.6	RWQMP Roles and Responsibility	. 4	
2	Recy	cled Water Management Framework	6	
	2.1	Element 1 – Commitment to Responsible Recycled Water Management	. 6	
	2.1.1	Responsible use of Recycled Water	. 6	
	2.1.2	Recycled Water Policy	. 6	
	2.1.3	Regulatory and Formal Requirements	. 7	
	2.1.4	Partnership and Engagement of Stakeholders (including the public)	. 7	
	2.2	Element 2 – Assessment of the Recycled Water System	. 9	
	2.2.1	Recycled Water Source, Intended Uses and Receiving Environment	. 9	
	2.2.2	Recycled Water System Analysis	10	
	2.2.3	Assessment of Water Quality Data	12	
	2.2.4	Hazard Identification and Risk Assessment	13	
	2.3	Element 3 – Preventative Measures for Recycled Water Management	15	
	2.3.1	Preventative Measures and Multiple Barriers	15	
	2.3.2	Critical Control Point Analysis	17	
	2.4	Element 4 – Operational Procedures and Process Control	19	
	2.4.1	Operational Procedures	19	
	2.4.2	Operational Monitoring	20	
	2.4.3	Operational Corrections	20	
	2.4.4	Equipment Capability and Maintenance	22	
	2.4.5	Materials and Chemicals	23	
	2.5	Element 5 – Verification of Performance	24	
	2.5.1	Recycled Water Quality Verification Monitoring	24	
	2.5.2	Site and Receiving Environment	24	
	2.5.3	Documentation & Reliability	25	
Re	cycled Wa	ater Quality Management Plan		

	2.5.4	Satisfaction of users of recycled water	25
	2.5.5	Short Term Evaluation of Results	26
	2.5.6	Corrective Responses	26
2	2.6 E	lement 6 – Management of Incidents and Emergencies	28
	2.6.1	Communication	28
	2.6.2	Incident and emergency response protocols	28
2	2.7 E	lement 7 – Awareness and Training	29
	2.7.1	Operator, contractor and end user awareness and involvement	29
	2.7.2	Operator, contractor and end user training	30
2	2.8 E	lement 8: Community Involvement and Awareness	31
	2.8.1	Community Consultation	31
	2.8.2	Communication and education	31
2	2.9 E	lement 9: Validation, Research and Development	32
	2.9.1	Validation of Processes	32
	2.9.2	Design of Equipment	33
	2.9.3	Investigation of studies and research monitoring	33
2	2.10 E	lement 10 – Document and Reporting	35
	2.10.1	Management of Documentation and Records	35
	2.10.2	Reporting	36
2	2.11 E	lement 11: Evaluation and Audit	37
	2.11.1	Long Term Evaluation Results	37
	2.11.2	Audit of recycled water quality management	37
2	2.12 E	lement 12: Review and Continuous Improvement	39
	2.12.1	Review by Senior Managers	39
	2.12.2	Recycled Water Improvement Plan	39
3	Biblio	graphy	40

Table Index

Table 1.1: CHBWU Recycled Water Scheme Staging.	2
Table 1.2: The 12 Elements in the AGWR framework.	3
Table 2.1: Recycled water system assessment key team members.	. 11
Table 2.2: MBR treated water quality.	. 12
Table 2.3: Summary of Preventative Measures & Multiple Barriers	15

Table 2.4: C	itical Control Points	17
Table 2.5: S	ummary of RWTP Critical Control Point targets and limits.	18
Table 2.6:	Corrective actions for potential operational non-compliances	21

1 Introduction

1.1 Overview

This *Recycled Water Quality Management Plan (IMS-QUAL-B-8446-SW)* (RWQMP) has been designed to provide a structured and systematic approach for the management of recycled water at the Catherine Hill Bay Water Utility (CHBWU) scheme and is a requirement of the Network Operator Licence 16/035.

This current version of the document was written specifically to address the recycled water system in Stage 2 of the CHBWU scheme. During this period recycled water will be managed by a supply to customers in the dual reticulation system for toilet flushing, laundry washing machine cold water, irrigation and outdoor cleaning.

Under this RWQMP all surplus recycled water will be transported offsite by licenced liquid waste transport contractor to the nearest accepting municipal WWTP because construction of the surplus recycled water irrigation area in Stage 6 and 7 of the subdivision has not been completed as yet. This RWQMP will be updated with the requirements of the irrigation system in Stage 6 and 7 prior to the irrigation area becoming operational in the future.

All water, wastewater and recycled water infrastructure under the scheme is owned and operated by the Catherine Hill Bay Water Utility Pty Ltd (CHBWU), a subsidiary of Solo Water. CHBWU holds the IPART Network Operator Licence and subcontracts all design, construction, operation and maintenance activities to parent company Solo Water. Solo Water also holds the Retail Supplier Licence (15/036R) for the Catherine Hill Bay scheme and provides the customer and retail services directly to the end use customers.

1.2 Catherine Hill Bay Water Utility Scheme Staging

The Catherine Hill Bay Beaches subdivision was approved by the Planning Assessment commission under Project Approval MP 10-0204, for 550 residential lots, 1 retail lot, 9 reserves and 2 heritage lots that will be constructed in 7 subdivision stages.

The CHBWU scheme is approved under a separate process under the WIC Act. The scheme is currently licenced to service up to 470 ET with future approval required for the ultimate 550 ET capacity.

A summary of the CHBWU stages for provision of recycled water services to the development is provided below in Table 1.1.

CHBWU Stages	Recycled Water Treatment Facility	Recycled Water Supply	Surplus Recycled Water	
Stage 1 Interim	N/A – Sewage storage tanks and road tanker pump out.	N/A – recycled water network supplied with drinking water via a temporary and removable cross connection.	N/A – All raw sewage is pumped out	
Stage 2 Recycled Water with surplus irrigation (max 470 ET, as per current licence)	Onsite Recycled Water Treatment Facility to produce recycled water compliance to the AGWR using the following unit processes: • Membrane bioreactor • UV disinfection • Chlorine contact tank • Chlorine residual control The above process train achieves LRVs greater than required under the AGWR.	ment Facility to produce led water compliance to GWR using the ving unit processes:Recycled Water supply to Solo Water end use customers in the Beaches estate for:Membrane bioreactor UV disinfection Chlorine contact tank Chlorine residual control• Toilet flushing; • Laundry washing machine cold water tap; • Irrigation; • Outdoor cleaning.wes LRVs greater than• Outdoor cleaning.		
Future Stage 3 Recycled Water with surplus discharged offsite (subject to future approvals)	Additional treatment will be provided if required based on the outcomes and conditions of the Stage 3 scheme approval process.	 Recycled Water supply to Solo Water end use customers in the Beaches estate for: Toilet flushing; Laundry washing machine cold water tap; Irrigation; Outdoor cleaning 	The offsite discharge location to be confirmed during the Stage 3 approval process. The RWQMP will be updated to include any additional requirements of the offsite discharge system once it is approved.	

Table 1.1: CHBWU Recycled Water Scheme Staging.

1.3 Regulatory Framework

The RWQMP forms part of the framework for licencing of private water utility schemes under the Water Industry Competition Act (2006) – (WICA). The key management plans that have been documented to support the CHBWU Network Operator's Licence are:

- Recycled Water Quality Management Plan (RWQMP) this plan
 - IMS-QUAL-B-8446-SW- RWQMP Stage 2
- Sewage Management Plan (SMP)
 - o IMS-ENVM-B-3728-SW SMP Stage 2
- Drinking Water Quality Management Plan (DWQMP)
 - o IMS-ENVM-B-3727-SW DWQMP Stage 2
- Infrastructure Operating Plan (IOP)
 - o IMS-OPER-B-8297-SW IOP Stage 2
- Incident Response & Notification Plan (IRNP)
 - o IMS-AIIR-B-0041-SW IRNP Stage 2
- Operational Environmental Management Plan (OEMP)
 - o IMS-ENVM-B-3736-SW OEMP Stage 2

The above documents are updated as the scheme progresses through each stage.

1.4 **RWQMP** Framework

This RWQMP is structured to address the twelve elements of The National Water Quality Management Strategy (NWQMS) *Australian Guidelines for Water Recycling: Managing Health and Environmental Risks* (EPHC, NRMMC & AHMC, 2006) (herein referred to as AGWR). The 12element framework is outlined in Table 1.2 below.

Element	Description	
1	Commitment to responsible use and management of recycled water	
2	Assessment of the recycled water system	
3	Preventative measures for recycled water management	
4	Operational procedures and process control	
5	Verification of recycled water quality and environmental performance	
6	Management of Incidents and emergencies	
7	Operator, contractor and end user awareness and training	
8	Community involvement and awareness	
9	Validation, research and development	
10	Documentation and reporting	

Table 1.2: The 12 Elements in the AGWR framework.

11	Evaluation and audit
12	Review and continuous improvement

1.5 Solo Group – Integrated Management System

The RWQMP will also apply within the broader context of the Solo Group Integrated Management System (IMS). The purpose of the IMS is to ensure that the company provides projects, products and services in a safe and environmentally responsible manner, whilst also meeting the high standards demanded by the company and expected by our customers and business partners.

The IMS is primarily defined within the following management plans that provide the overriding framework for the implementation of the IMS for the Solo Group including Solo Water activities at CHB. These include the following:

- 1. Quality Management Plan (IMS-QUAL-B-8401)
- 2. Environmental Management Plan (IMS-ENVM-B-3714-SW)
- 3. Safety Management Plan (IMS-SAFE-B-4801)

In supporting these management plans, the *IMS Document Control Procedure (IMS-DOCC-D-2420)* and the associated *Document Control Register (IMS-DOCC-G-2414)* details the control procedures and associated register for all controlled documents (e.g. policies, plans, procedures, registers and forms) within the IMS.

The RWQMP and associated documentation are incorporated within this IMS.

1.6 RWQMP Roles and Responsibility

Solo Water has the following responsibilities established by this RWQMP:

- Operate the systems according to the *Infrastructure Operating Plan (IMS-OPER-B-8297-SW)* and this RWQMP.
- Review data from monitoring to verify the effectiveness of the operational and critical control plans and respond to, or document areas of non-compliance.
- Undertake corrective response actions (as outlined by critical control point plans and emergency response procedures) when CCP limits are exceeded.
- Review and update identified areas for improvement as documented using the *Corrective Action Request Procedure (IMS-COMP-D-0817)* and tracking corrective actions within the *Corrective Action Request (CAR) Log (IMS-COMP-G-0818).*
- Record employee training and community engagement projects.
- Satisfy internal and external auditing requirements.
- Conduct and record annual and triggered reviews of this management system
- Report findings from annual/triggered reviews to validate and verify the functionality of this management system, and
- Update this RWQMP where necessary after review, in response to changes to the recycled water management system, or for any other relevant reason.

Staff members from Solo Water with support from Solo Resource Recovery compliance department staff will form the RWQMP team and will be responsible for implementation and review of the management plan and supporting systems. Nominated positions and roles within the RWQMP team are listed in the *Infrastructure Operation Plan (IOP) (IMS-OPER-B-8297-SW)* and the *Solo Water Organisational Chart (IMS-OPER-G-8321-SW)*.

Catherine Hill Bay Water Utility

Sewage Management Plan Stage 2

> Revision 2.2 September 2019

Water Utility Solutions

Revision	Date Revision Details		Author	Review	Approved
1.0	13/06/17	For Interim Operations	B. Irwin	C. Heininger	B. Irwin
2.0	31/08/18	Updated to incorporate the RWTP Facility for Stage 2	B. Irwin	C. Heininger	B. Irwin
2.1	5/11/2018	Updated PFD based on removal of recycled water use for construction	B. Irwin	B. Irwin	B. Irwin
2.2	20/09/2019	Minor revision	B. Irwin	C. Heininger	B. Irwin

Document Status

Solo Water Pty Ltd

ABN 111 60 013 614

86-88 Chinderah Bay Drive, Chinderah NSW 2487
PO Box 1427, Kingscliff NSW 2487
1300 7656 98 (1300 SOLO WU)
www.solowater.com.au
info@solowater.com.au
1

© Solo Water Pty Ltd 2019

This document is and shall remain the property of Solo Water Pty Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1	Intr	oduction	6
	1.1	Background	6
	1.2	Overview	6
	1.3	Catherine Hill Bay Water Utility Scheme Stages	6
	1.4	Regulatory Framework	7
	1.5	SMP Framework	8
	1.6	Solo Group – Integrated Management System	9
	1.7	SMP Roles and Responsibility	9
2	Sev	vage Management Framework1	1
	2.1	Element 1 – Commitment to Responsible Sewage Management 1	1
	2.1.1	Responsible Management of Sewage1	1
	2.1.2	2 Sewage Management Policy 1	1
	2.1.3	3 Regulatory and Formal Requirements1	2
	2.1.4	Partnership and Engagement of Stakeholders (including the public) 1	2
	2.2	Element 2 – Assessment of the Sewerage System 1	4
	2.2.1	Sewerage System Analysis1	4
	2.2.2	2 Sewerage System Information 1	5
	2.2.3	3 Source Waste Characterisation 1	6
	2.2.4	Site and Receiving Environment 1	6
	2.2.5	5 Hazard identification and risk assessment1	7
	2.3	Element 3 – Preventative Measures for Sewage Management 1	9
	2.3.1	Preventative Measures and Multiple Barriers 1	9
	2.3.2	2 Critical Control Points (CCPs)	0
	2.4	Element 4 – Operational Procedures and Process Control 2	2
	2.4.1	Operational Procedures 2	2
	2.4.2	2 Operational Monitoring2	3
	2.4.3	3 Operational Corrections	3
	2.4.4	Equipment Capability and Maintenance 2	4
	2.4.5	5 Materials and Chemicals2	5
	2.5	Element 5 – Verification of Performance 2	6
	2.5.1	Sewerage System Monitoring 2	6
	2.5.2	2 Site and Receiving Environment 2	6

2	.5.3	Satisfaction of users of the sewerage system	27
2	.5.4	Short Term Evaluation of Results	27
2	.5.5	Corrective Responses	28
2.6	E	lement 6 – Management of Incidents and Emergencies	29
2	.6.1	Communication	29
2	.6.2	Incident and emergency response protocols	29
2.7	E	lement 7 – Awareness and Training	30
2	.7.1	Operator, contractor and end user awareness and involvement	30
2	.7.2	Operator, contractor and end user training	31
2.8	E	lement 8: Community Involvement and Awareness	32
2	.8.1	Community Consultation	32
2	.8.2	Communication	32
2.9	E	lement 9: Validation, Research and Development	33
2	.9.1	Validation of Processes	33
2	.9.2	Design of Equipment	34
2	.9.3	Investigation of studies and research monitoring	34
2.10) E	lement 10 – Document and Reporting	36
		Management of Documentation and Records	
2	.10.2	Reporting	37
2.11	E	lement 11: Evaluation and Audit	38
2	.11.1	Long Term Evaluation Results	38
2	.11.2	Audit	38
2.12	2 E	lement 12: Review and Continuous Improvement	40
2	.12.1	Review by Senior Managers	40
2	.12.2	Sewage Management Improvement Plan	40
3 E	Biblio	ography	41

Table Index

Table 1.1: CHBWU Sewerage System Staging.	7
Table 1.2: SMP framework elements (taken from AGWR)	. 8
Table 2.1: Sewerage system assessment key team members	14
Table 2.2: Description of Pressure Sewer Network	15
Table 2.3: Summary of Preventative Measures	19

Table 2.4: Raw Sewage Storages Critical Control Point.	21
Table 2.5: Corrective actions for potential operational non-compliances	24

1 Introduction

1.1 Background

Catherine Hill Bay Water Utility Scheme (CHBWU), a subsidiary of Solo Water, is the Water Industry Competition Act (WIC Act) licenced Network Operator for the Drinking Water, Recycled Water and Sewerage scheme servicing the Beaches Estate at Catherine Hill Bay (CHB).

All drinking water, recycled water and sewerage infrastructure under the scheme is owned, operated, maintained and renewed by Catherine Hill Bay Water Utility Pty Ltd (CHBWU).

CHBWU owns all assets and holds the Network Operator Licence (16/035) for the scheme. CHBWU subcontracts all design, construction, operation and maintenance activities to parent company Solo Water. Solo Water also holds the Retail Supplier Licence (15/036R) for the Catherine Hill Bay scheme and provides the customer and retail services directly to the end use customers.

This Sewage Water Management Plan is a licencing requirement under the WIC Act and has been prepared to ensure that sewerage system is maintained and managed in compliance with the 12 Element of the Australian Guidelines for Water Recycling.

1.2 Overview

This Sewage Management Plan (IMS-ENVM-B-3728-SW) (SMP) has been designed to provide a structured and systematic approach for the management of the pressure sewer network and raw sewage at the Catherine Hill Bay Water Utility (CHBWU) scheme and is a requirement of the Network Operator Licence 16/035.

This current version of the document was written specifically to address the management of the pressure sewer system for Stage 2 of the CHBWU scheme. During Stage 2, and all future stages, the pressure sewer network discharges to the Inlet Balance Tank or Emergency Storage Tanks at the Recycled Water Treatment Plant (RWTP) site.

The SMP covers the pressure sewer network and raw sewage storages only. For information on the RWTP, treatment processes, recycled water uses and water quality requirements, refer to the *Recycled Water Management Plan* (IMS-QUAL-B-8446-SW)

1.3 Catherine Hill Bay Water Utility Scheme Stages

The Catherine Hill Bay Beaches subdivision was approved by the Planning Assessment commission under Project Approval MP 10-0204, for 550 residential lots, 1 retail lot, 9 reserves and 2 heritage lots that will be constructed in 7 subdivision stages.

The CHBWU scheme is approved under a separate process under the WIC Act. The scheme is currently licenced to service up to 470 ET with future approval required for the ultimate 550 ET capacity.

A summary of the CHBWU stages for provision of sewerage services to the development is provided below in Table 1.1. This SMP is revised and updated as the CHBWU moves through each of the operational stages.

This document applies to Stage 2 of the scheme and can provide for up to 470 ET in connections.

CHBWU Stages	Sewerage Network	Discharge Location	Ultimate Fate
Stage 1 Interim	The sewerage collection system uses pressure sewer technology. The pressure sewer system uses "duplex" Pressure Sewer Units that service up to 5 lots. Under the Current SMP and WICA licence a maximum of 470 ET can connect to the pressure sewer network.	All raw sewage from the pressure sewer network discharges to the Interim Facility Sewage Pump Out Tanks	All raw sewage is trucked offsite from the Sewage Pump Out Tank and disposed of to the nearest accepting Municipal WWTP owned by Central Coast Council or Hunter Water.
Stage 2		During normal operations the pressure sewer network discharges to the Inlet Balance Tank at the RWTP site. During abnormal operations or emergency conditions the pressure sewer network discharges to the Emergency Storage Tank at the RWTP site.	During normal operation all raw sewage is treated in the RWTP as per the Recycled Water Quality Management Plan (RWQMP) (IMS- QUAL-B-8446-SW). During abnormal operations or emergency conditions, raw sewage may be trucked offsite and disposed of to the nearest accepting Municipal WWTP owned by Central Coast Council or Hunter Water.
Stage 3	Following approval of the Stage 3 scheme the number of connections permitted on the pressure sewer network can increase to 550 ET.	No change to sewerage system or discharge locations.	No change to sewerage system or discharge locations.

Table 1.1: CHBWU Sewerage System Staging.

1.4 Regulatory Framework

The SMP forms part of the framework for licencing of private water utility schemes under the Water Industry Competition Act (2006) – (WICA). The key management plans that have been documented to support the CHBWU Network Operator's Licence are:

- Sewage Management Plan (SMP) this plan
 - o IMS-ENVM-B-3728-SW SMP Stage 2

- Recycled Water Quality Management Plan (RWQMP)
 - o IMS-QUAL-B-8446-SW- RWQMP Stage 2
- Drinking Water Quality Management Plan (DWQP)
 - IMS-ENVM-B-3727-SW DWQMP Stage 2
- Infrastructure Operating Plan (IOP)
 - IMS-OPER-B-8297-SW IOP Stage 2
- Incident Response & Notification Plan (IRNP)
 - o IMS-AIIR-B-0041-SW IRNP Stage 2
- Operational Environmental Management Plan (OEMP)
 - o IMS-ENVM-B-3736-SW OEMP Stage 2

The above documents are updated as the scheme progresses through each stage.

1.5 SMP Framework

This SMP is structured to address the twelve elements of The National Water Quality Management Strategy (NWQMS) *Australian Guidelines for Water Recycling: Managing Health and Environmental Risks* (EPHC, NRMMC & AHMC, 2006) (herein referred to as AGWR).

Although using the AGWR risk management framework, this SMP applies to the raw sewage pressure sewer network and storages only and does not attempt to address treatment and water quality requirements for the recycled water scheme, these are addresses in the *Recycled Water Quality Management Plan* (IMS-QUAL-B-8446-SW- RWQMP).

Element	Description
1	Commitment to responsible management of sewage wastewater
2	Assessment of the sewage system
3	Preventative measures for sewage management
4	Operational procedures and process control
5	Verification of performance
6	Management of Incidents
7	Operator, contractor and end user awareness and training
8	Community involvement and awareness
9	Validation, research and development
10	Document and reporting
11	Evaluation and audit
12	Review and continuous improvement

Table 1.2: SMP framework elements (taken from AGWR)

1.6 Solo Group – Integrated Management System

The SMP will also apply within the broader context of the Solo Group Integrated Management System (IMS). The purpose of the IMS is to ensure that the company provides projects, products and services in a safe and environmentally responsible manner, whilst also meeting the high standards demanded by the company and expected by our customers and business partners.

The IMS is primarily defined within the following management plans which provide the overriding framework for the implementation of the IMS for the Solo Group including Solo Water activities at CHB. These include the following:

- 1. Quality Management Plan (IMS-QUAL-B-8401)
- 2. Environmental Management Plan (IMS-ENVM-B-3714-SW)
- 3. Safety Management Plan (IMS-SAFE-B-4801)

In supporting these management plans, the *IMS Document Control Procedure (IMS-DOCC-D-2420)* and the associated *Document Control Register (IMS-DOCC-G-2414)* details the control procedures and associated register for all controlled documents (e.g. policies, plans, procedures, registers and forms) within the IMS. The SMP and associated documentation are incorporated within this system.

1.7 SMP Roles and Responsibility

Solo Water has the following responsibilities established by this SMP:

- Operate the systems according to the *Infrastructure Operating Plan (IMS-OPER-B-8297-SW)* and this SMP.
- Review data from monitoring to verify the effectiveness of the operational and critical control plans and respond to, or document areas of non-compliance.
- Undertake corrective response actions (as outlined by critical control point plans and emergency response procedures) when CCP limits are exceeded.
- Review and update identified areas for improvement as documented using the *Corrective Action Request Procedure (IMS-COMP-D-0817)* and tracking corrective actions within the *Corrective Action Request (CAR) Log (IMS-COMP-G-0818)*.
- Record employee training and community engagement projects.
- Satisfy internal and external auditing requirements.
- Conduct and record annual and triggered reviews of this management system
- Report findings from annual/triggered reviews to validate and verify the functionality of this management system, and
- Update this SMP where necessary after review, in response to changes to the recycled water management system, or for any other relevant reason.

Staff members from Solo Water with support from Solo Resource Recovery compliance department staff will form the SMP team and will be responsible for implementation and review of the management plan and supporting systems.

Nominated positions and roles within the SMP team are listed in the *Infrastructure Operation Plan (IOP) (IMS-OPER-B-8297-SW)* and the *Solo Water Organisational Chart (IMS-OPER-G-8321-SW)*.